Sullivan et al. Malaria Journal 2011, 10:274
http://www.malariajournal.com/content/10/1/274

MALARIA
JOURNAL

RESEARCH Open Access

Discovery of potent, novel, non-toxic anti-malarial
compounds via quantum modelling, virtual
screening and in vitro experimental validation

David J Sullivan Jr'", Nikola Kaludov? and Martin N Martinov?

Abstract

Background: Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new
therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices.
Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and
does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum
attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other
essential properties can be analysed and optimized simultaneously, independently of one another. Such
methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.

Methods: A set of innovative algorithms is used for the fast calculation and interpretation of electron-density
attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency
and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other
properties were characterized by the procedure. Once quantum models are developed and experimentally
validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation
and de novo molecular design.

Results: Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately
active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and
structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were
identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 < 10 uM), with six being
very effective (IC50 < 1 uM), and four exhibiting low nanomolar potency. The most active compounds were also
tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the
most active compound.

Conclusions: Gradient's metric modelling approach and electron-density molecular representations can be
powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are
agnostic of the particular biological target, the technology can account for different mechanisms of action and be
used for de novo design of small molecules with activity against not only the asexual phase of the malaria parasite,
but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.
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Background

Malaria is one of the most widespread infectious dis-
eases of our time. Even though the global malaria map
has been shrinking over the past 50 years, more people
are at risk of suffering from malaria today than at any
other time in history-close to 40% of the world’s popula-
tion live in countries where the disease is endemic and
nearly 247 million people suffer from the disease every
year [1]. Malaria is caused by protozoan parasites of the
genus Plasmodium that infect and destroy red blood
cells, leading to fever, severe anaemia, cerebral malaria
and, if untreated, death. P. falciparum is the dominant
species in sub-Saharan Africa, and is responsible for
almost one million deaths each year. The disease burden
is heaviest in African pregnant women and children
under five years of age, who have frequent attacks and
weak immunological protection. The global fight to con-
trol malaria requires a multi-faceted approach [2]. At
present, a wide range of effective tools exists, including
insecticide and larvicide spraying, the use of insecticide-
impregnated bed nets to protect against infection by
mosquitoes, and medicines to both treat the infection
and prevent it in pregnant women and in young chil-
dren [3-5]. However, long-term prophylaxis by vaccina-
tion has been especially challenging as the parasite has
various sophisticated mechanisms to avoid the host
immune system and no approved vaccine is currently
available [6]. Even with all available strategies combined,
a substantial number of patients will suffer from this
disease over the coming decades. Due to emerging drug
resistance, new medicines are needed to treat malaria
episodes, mainly targeting the asexual blood stages of P.
falciparum [7]. Blocking the transmission of the parasite
by the mosquito vector and, in the case of P. vivax
infections, targeting the dormant liver stage of the para-
site, are other important steps towards eradication of
the disease [8,9].

Traditional experimental methods for high-throughput
screening and identification of novel compounds with
activity against malaria targets are rarely effective for
new therapeutics reaching clinical use. Despite consider-
able investments of resources and continuous improve-
ments of these methods [10], many false positive hits
arise and require further effort to triage and validate the
results [11]. Increased size and complexity of molecular
screening libraries often reduce the chance of finding
leads among randomly chosen ligands [12] because of
practical limitations associated with synthesis and test-
ing of additional compounds with low probability of
matching the requirements of the pharmaceutical target.
Therefore, it is not surprising that high-throughput
screening efforts frequently fail to identify suitable hit
compounds, particularly against targets have not been
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studied previously. In attempts to improve hit rates,
screening efforts are often enhanced by traditional struc-
ture-based computational methods [13,14], without
much success [15-17].

In contrast, Gradient’s methodology did not use any
prior, explicit knowledge of the malaria protein targets.
Metric modelling considers the compounds of interest
as quantum objects, without explicit dependence on
their particular chemical structure. On a theoretical
level, these quantum properties serve as powerful
descriptors for molecular modelling, compound identifi-
cation, optimization and de novo design. The computa-
tional platform determines essential, rigorous, easily
computable molecular attributes related to chemical
activity. These attributes are derived from a special
representation of quantum fields. Their well-defined
mathematical characteristics afford systematic theoreti-
cal treatment and property prediction with methods that
would otherwise be computationally impossible. Specia-
lized machine-learning algorithms with fuzzy decision-
making protocols are applied to identify both active
compounds and the corresponding quantum features of
chemical and biological interest. Combined with the
underlying modelling architecture, the algorithms also
provide mechanistic hypothesis for the modelled interac-
tions. Since structurally dissimilar compounds can be
similar on a quantum level, this process is particularly
good at identifying chemically novel compounds that
have significant potency against the target.

