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Abstract

Background: Over its life cycle, the Plasmodium falciparum parasite is exposed to different environmental
conditions, particularly to variations in O, pressure. For example, the parasite circulates in human venous blood at
5% O, pressure and in arterial blood, particularly in the lungs, at 13% O, pressure. Moreover, the parasite is
exposed to 21% O, levels in the salivary glands of mosquitoes.

Methods: To study the metabolic adaptation of P. falciparum to different oxygen pressures during the
intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken.

Results: Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in

hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this
study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved

in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis
revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this
regulation reflected post-transcriptional modifications during the hyperoxia response.

Conclusions: These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to

preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic

metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of
L P. falciparum to environmental changes and may lead to the development of novel therapeutic targets.

Background

Plasmodium falciparum is a protozoan parasite respon-
sible for the most severe form of human malaria. This
infection causes between 708,000 and 1,003,000 human
deaths each year, most of them occurring in African
children under the age of five years [1]. Several anti-
malarial agents are used for malaria treatment and pro-
phylaxis in endemic regions. However, the expansion of
drug-resistance remains a serious problem. To develop
new anti-malarial drugs, a better understanding of
P. falciparum biology is required [2]. Some unique prop-
erties of the P. falciparum mitochondrion indicate that
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its respiratory metabolism could be exploited to gener-
ate chemotherapeutic targets [3]. Indeed, atovaquone,
a mitochondrial cytochrome bcl complex inhibitor, is
currently used in combination with proguanil (Malar-
one™, GlaxoSmithKline) for malaria treatment and
prophylaxis [4,5].

In vitro, P. falciparum growth is maximal in limited
oxygen content (0.5%-5.0% O,), so the parasite is con-
sidered as a microaerophilic organism. /n vivo, the para-
site life cycle involves two hosts: the mosquito and the
human, during which the parasite undergoes different
cellular morphological changes and experiences oxygen
pressure variations. The passage from one host to
another implies metabolic adaptation and changes in the
ultrastructural and physiological organization of mito-
chondria [6-8]. In humans, the parasite is exposed to
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varying oxygen pressures, which can reach up to 13% O,
in lung capillaries [9]. In mosquitoes, the parasite is
exposed to 21% O, levels in salivary glands. To adapt to
these environmental constraints, the parasite has devel-
oped metabolic adaptations essential for it survival. Dur-
ing the intraerythrocytic cycle, two metabolic pathways
are the major sources of ROS (superoxide anions,
hydrogen peroxide and hydroxyl radicals) on P. falciparum
- the mitochondrial respiratory chain and haemoglobin
digestion [10]. In the presence of oxygen, P. falciparum
can produce ATP by aerobic respiration and through gly-
colysis. Accordingly, microaerophilic metabolism may be
a metabolic adaptation to prevent oxidative stress genera-
tion [10,11]. The parasite also consumes haemoglobin in
its digestive vacuole for protein biosynthesis. This meta-
bolic pathway is a source of superoxide anions and ferri-
protoporphyrin IX (FIX) accumulation [12], and thus
ROS produced in the mitochondria could interact
with these products of haemoglobin digestion and
increase oxidative damage to the parasite cells. Therefore,
P. falciparum has developed a preventive defence system
to reduce cellular damage.

To identify metabolic pathways involved in the hyper-
oxia response, the effect of oxygen on P. falciparum was
studied using high-throughput transcriptomic and pro-
teomic analyses in the late-ring stage. These approaches
were designed to minimize non-specific responses [13],
and they revealed that a stress response occurs following
parasite exposure to hyperoxia and that P. falciparum
modifies the metabolism of two organelles (the mito-
chondrion and the digestive vacuole) as a metabolic
adaptation to this environmental challenge.

Methods

Plasmodium falciparum in vitro culture

The 3D7 P. falciparum strain (the reference strain used
for the genome sequencing project) was obtained from
the Malaria Research and Reference Reagent source cen-
tre (MR4, managed by the American type culture collec-
tion). Parasitized human red blood cells (RBC type A+)
were maintained in culture in RPMI 1640 medium (Invi-
trogen, Paisley, United Kingdom) supplemented with
10% human serum and buffered with 25 mM HEPES
(Sigma-Aldrich, St Louis, MI, USA) and 25 mM NaCO;
(Sigma) and in an atmosphere of 5% O,, 5% CO,, and
90% Ny [14]. The haematocrit was maintained at 6%
and the parasitaemia at 3-5%. Culture medium was
changed every day. Strain clonality was verified every
month using PCR genotyping of polymorphic genetic
markers (mspl, msp2 and microsatellite loci) [15,16].

Plasmodium falciparum culture synchronization
To obtain tightly synchronized parasite cultures, several
synchronization steps were successively employed. First,
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parasitized erythrocytes were treated with D-sorbitol
(ICN Biomedicals, Inc., CA, United States of America)
as previously described [17]. This step enriched cultures
in the ring parasite stage. Secondly, in the next parasitic
cycle, schizonts were selected using CS columns on
a VarioMACS unit (Miltenyi Biotec, Germany) according
to standard procedures [18]. Five hours later, the culture
was treated with 5% D-sorbitol to eliminate parasites in
mature stages (schizonts). These successive parasite syn-
chronization steps allowed us to obtain parasites tightly
synchronized in the ring stage (the window from 0 to 5 h
after parasite invasion of the erythrocyte). The synchro-
nized parasites were maintained in standard culture con-
ditions before treatment.

Hyperoxia exposure of P. falciparum cultures

Tightly synchronized cultures (ring stage aged between
4-9 hours) were split and subjected to two different con-
ditions, either a normoxic atmosphere (5% O,, 5% CO,,
90% N, gas mixture) or a hyperoxic atmosphere (21%
05, 5% CO,, 74% N, gas mixture) at 37°C in two series
II incubators (Model 3131, Forma Scientific, Inc.). Cul-
ture conditions were maintained over eight hours for
transcript analysis (parasites aged between 12-17 hours)
and for 12 hours for protein analysis (parasites aged
between 16-21 hours). For each culture condition, four
biological replicates were performed. Viability, parasitae-
mia and erythrocytic cycle stage proportions were moni-
tored daily by examining blood smears stained with
RAL® 555 (RAL, Martillac, France). Blood smears were
taken at 0, 24, 32, 36, 48, and 78 hours.

RNA extraction

After incubation under normoxic or hyperoxic atmo-
spheric conditions, total RNA from parasitized erythro-
cytes was extracted with TRIzol reagent (Invitrogen)
according to the manufacturer’s instructions. RNA
extracts were treated with 1 U of RNase-free DNase I
(Applied Biosystems, CA, United States of America) and
quantified using a NanoDrop ND-1000 (Nanodrop
Technologies, Wilmington, United States of America).
The integrity of the RNA was controlled with an RNA
nano chip (2100 Bioanalyzer, Agilent Biotechnologies,
Wilmington, DE). Samples were immediately used or
stored at - 80°C.

Microarray experiments and analysis

A 2X11 k custom P. falciparum whole genome microar-
ray was designed and manufactured using SurePrint
Inkjet technology™ (Agilent Technologies). In brief, the
microarray was composed of 10,128 sixty-mer oligonu-
cleotides representing 5,364 coding sequences located in
the chromosomal, apicoplastic and mitochondrial gen-
omes. Additional probes were added to control for
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quality. Labelling and hybridization was carried out
following the manufacturer’s protocol (Two-Color
Microarray-Based Gene Expression Analysis, Agilent
Technologies). Briefly, starting with 300 ng of total
RNA, fluorescent cRNA (antisense) was generated using
the Low RNA Input Fluorescent Amplification Kit (Agi-
lent Technologies) and either cyanine 3-labeled CTP
(Cy-3) or cyanine 5-labeled CTP (Cy-5) fluorescent dyes
(PerkinElmer Life Sciences, Boston, MA). Dye swap
hybridization was performed for 17 h at 60°C using the
In situ Hybridization Kit Plus (Agilent Technologies).
All processing steps were performed in an ozone-
controlled environment ([O3] < 2 ppb) to avoid ozone-
induced degradation of cyanine dyes on microarray
slides. Slides were scanned at 5 pm resolution with
a G2505B DNA microarray scanner (Agilent Technolo-
gies). Image analysis and intra-array signal correction
was performed using the Agilent Feature Extractor Soft-
ware A.9.1.3. Data processing, analysis and visualization
were performed using the Resolver software 7.1 (Rosetta
Inpharmatics). An error model-based transformation
pipeline was used to map replicate reporters to genes,
perform inter-array normalization and calculate fold
changes (FC) as described elsewhere [19]. Using these
EC values, a gene set enrichment analysis (GSEA) was
performed using the Mann-Whitney-U-test enrichment
algorithm in the PathwayStudio software 6.0 (PS 6.0,
Ariadne Genomics). The GSEA procedure determines
whether the behaviour of an a priori set of genes shows
significant concordance across two different biological
states. This GSEA analysis focuses on groups of genes
that share common biological function in revealing dif-
ferential levels of each transcript. A gene network was
generated based on information extracted from the lit-
erature using Medscan™ and the P. falciparum-specific
database PS 6.0™ and using the “physical or regulatory
connections” parameter between genes. Fold change
values of microarray data were imported into PS 6.0™
and used to interpret the pathway with gene regulation
networks.

Real-time quantitative RT-PCR

c¢DNA was synthesized from total RNA (DNA-free) with
random hexamers using the High-Capacity cDNA
Archive Kit (Applied Biosystems). Primers with a melt-
ing temperature between 55 to 60°C were designed to
yield a 94- to 146-bp product preferentially containing
an exon/intron boundary. Specific primer sequences
used for the qRT-PCR are summarized in Additional
data (Additional file 1). Real-time PCR was performed
using the 7900 HT Fast Real-Time PCR System
(Applied Biosystems) in a 25-uL reaction volume with
the Power SYBR Green™ PCR Master Mix Kit (Applied
Biosystems). Each sample was assayed in triplicate and
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analysed with the ABI PRISM Sequence Detection Sys-
tem software Version SDS 2.2.1 (Applied Biosystems).
Amplification of the 18S rRNA sequence served as the
internal control for normalization. At the end of each
reaction, cycle threshold (Ct) was manually set to the
level that reflected the best kinetic PCR parameters, and
melting curves were acquired and analysed. Relative
quantification analysis was performed using the 2-AACt
method where AACt = (Ctmrget - Ctiss rRNAIH- (Ctmrget -
Ct;ss renva)n- and the data reflect changes in target gene
expression between two experimental conditions (N:
normoxic and H: hyperoxic groups) [20].