Methods

Platform implementation for identification of existing
molecules with anti-malarial activity

The first step for the generation of a model is the crea-
tion of a set of predictive quantum filters. A quantum
filter is a software module that uses quantum attributes
of molecules to predict their activity, or any other obser-
vable property. These filters are created by the use of a
training set of compounds with known activity against
the target, a crystal structure of the target, or other data
related to the desired property. The structural data is
first used to compute the quantum components of the
involved molecular systems. Then, fuzzy machine-learn-
ing algorithms are used to classify the target property
with respect to these pre-computed quantum objects.
Quantum components controlling the target properties
are then used for property prediction of prospective
molecules. The resulting quantum filter is experimen-
tally validated by virtual high-throughput screening of a
comprehensive database of pre-computed commercially
available compounds, identification of potential active
molecules and testing them in vitro for activity in the
appropriate biological assay.
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Structure representation-localized electron-density
descriptors for molecular modeling

Well-defined chemical subsystems, together with their
associated local, spatially-resolved properties, are very
useful in drug discovery [18]. On a theoretical level,
these properties serve as powerful descriptors for mole-
cular modelling and design. Notions from Density Func-
tional Theory and Topological Theory of Atoms in
Molecules can be combined to rigorously define and
compute a complete set of such localized, electron-den-
sity descriptors.

In general, Non-Relativistic Quantum Mechanics
(QM) provides the proper level of physical theory for
treatment of molecular and bio-molecular systems
[19,20]. However, many intuitive chemical concepts are
not directly related to the corresponding wave function
[21], a state-vector in Hilbert space, which is difficult to
partition into chemically meaningful subsystems [22-25].

Density Functional Theory (DFT) [26,27] provides a
systematic framework for inferring chemistry-related
information from QM calculations. This is achieved
through the use of the electron density, p(r), a real, non-
negative Cartesian function connected to the N-electron
molecular wave function y by

p(r) = / [ (%, X1, ..., Xn—1]dsdxy ... dxn_1.,

where x = {s, r} is the four-dimensional spin-spatial
coordinate. As the famous Hohenberg-Kohn theorem
[28] shows, p(r) determines all ground-state properties
of the entire system, including its chemical and bio-
chemical features.

Furthermore, the Topological Theory of Atoms in
Molecules (AIM) [29,30] uses p(r) to partition molecules
into precise atomic subsystems. These atomic subsys-
tems are bounded by zero-flux surfaces S, which obey
the equation

VreS n(r)eVp(r)=0,

where n(r) is the vector normal to S at r and p(r) is
the corresponding electron density.

It is natural to combine DFT and AIM, together with
their respective computational algorithms, in a single
formalism for studying local molecular properties from
first principles. This formalism has yielded meaningful
interpretations of many general chemical concepts, such
as energy partitioning [31], atomic softness [32], electro-
negativity equalization [33], atomic reactivity indices
[34], etc. Augmented with the electrostatic potential,
this electron density-based methodology has been
applied to quantitative structure-activity relationship
studies [35,36]. It also produced the molecular descrip-
tors employed in the modelling effort described here.
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Importantly, when applied as descriptors, these electron-
density transforms define a proper metric (molecular
similarity measure) in the modelling space and allow the
use of rigorous mathematical techniques.

Modelling architecture-fuzzy decision networks
Molecular modelling is a multi-step process:

{Si, Pi} > {Dy; (S), P;} — P[D(S)]

The starting point, {S, Pj}, called a training set, is a set of
molecular structures S;for which a particular property of
interest P has been measured. In the first step, descriptor
calculation, every structure is reduced to some form, typi-
cally a list of real numbers {D;}, which can be modelled
statistically. The second step, actual modelling, attempts
to find a model-a general mapping between property
P and structure S through descriptors D. If successful, the
model would have predictive power that can be applied to
structures for which no measurement exists. Naturally, the
predictive power of the model depends on the quality
(accuracy, diversity, etc.) of the training set as well as
descriptor properties and modelling architecture.