Protein sample preparation and CyDye labelling

After incubation under normoxic or hyperoxic atmo-
spheric conditions, parasitized erythrocytes were washed
three times in PBS medium (Invitrogen) and lysed in
cold H,O-saponin (0.1%, Sigma) for 10 min. The lysate
was then centrifuged at 1500 g for 5 min. The superna-
tant was discarded and the pellet containing free para-
sites was recovered by washing in PBS medium followed
by a centrifugation step (1500 g for 5 min). The free
parasites were washed until the supernatant became col-
ourless. The pellet was then suspended in 4% (w/v)
CHAPS (Sigma) and disrupted by ultrasonication
(Vibracell 72412, Bioblock Scientific, Illkirch, France)
five times for 60 seconds on ice at maximum amplitude.
The lysate was then centrifuged at 16000 g for 15 min.
The supernatant was further precipitated with acetone
100% (Sigma). The protein concentration for each sam-
ple was estimated using the BioRad Lowry-based DC
assay (Biorad, Hercules, CA, USA) according to the
manufacturer’s instructions. Total proteins were sus-
pended in standard cell lysis buffer (7 M urea, 2 M
thiourea, 4% CHAPS, 30 mM Tris base, pH 8.5 (Sigma))
to obtain a protein concentration adjusted to 2.5 pg/pL.
Protein samples were minimally labelled with CyDye
according to the manufacturer’s protocols (GE Health-
care, Piscataway, NJ) [21]. The mixture of labelled pro-
teins was then separated by two-dimensional (2D)
electrophoresis.

Two-dimensional electrophoresis, image analysis and in-
gel digestion

Isoelectric focusing (IEF) was performed on 18-cm 3-10
linear IPG strips (GE Healthcare). Destreak buffer con-
taining 1% (v/v) IPG buffer 3-10 was used for overnight
rehydration of IPG strips. The samples were applied at
the acidic end of the IPG strip using a cup-loading tech-
nique. IEF was carried out on a Ettan IPGphor II (GE
Healthcare) electrophoresis unit at 20°C for a total of 45
kVh (ramp to 300 V in 3 hrs, ramp to 1000 V in 6 hrs,
ramp to 8000 V in 3 hrs, hold at 8000 V for 4 hours).
IPG strips were equilibrated in equilibration buffer
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containing 50 mM Tris-HCI, pH 8.6, 6 M urea, and 2%
SDS and 30% glycerol supplemented with 1% (w/v)
DTT for 15 min at room temperature, followed by pro-
tein alkylation (carbamidomethylation) in the same equi-
libration buffer containing 2.5% (w/v) iodoacetamide
instead of DTT for 15 min at room temperature. IPG
strips were then placed on the top of 10% uniform poly-
acrylamide gels. Strips were overlaid with 0.5% agarose
in 1x running buffer containing bromophenol blue and
the proteins were further separated by SDS-PAGE (10
W per gel) at 20°C in an Ettan DALT Six electrophor-
esis system (GE Healthcare). After electrophoresis, the
gels with Cydye-labelled proteins were directly imaged
using a Typhoon™ Trio Image scanner (GE Healthcare
UK). The intensity was adjusted to ensure that the maxi-
mum volume of each image was within 60,000 - 80,000 U.
Analysis of 2-D DIGE was performed with DeCyder 6.5
software (GE Healthcare) using the differential in-gel
analysis (DIA) and the biological variation analysis (BVA)
modules. Protein spots that were expressed differentially
between two experimental conditions (|ratio|>1.5, p <
0.05 t-Test) were marked with master gel numbers.
Based on DeCyder v6.5 analysis, spots of interest from
gels stained with Imperial Blue Stain (Pierce) were
excised and digested using a Shimadzu Xcise automated
gel processing platform (Shimadzu Biotech, Kyoto, Japan)
as described previously [22] and stored at -20°C.

Mass spectrometry analysis

The samples were analysed by nanoscale capillary liquid
chromatography-tandem mass spectrometry (nano LC-
MS/MS). Purification and analysis were performed on
a C18 capillary column using a CapLC system (Waters,
Milford, MA) coupled to a hybrid quadrupole orthogo-
nal acceleration time-of-flight tandem mass spectro-
meter (Q-TOF Ultima, Waters, MA). Chromatographic
separation was conducted on a reversed-phased capillary
column (Atlantis™ dC18, 3 pm, 75 um x 150 mm Nano
Ease™, Waters, MA) with a 180-200 nl min™' flow. The
gradient profile consisted of a linear gradient from 95%
A (H,O0, 0.1% HCOOH) to 60% B (80% ACN, 0.1%
HCOOH) in 60 min followed by a linear gradient to
95% B in 10 min. Mass data acquisitions were piloted by
MassLynx 4.0 software using automatic switching
between MS and MS/MS modes. The internal para-
meters of Q-TOF were set as follows. The electro-spray
capillary voltage was set to 3.2 kV, the cone voltage was
set to 30 V, and the source temperature was set to 80°C.
The MS survey scan was m/z 400-1300 with a scan time
of 1 s and an interscan time of 0.1 s. When the intensity
of a peak rose above a threshold of 15 counts, tandem
mass spectra were acquired. Normalized collision ener-
gies for peptide fragmentation were set using the
charge-state recognition files for +2 and +3 peptide
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ions. The scan range for MS/MS acquisition was from
m/z 50 to 1500 with a scan time of 1 s and an interscan
time of 0.1 s. Fragmentation was performed using argon
as the collision gas and with the collision energy profile
optimized for various mass ranges and charges of pre-
cursor ions. Mass data collected during a nano LC-MS/
MS analysis were processed using ProteinLynx Global
Server 2.2 software (Waters) with the following para-
meters: no background subtraction, smooth 3/2 Savitzky
Golay and no deisotoping to generate peak lists in the
micromass pkl format. Pkl files were then fed into the
local search engine Mascot Daemon v2.2.2 (Matrix
Science, London, UK). The data were searched against
the Homo sapiens (218356 sequences) and P. falciparum
(13110 sequences) National Center for Biotechnology
Information non-redundant (NCBInr) protein database
(March, 2010). Search parameters allowed for one
missed tryptic cleavage site, the carbamidomethylation
of cysteine, and the possible oxidation of methionine;
precursor and product ion mass error tolerance was <
0.2 Da. All identified proteins had a Mascot score
greater than 29 and 38 respectively for P. falciparum
and Homo sapiens, corresponding to statistically signifi-
cant (p < 0.05 t-Test) identification. Identifications were
considered valid when they contained at least two pep-
tide sequences per protein. If a single peptide sequence
was identified per one protein, the mascot score and
sequence coverage were taken into account (Additional
file 2).

Results

Effect of hyperoxia on P. falciparum and experimental
design

To determine the effects of hyperoxia on asexual blood
stage P. falciparum parasites, tightly synchronized cul-
tures of the 3D7 strain were exposed to normoxic (5%
O,) and hyperoxic (21% O,) conditions for two life
cycles. The proportion of parasitaemia and erythrocytic
cycle stages were monitored by blood smears in tripli-
cate at different times: 0, 24, 32, 36, 48, and 78 hours
(Figure 1). In normoxic condition, the 3D7 P. falciparum
strain had a life cycle of 45 hours with entry into schi-
zogony at approximately 32 hours. Parasite exposure to
21% O2 increased the length of parasitic cycle and
decreased the parasitaemia, but it did not alter the para-
sites morphology (Figure 1). At 48 hours, the second
parasitic cycle began for parasites exposed to 5% O,
(nearly all of them were at ring stage (100%)), while the
majority of parasites exposed to 21% O, remained in
the schizont stage (90% schizonts and 10% ring). Thus,
hyperoxia induces a delay of P. falciparum cell cycle of
four hours as previously described [23]. After reinvasion
during the following cycle (third cycle), hyperoxia expo-
sure did not change parasitaemia and parasites had a
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Figure 1 Lengthening of P. falciparum cell cycle following
hyperoxia exposure. Phenotypic changes in P. falciparum asexual
blood stages were observed during two cycles under normoxic
(A) and hyperoxic (B) conditions. The parasitaemia and parasitic
stages were evaluated by blood smears at different times: 0, 24, 32,
36, 48, and 78 hours. The different intraerythrocytic stages and their
corresponding percentages are indicated as follows: ring (R),
trophozoite (T) and schizont (S).

normal life cycle without excess lethality (unpublished
data). These results seem to indicate a biological adap-
tation of the parasite to hyperoxia. To study the effects
of hyperoxia on P. falciparum, complementary high-
throughput transcriptomic and proteomic approaches
were used. Transcriptome and proteome profiles from
parasitized RBCs exposed to normoxic (5% O,) or
hyperoxic (21% O,) atmospheric conditions were com-
pared. The results were controlled by the experimental
design on two levels: (i) the percentage of atmospheric
oxygen and (ii) the timing of the parasitic stage. First,
hyperoxic exposure was chosen at 21% O, in light of
the above data [23]. Second, transcriptome and pro-
teome experiments were performed at the late-ring
stage, after RBC reinvasion with a synchronization win-
dow of four hours. This stage allowed us to avoid the
effects of cycle delay.

Plasmodium falciparum response to hyperoxia treatment:

microarray analysis

To investigate the response of P. falciparum to hyper-
oxia, the 3D7 strain was cultured in vitro under nor-
moxic (5% O,) and hyperoxic (21% O,) atmospheric
conditions. Three biological replicates in each group
were performed and comparisons were made with
a dye-swap experimental scheme. The raw microarray
data are available in the Gene Expression Omnibus
database [platform GPL9482 and samples from
GSM466802 to GSM466807, 2010 [24]]. Among 5,364
coding sequences represented on the microarray, 219
genes were significantly altered following hyperoxia
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exposure (p < 0.01, Student’s ¢-Test, |FC|< 1.5, Addi-
tional file 3), among which 114 were up-expressed and
105 were down-expressed. Based on the selected 219
genes, a GSEA (FDR < 0.05) was performed [25], and
this allowed us to define 9 functional groups that were
significantly altered (following hyperoxia treatment)
(Additional file 4 and Table 1). Among these functions,
“DNA repair,” “Vacuolar acidification” and “Response to
oxidative stress” were previously reported to be involved
in the hyperoxia response [10,26-30].