Both powerful descriptors and proper modelling archi-
tecture are crucial for successful molecular modelling
and compound discovery. Ideally, the modelling archi-
tecture should be chosen in accordance with the under-
lying fundamental processes of the system [37], and not
with the type of available numerical data. Complex bio-
chemical interactions involve local attributes of distinct
and diverse molecular structures, which are best mod-
elled with discrete combinatorial methods rather than
continuous multivariate techniques. Still, inherent weak-
nesses of traditional molecular descriptors require the
use of such continuous multivariate techniques [38]. As
sophisticated as some of these techniques are, they can-
not always compensate for the shortcomings of the
underlying molecular-structure representations.

A straightforward machine-learning algorithm using
fuzzy-logic decisions easily discovers the relationship
between quantum components and specific interaction
patterns. In its simplest implementation, the modelling
algorithm produces a model (Figure 1) in the form of a
fuzzy decision tree [39,40]. Each tree node corresponds
to a single descriptor (interaction constraint). In a fully
resolved decision tree, terminal nodes contain only
either active or inactive molecules. Furthermore, each
terminal node is fully characterized statistically-if a
molecule belongs to it, the prediction is qualified by
associated confidence intervals and other statistical para-
meters. A model in the form of a decision tree is easy to
interpret. Each tree path that contains an active terminal
node also contains a set of nodes (quantum compo-
nents) that define the interaction pattern common to all
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Figure 1 Fuzzy decisions tree and network. Quantum attributes
are used to represent molecular systems. These attributes define a
specific, relevant metric in the modelling structure space and thus
allow the proper use of rigorous mathematical techniques. Also,
they have strong relationships with chemical features controlling
molecular interactions, and well-defined physical properties are
often related to a single attribute. In its simplest implementation,
the modelling algorithm produces a fuzzy decision tree, which can
be generalized to a more powerful fuzzy decision network. Each
tree node corresponds to a single attribute (interaction constraint).
The attribute explaining most data variance occupies the highest
node. In a fully resolved decision tree, terminal nodes contain only
either active or inactive molecules. Further, each terminal node is
fully characterized statistically by associated confidence intervals and
other parameters. A decision network provides a complete
characterization of the interaction patterns found within the
modelling data.

training-set molecules belonging to this terminal. The
fuzzy decision tree formalism can be generalized [41] to
more powerful fuzzy decision algorithms. Given a
diverse training set of structures with known inhibition,
the modelling effort produces a decision network char-
acterizing all present interaction patterns in terms of
activity-controlling descriptors, which can be visualized
[36].

Modelling data and in silico filters

Three separate in silico models were created and then
applied as screens for anti-malarial compound identifi-
cation. The anti-malarial model was based on a training
set consisting of 26 known anti-malarial compounds
(Table 1, Figure 2) and in vitro data generated at the

Table 1 Anti-malarial training set-full list of molecules
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Figure 2 Anti-malarial training set example structures. The core

of the training set used to create the anti-malarial filter consists of
26 known anti-malarial compounds (full list in Table 1).

Johns Hopkins Malaria Research Institute of 1,730 FDA
drugs. The in vitro data consisted of single-point mea-
surements of anti-malarial percent inhibition at 10 pM
concentration. Since the modelling resolution is directly
related to the input data accuracy, the predictive thresh-
old of the model was predetermined by the training set
at the same 10 pM value. The training set included mul-
tiple compounds with no P. falciparum inhibition, which
is important to define negative interaction constraints in
quantum terms. The chemical-diversity screen was
developed and applied to assure that the identified com-
pounds are novel and chemically different than the 26
known anti-malarials. A number of commonly accepted
theoretical measures of molecular similarity [42] were