GSEA data were first integrated to create a gene net-
work based on information extracted from the literature
using Medscan™ and PS 6.0™ (Ariadne Genomics). Next,
the expression levels of genes included in the gene net-
work were assigned using PS 6.0™ and microarray expres-
sion data. This programme gives a dynamic view of
metabolism during the hyperoxia response (Figures 2A
and 2B). Thus, PS 6.0 analysis clustered 28 modulated-
expression genes in five metabolic groups labelled
“Energetic metabolism,” “Protein folding,” “Signal Trans-
duction,” “DNA repair” and “Translation” (Figure 2A).
This transcriptomic analysis allowed us to identify
up-regulated genes involved in DNA repair and protein
folding and down-regulated genes linked to PKA-dependent
signal transduction and glycolysis (Figure 2A). Addition-
ally, PS 6.0 software revealed an alteration of an ATP-
dependent sub-network: specifically, up-regulation of
the mitochondrial ATP synthase complex and down-
regulation of the V-type ATPase complex (Figure 2B).

To confirm the GSEA data, eight genes presenting sig-
nificant variations in expression were quantified using
real-time qRT-PCR (Additional file 1). These genes,
which were involved in glycolysis [PlasmoDB: PF14_
0598, PF10_0245], antioxidant metabolism [PlasmoDB:
PF14 0187, PF11_0087], signal transduction [PlasmoDB:
PFL1110c, PFI1685w] and ATP synthase activity [Plas-
moDB: PF10_0059, MAL7P1.13] were chosen according

Table 1 Biological functions perturbed following
hyperoxia exposure on P. falciparum

Functional group? Number of entities® p-value®
GPI anchor biosynthesis 29 0.0006
DNA repair 15 0.0072
Vacuolar acidification 11 0.0255
Actin filament organization 12 0.0296
Nucleosome assembly 12 0.0490
Regulation of cell shape 6 0.0519
Leading strand elongation 10 0.0533
Lysosomal H+ import 26 0.0589
Response to oxidative stress 17 0.0799

°Gene Set Enrichment Analysis (GSEA) using the Mann-Whitney-U-test
enrichment algorithm in PathwayStudio software indicated functional groups
significantly altered (p < 0.08). For each functional group, the ®number of
genes included and corresponding “p-values are listed.
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Figure 2 Gene networks involved in the metabolic adaptation to hyperoxia in tightly synchronized P. falciparum cultures. Using PS
6.0™ software and microarray expression data, gene networks were built and genes modulated in response to hyperoxia are represented. (A)
Representation of metabolic interrelations related to adaptative hyperoxia exposure. Energetic metabolism: aspartate carbamoyltransferase
(P13_0240), carbamoyl-phosphate synthetase (PF13_0044), glutamine-fructose-6-phosphate transaminase (PF10_0245), glucose-6-phosphate
dehydrogenase (PF14_0511), acetyl-CoA synthetase (PFF1350c), gapdh (PF14_0598) - Signal transduction: regulatory sub-unit of cAMP-dependent
protein kinase (PFL11100), catalytic sub-unit of cCAMP-dependent protein kinase (PFI1685w), ser thr protein kinase (PF13_0085) - Translation: citrate
synthase (PF10_0218), translation elongation factor 1 alpha 1 (PF13_0305), proteasome 26S subunit (MAL13P1.343), dihydrolipoamide dehydrogenase
(PFL1550w), translation elongation factor 2 (PF14_0486), adaptor-related protein complex 1 (PF13_0062), polymerase RNA | (PF11_0358) - DNA repair:
DNA primase (PF14_0366 and PFI0530c), rpal (PFI0235w) - Protein folding: ferredoxin reductase (PF11_0407), Hsp10 (PFLO740c), Hsp60 (PF10_0153),
Hsp70 (PF11_0351 and PF08_0054), Hsp90 (PFL1070c and PF0O7_0029), prohibitin (PFO8_0006), DnaJ (PFF1415¢). (B) Representation of ATP-
dependent gene sub-networks altered in hyperoxic conditions. V-type ATPase: V-type ATPase putative (MAL13P1.271), vacuolar ATP synthase
subunit h putative (PF13_0034), vacuolar ATP synthetase putative (PFE0965¢), vacuolar ATP synthase subunit F putative (PF11_0412), vacuolar ATP
synthase subunit D putative (PF13_0227), vacuolar ATP synthase catalytic subunit a (PF13_0065) - Mitochondrial ATP synthase F1: ATP synthase
subunit putative (PF14_0615), mitochondrial ATP synthase F1 epsilon subunit (MAL7P1.75), mitochondrial ATP synthase F1 alpha subunit putative
(PFBO795w). Red and blue colors correspond respectively to up- and down-regulated genes compared between hyperoxic to normoxic

conditions.

to their essential functions in response to hyperoxia.
qRT-PCR was performed on total RNA extracted from
the same three samples used for microarray analysis.
Correlation coefficients for each specific-gene standard
curve were always > 0.99 (unpublished data). Gene
amplification was normalized by 185 rRNA [PlasmoDB:
MAL?7 18Sa] levels as previously described [31]. The
two analyses (qQRT-PCR and microarray) yielded consis-
tent results for all the genes evaluated (Figure 3).

Plasmodium falciparum response to hyperoxia treatment:
proteomic analysis

To identify P. falciparum proteins involved in the hyper-
oxia response, 2D-DIGE experiments coupled to
MS were performed. Four independent cultures of

P. falciparum cultivated under normoxic and hyperoxic
conditions were included in this analysis. After protein
separation on 2-DE, each gel was individually imaged
and all gel images were analysed using the DeCyder 6.5
software. Among 1840 protein spots matched, 33 spots
were significantly modulated (|FC|>1.5, p < 0.05 ¢-Test)
following hyperoxia treatment (14 and 19 spots were
up- and down-modulated, respectively; Figure 4). All
spots were successfully identified by MS and corre-
sponded to 14 Homo sapiens and 19 P. falciparum pro-
teins (Table 2 and Additional file 5). However, some
proteins were detected in more than one spot, indicating
different isoforms. Indeed, only six proteins were identi-
fied for Homo sapiens and 13 for P. falciparum (Table 2).
These results indicated that hyperoxia induced protein
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Figure 3 Validation of microarray data by qRT-PCR. Data from gRT-PCR and a microarray of eight selected genes were compared between
hyperoxic and normoxic conditions. Adjacent bars correspond to the mean log, (fold change) and respective standard deviation and present
gRT-PCR and microarray results in gray scale for the respective gene. The abbreviations and their corresponding gene IDs (PlasmoDB accession
numbers) are indicated below the graphic. Crude values of mean fold changes are presented in the table. The same samples were used for the
gRT-PCR and microarray experiments. gapdh: glyceraldehyde-3-phosphate dehydrogenase - gfép: glutamine-fructose-6-phosphate transaminase -
gst: glutathione S-transferase - pka: protein kinase A - atp6: mitochondrial ATP synthase Fq a subunit - atp4: mitochondrial ATP synthase Fo b

modulations at two levels: namely, protein expression
and post-translational modification. Among the four
spots detected (spot numbers 1301, 1314, 1326, and
1331) as Pf-Hsp70 protein [PlasmoDB: PF08_0054,
GenBank: gi|124512406], only two isoforms were signifi-
cantly up-regulated in hyperoxic conditions (Table 2 and
Figure 5). These results indicated that the hyperoxia
response could induce post-translational regulation of
several parasite proteins.

To determine the metabolic pathways perturbed follow-
ing hyperoxia, the identified proteins were classified
using the NCBI COG database. The proportion of
modulated proteins involved in each functional category
was determined as follows. For P. falciparum, six func-
tional categories were found to be altered, among which
were chaperone-assisted protein folding, translation,
antioxidant metabolism and glycolysis, which were
already identified in transcriptomic analysis. For Homo
sapiens, the identified proteins were classified into three
functional categories: antioxidant metabolism, glycolysis
and O, transporter (Table 2).

The 2D-DIGE analyses also indicated the accumula-
tion of some proteins involved in digestive vacuole
metabolism such as human catalase [GenBank: gi|
4557014] and beta-globin [GenBank: gi|183817]. The
accumulation of beta-globin suggests proteases

inhibition of the beta-globin degradation pathway. To
explore this hypothesis, the transcripts of four genes
[PlasmoDB: PFI14 0077, PF11_0161, PFI11_0165,
PF11_0162] were quantified using real-time qRT-PCR as
described above (Additional file 1). All genes involved in
digestive vacuole metabolism were found to be down-
expressed (Figure 6).

Discussion

In vivo, the P. falciparum parasite is subjected to varying
oxygen levels throughout its life cycle (i.e., from 5% O,
in human venous blood to 13% O, in the human lungs
and 21% O, in mosquito salivary glands). In the
mosquito, the metabolic adaptation of parasite to
oxygen-rich environment involved mitochondrial and
physiological differences [32]. These oxygen variations
imply that metabolic adaptation of P. falciparum is cru-
cial for it survival. During malaria complications such as
acute respiratory distress syndrome, late-ring stage para-
sites are susceptible to sequestration in pulmonary capil-
laries and are thus exposed to hyperoxic conditions [33].
These sequestered young parasites could be exposed to
higher oxygen levels than the physiologically relevant O,
tension. Additionally, Blanco et al reported that hyper-
baric oxygen therapy (HBO, 100% O,) has a beneficial
effect on malaria syndrome evolution [34]. Indeed,
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Figure 4 Alterations of the P. falciparum proteome under hyperoxic exposure. The proteins from P. falciparum parasites cultivated under
normoxic (A) or hyperoxic (B) conditions were labelled with Cy3 and Cy5, respectively, and separated by 2-DE using a 10% homogeneous SDS
polyacrylamide gel with a pH range from 3 to 10. As determined by DeCyder software, protein spots that were down- (A) or up- (B) regulated
following hyperoxic exposure (|FC|=1.5, p < 0.05) are marked with master numbers (Table 2 and Additional file 5). Bold and italic numbers
correspond, respectively, to proteins identified from P. falciparum and Homo sapiens. Areas of gels containing a high density of spots down- and
up-modulated are enlarged.

a better understanding of the metabolic adaptation of
the malaria parasite to hyperoxia could help to develop
new anti-malarial drug treatments that could be used
in association with HBO treatment. To study the global
response of P. falciparum to hyperoxia, a dual high-
throughput approach combining microarray and
2D-DIGE analysis was used on parasite cultures under
hyperoxic conditions (e.g., 21% O,). Accordingly Hsp90,
Hsp70, GAPDH, and elongation factor 1 and 2 were
found to be altered at the transcript and protein levels
under hyperoxia.