sulphadoxine amodiaquine

atovaquone mefloquine

pyrimethamine artesunate

proguanil pyronaridine

chlorproguanil dihydroartemisinine

azithromycin artemether

Dapsone piperaquine

quinine lumefantrine

Dihydroartemisinin chloroquine

bulaquine tafenoquine

Trimethoprim sulphamethoxazole

fosmidomycin clindamycin

Artemotil

dehydroepian drosterone sulphate
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Figure 3 Quantum anti-malarial model. Starting with known anti-malarial drugs (A), quantum components (QCs) that control anti-malarial
activity were identified (red and green shaded areas). Dissimilar nuclear arrangements in active molecules can have similar anti-malarial electron
density transforms (EDTs). For example, even though the red-shaded area illustrated as QC2 in panel A is comprised of different atoms in a
different chemical substructure, the algorithms calculated their anti-malarial EDTs to be similar to one another. The QCs (B) were calculated and
visualized as described in Materials and Methods. The subsequent virtual screen identified novel compounds (C) predicted to be active against P.
falciparum based on these pre-computed anti-malarial QCs, i.e, it discovered molecules with novel nuclear arrangements that carry the same
anti-malarial QCs (D). Containing two symmetrical quantum components (2 x QC1) which encompass the entire molecule, GR-M009 is the most
active novel compound, while the less active GR-MO11 contains only one quantum component (QC2). Red dots represent oxygen atoms, dark
blue dots represent nitrogen atoms, light blue dots represent carbon atoms, and yellow dots represent sulphur atoms.
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considered to estimate how novel the proposed com-
pounds are. These include Tanimoto coefficients [43]
based on pharmacological functional groups or com-
pound fragments [44,45], as well as chemical diversity
measures derived from electron density considerations
[39]. Once computed, these indices are used to create
point-to-set distance metrics [46], which determine the
dissimilarity of the considered structure from the 26
known active molecules. Finally, to create filters
accounting for low cytotoxicity, the publicly available
data from the National Center for Computational Toxi-
cology [47] and other sources was used [48].

The database

A compound database of commercially available mole-
cules was compiled for the virtual screening part of this
experiment. A total of about 5.8 million structures were
included by incorporating compounds from multiple
sources like Enamine, ChemBridge, LifeChemicals,
ChemDiv, TimTec, the National Cancer Institute, etc.
All molecules were pre-computed and stored in quan-
tum binary form for virtual screening purposes.

In vitro anti-malarial activity assay

The in vitro anti-malarial activity was measured using
the [3H]-hypoxanthine incorporation assay [49] with
various strains of P. falciparum (Roche). Results were
expressed as the concentration corresponding to 50%
inhibition. The anti-malarial assays were performed at
the Swiss Tropical Institute, Basel, Switzerland.

Table 2 Summary of anti-malarial activity and cytotoxicity
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Toxicity assay

Toxicity was determined by using the colorimetric 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbro-
mide (MTT) assay [50]. The toxicity assays were per-
formed at the Swiss Tropical Institute, Basel,
Switzerland.

Results and Discussion

Conventional drug discovery implies a slow, incremental
search for chemicals structurally similar to known active
compounds. This process is inherently limited and rarely
finds molecules having at once all the required proper-
ties of a successful drug. Chemical structure alone does
not provide adequate description of molecular interac-
tions, which are quantum in nature. Without quantum
science any understanding of molecular interactions is
incomplete. In theory, chemistry and biology can be
fully derived from quantum mechanics [19,20]. It was
hypothesized that quantum representation of a small,
diverse set of known anti-malarial compounds can be
used identify in silico novel, non-toxic molecules that
inhibit P. falciparum. Starting with the training set of
the 26 known anti-malarials and the 1730 FDA drugs
with malaria activity screened at 10 pM, a quantum
anti-malarial model was constructed. The model pro-
duced 12 quantum components positively correlated to
activity. Each of these quantum components can be
expressed by multiple chemical substructures. In addi-
tion to the 12 active quantum components, the model
produced more than 20 quantum components with

Compound Average 1C50 Average Cytotoxicity**  Therapeutic Index Average
Anti-malarial (M) (ng/ml) Tanimoto Coefficient
Activity**(ng/ml)

GR-M001 > 10'000* > 20.0 ND NA 0.170

GR-M002 5381 12.54 ND NA 0.162

GR-M003 > 10000 > 20.0 ND NA 0.148

GR-M004 4778 10.28 ND NA 0.175

GR-M005 9736 1891 ND NA 0.147

GR-M006 1634 3.520 ND NA 0.175

GR-M007 446 0.999 10420 23 0.186

GR-M008 382 1.027 > 90’000 > 236 0.124

GR-M009 13 0.027 > 90’000 > 6923 0.159

GR-M010 172 0332 4860 28 0.183

GR-MO11 86 0.185 3250 38 0.159

GR-M012 168* 0328 89770 533 0.145
Anti-malarial control (chloroquine) 42 0.013 NA ~2 ND
Cytotoxicity control (Podophyllotoxin) NA NA 95 NA NA