Since the development of high-throughput technolo-
gies, few studies have been published regarding the
transcriptome and proteome of P. falciparum in
response to environmental constraints or drug

treatments [35-40]. Since hyperoxia induces a P. falci-
parum cycle delay, the sample collections were per-
formed before the phenotypic effect. Although the
majority of genes had a periodic expression profile [41],
RNA transcription is maximal between 18 and 24
hours of the parasitic cycle [42]. In the present study,
sample collections were performed at the late-ring
parasite stage. Moreover, as a delay exists between
mRNA and protein accumulation [43-45], the time of
exposure was also taken into account and a four hours
delay was chosen between mRNA and protein sam-
pling. It has been suggested that there may be a discre-
pancy between P. falciparum transcriptomic and
proteomic responses [35,39]. Preliminary microarray
experiments were performed with transcripts from
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Table 2 Proteins identified by differential 2-D DIGE analysis following hyperoxia exposure of P. falciparum
gi Gene ID Protein name Mw pl Master spot Significance Average t-Test
numberc (kDa) number (Mascot score) ratio
P. falciparum
Translation
gil MAL8P1.69 14-3-3 protein homologue 2986 496 3289 425 -1.54 0.0078
124512420
qil PF13_0304 elongation factor 1 alpha 4916 9.2 2047 130 1.60 0.0090
124513850
gil8918238 PF14_0486 elongation factor 2 85.03 6.30 1030 67 1.72 0.0070
gil PF14_0655 RNA helicase-1 45.62 548 2268 105 1.53 0.040
124810293
Parasitophorous vacuolar membrane Transporter
gil PF14_0678 exported protein 2 33.62 5.10 3061 88 -1.92 0.00093
124810348
3062 180 -2.06 0.0046
Glycolysis
gil PF14_0341 glucose-6-phosphate isomerase 67.61 6.78 1579 36 -1.63 0.00092
124809201
gil PF14_0598 glyceraldehyde-3-phosphate 3708 759 2867 695 -1.69 0.033
124810131 dehydrogenase
Chaperone-assisted protein folding
gil PFO8_0054 heat shock protein 70 7439 551 1314 257 1.65 0.03
124512406
1326 137 158 0.026
gi[505340 PF07_0029 heat shock protein 86 86.77 491 1028 412 150 0.0052
Amino acids metabolism
ail PFFO435w ornithine aminotransferase 47 647 2217 96 -2.14 0.0081
86170756
gil MAL13P1.214 phosphoethanolamine 31.31 543 3347 145 -2.05 0.0055
124513590
N-methyltransferase 3372 252 -1.96 0.00089
3379 253 =217 0.00058
3503 52 -1.62 0.00056
3385 452 -2.71 0.00026
Proteasome-mediated proteolysis
gil MAL8P1.142 proteasome beta-subunit 3108  6.00 3216 58 1.78 0.015
124512686
gi| MAL13P1.270 proteasome subunit 2750 6.7 3358 142 1.55 0.049
124513790
Homo sapiens
Oxygen transporter
gi|183817 Beta-globin 19.21 6.28 3451 165 7.71 0.020
3576 102 191 0.011
Antioxidant metabolism
gij4502517 carbonic anhydrase | 2891 659 3431 173 418 0.0095
3444 155 347 0.0019
3455 224 4.02 0.00038
gi|4557014 catalase 59.95 6.9 1648 200 647 0.012
gil selenium binding protein 1 5293 593 2451 73 -1.64 0.041
16306550
gil flotillin 1 39.81 6.03 2156 157 1.64 0.040

168985379
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Table 2 Proteins identified by differential 2-D DIGE analysis following hyperoxia exposure of P. falciparum (Continued)

Glycolysis
gi|31645 glyceraldehyde-3- 3620 826 2804 199 -1.94 0.0042
phosphate dehydrogenase 2806 181 -1.99 0012
2807 132 -1.84 0.0069
2853 112 =217 0.0027
2854 122 -2.25 0.0032
2856 96 -2.20 0.0019

The proteins were identified by mass spectrometry following in gel trypsin digestion. The spot numbers correspond to the same numbers in figure 4. The Mascot
gi number of the spots, their gene ID (PlasmoDB), their name, the theoretical MW and pl/ values, as well as the corresponding Mascot score are listed for MS/MS
analysis (scores greater than 29 for P. falciparum and 38 for Homo sapiens are considered significant (p < 0.05)). Paired average volume ratio (hyperoxic versus
normoxic conditions) and p-values (t-Test) were obtained using Decyder software. MW: molecular weight.

synchronized P. falciparum in the same experimental
scheme, but the samples were collected after four
hours of hyperoxia treatment. These microarray ana-
lyses indicated that 176 transcripts were significantly
deregulated (|FC|< 1.5, p < 0.01, Student’s ¢-Test), and
some genes significantly deregulated were involved in
the early antioxidant response, such as 1-cys peroxi-
doxin [PlasmoDB: PF08_0131], Fe-superoxide dismutase
[PlasmoDB: PF08_0071] and thioredoxin peroxidase
[PlasmoDB: MAL7P1.159] (Additional file 6). This early
stress response is generally observed in stress condition

does not reflect a specific hyperoxia adaptation [30,46].
Here, despite significant transcript variations (p < 0.01,
Student’s t-Test), gene fold-changes observed were low
(JEC|< 1.5) under hyperoxia. The low-level changes
observed in the P. falciparum transcriptome could be
explained by tight gene regulation [47,48] or by post-
transcriptional regulation of most P. falciparum genes
[43-45]. Consequently, analysis of the parasite’s adap-
tive response to hyperoxia requires the use of extremely
successful bioinformatic tools for microarray data inter-
pretation such as PS 6.0 software [44,49], and this

A
Pf-Hsp 70
Normoxia Hyperoxia
1331 1331
1326 1326
1314 1314
130/ i 1301
. Lmee . @
|
1331
1331 1326
1326 | 1314‘ |
1314 |
1301 1301