*Not fully soluble in DMSO

**Data from two independent assays
ND: not determined

NA: not applicable
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negative correlation to malaria action. This translated to
detrimental chemical substructures which were also
used in the subsequent in silico screening process. Addi-
tional filters generated from the data from the National
Center for Computational Toxicology were used to
ensure that the selected compounds were non-toxic.
Since the modelling procedure employed this diverse
training set of structures with known activity (Table 1,
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Figure 2), it produced a model in the form of a decision
network characterising multiple anti-malaria interaction
patterns. These interactions were defined in terms of
activity-controlling quantum attributes, which were
visualized by projection on corresponding Cartesian
molecular surfaces (Figure 3). Importantly, the same
quantum attribute can be found on chemically dissimilar
molecules, which enables discovery of novel molecules
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Figure 4 Novel anti-malarial compounds identified through quantum metric modelling.
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with anti-malarial activity. Quantum attributes as shown
in Figure 3 were used to construct the malaria-specific
in silico filter. Together with the quantum toxicity filter
and the chemical diversity filter described in the Materi-
als and Methods, it was used in a virtual search for
novel, non-toxic anti-malarial compounds. The virtual
screen identified a number of molecules from the quan-
tum database and rank-ordered them according to their
quantum anti-malarial attributes. Based on commercial
availability, twelve of the top 25 rank-ordered com-
pounds were obtained for in vitro validation in both
anti- P. falciparum and mammalian cytotoxicity assays.
The in vitro results are presented at Table 2. All tested
molecules are novel, with low structural similarity (aver-
age Tanimoto coefficient < 0.2) to the known drugs
used in our training set (Figure 4). Eight of the twelve
showed anti-malarial activity at or below the modelling
threshold (IC50 = 10 uM), with six being very effective
(IC50 < 1 uM). Four compounds exhibited potency in
the low nanomolar range (IC50s of 27nM, 185nM,
328nM and 332nM, respectively). The toxicity of the six
most active molecules was also measured (Table 2), and
their respective therapeutic indices (ratios of anti-malar-
ial activity to mammalian cytotoxicity) were calculated.
The most potent of the tested compounds has an index
greater than 6900. In contrast, most malaria drugs in
use today have much lower therapeutic indices [51].
These results exceed conventional state-of-the-art
computational methods and are not subject to the lim-
itations of popular docking programs [52]. For example,
these findings substantially outperform a recent malaria
study [17,53] not only in success rate of compound
discovery (75%), but in speed and need for computa-
tional resources as well. The research described here
confirms the ability of the quantum-similarity platform
to generate anti-malarial compounds that are simulta-
neously active, novel and non-toxic-the three most
important characteristics of an effective therapy for this
disease. Once validated, the quantum anti-malarial com-
ponents discovered by this approach can be employed
in straightforward de novo design of new chemical enti-
ties possessing these three features as well as all other
ADME/Tox properties required for successful anti-
malarial therapeutics.

Given the growing resistance of the malaria parasite,
the ability to discover new classes of active, safe mole-
cules will be essential in the search for anti-malarial
agents. Furthermore, since quantum features can be
defined for compounds known to impact different
stages of the parasite life cycle, the methodology could
provide, for instance, an opportunity to identify alterna-
tive P. vivax hypnozoitocidals by the use of primaquine,
tafenoquine and pamagquine in the training set [7,9].
This is an extremely difficult and demanding area of
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biology and there is a great need for alternative radical
cures without side effects. Finally, this computational
platform opens the possibility of exploring novel chemi-
cal spaces and specifically and accurately targeting elu-
sive, hard to modulate protein-protein interactions
previously considered unapproachable by current dis-
covery methods.

Conclusions

To summarize, after starting from a training set of 26
known anti-malarial drugs and a collection of 1730 FDA
drugs, several novel, chemically different molecules with
high potency and low toxicity were identified and
experimentally validated by testing only 12 compounds.
The computational work was performed in less than a
month on a single computer. Together with the experi-
mental validation, the whole process took less than four
months and required significantly smaller resources
than similar drug discovery efforts. Gradient’s innovative
approach significantly reduces the time and cost needed
to generate pre-clinical drug candidates and greatly
improves the chances to discover and develop a true
causal anti-malarial prophylaxis therapy.
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