Figure 5 Selective post-translational modification of Pf-Hsp70 following hyperoxia exposure. (A) Enlarged 2D-DIGE gel images and their
corresponding three-dimensional profiles are shown for a series of four protein spots identified as Pf-Hsp70. The amount of protein is
proportional to the volume peak. Numbers correspond to master gel and significant deregulated spots (ie, 1314 and 1326) are reported in the
table 2. (B) A graphic quantification of the four spots corresponding to Pf-Hsp 70 under normoxic (light-gray bars) and hyperoxic conditions
(dark-gray bars). Spot numbers are specified at the bottom. Adjacent bars correspond to the mean standard abundance and respective standard
deviation. Fold change and p-values are indicated at the bottom for each spot. A.U. arbitrary units, FC: fold change.
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Figure 6 Analysis of the beta-globin digestion pathway. qRT-PCR and microarray data of transcripts involved in digestive vacuole
metabolism were compared between hyperoxic and normoxic conditions. Adjacent bars correspond to the mean log, (fold change) and
respective standard deviation and present gRT-PCR and microarray results in gray scale for the respective gene. The abbreviated names and their
corresponding gene ID (PlasmoDB accession numbers) are indicated below the graphic. Crude values of mean fold changes are presented in the
table. The same samples were used for the gRT-PCR and microarray experiments.

analysis was completed using a highly sensitive proteo-
mic approach such as 2D-DIGE.

It is generally accepted that one of the first effects of
hyperoxia is ROS overproduction (superoxide anions
(O7,), hydrogen peroxide (H,O,) and hydroxyl radicals
(OH")), which is generated by metabolism, and particu-
larly, by respiratory metabolism [50]. DNA, lipid, and
protein alterations by ROS may be lethal to malaria
parasites. Thus, to fight oxidative stress, P. falciparum
has developed an adaptive defence response including
repair mechanisms for nucleic acids and proteins
[29,51]. Despite high ROS defence system expression
under normoxia, transcriptomic analysis suggests an up-
regulation of ROS defence systems [29]. Five genes
involved in DNA repair were found to be up-regulated
during hyperoxia. Among them, two sub-unities of DNA
primase [PlasmoDB: PF14_0366 and PFI0530c] and
replication protein Al [PlasmoDB: rpal, PFI0235w] have
been described to be involved in chromosomal replica-
tion [52,53]. Rpal was reported also to interact with
rad51 [PlasmoDB: PF11_0087] in nucleosomes during
replication to correct DNA mismatches [51,54]. And
Hsp40 [PlasmoDB: DNAJ homologue, PFF1415¢] is asso-
ciated with DNA repair and the replication machinery
[55]. These observations suggest that DNA repair
enzymes maintain the integrity of the parasitic genome
under high oxygen pressure.

Protein oxidation caused by ROS is circumvented by
diverse functions such as regulation of the redox state
and modulation of protein stability [56]. Chaperone pro-
teins, Hsps known as stress response proteins, further
assure this protection. Several proteins involved in cha-
perone activity including Hsp40 [PlasmoDB: DNA]J
homologue; PFF1415¢], Hsp60 [PlasmoDB: PF10_0153],
Hsp70 [PlasmoDB: PF11_0351 and PF08_0054], Hsp90
[PlasmoDB: PFL1070c¢ and PF07_0029], and protein
14-3-3 [PlasmoDB: MAL8P1.69] were found up-regulated
under hyperoxia. As described by Akide-Ndunge et al
[57], Hsp60 is up-regulated under oxidative stress like
hyperoxia and its expression is coordinated with antiox-
idant enzymes in a stage-dependent manner, suggesting
thus that Hsp up-regulation is implicated in ROS
removal. Elsewhere, Pf-Hsp70 forms a functional net-
work in the mitochondrial matrix with DNAJ, Hsp60
and prohibitin to be involved in post-translational mod-
ification of proteins [56]. Isoforms of Hsp70 were
detected following hyperoxia exposure, which may also
correspond to post-translational modification as pre-
viously predicted [58,59]. These Hsps, which act as
sensors of environmental conditions, are involved in
adaptation mechanism by post-translational modifica-
tion [56]. However, the role of these post-translational
modifications on regulation of protein expression in
P. falciparum is little known [38,39]. Nevertheless, the
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chaperone activity of Hsps seems regulate during
the hyperoxia response and facilitate P. falciparum
adaptation to hyperoxic environments.

Under hyperoxia, down-regulation of glycolytic
enzymes (glucose-6-phosphate isomerase [PlasmoDB:
PF14_0341] and glyceraldehyde-3-phosphate dehydro-
genase [PlasmoDB: GAPDH, PF14_0598]) was detected
in this study. Additionally, three enzyme involved in de
novo pyrimidine biosynthesis were found up-regulated
such as carbonic anhydrase [GenBank: gi|4502517], car-
bamoyl-phosphate synthetase [PlasmoDB: PF13_0044]
and aspartate carbamoyltransferase [PlasmoDB:
PF13_0240] [60]. This last, up-expressed in microarray
analysis, produces dihydroorotate oxidase (DHO), an
essential substrate of mitochondrial respiratory chain
complex 1II [61]. This pyrimidine pathway is essential for
nucleic acid synthesis to repair DNA lesions caused by
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the oxidative stress. Microarray data indicated that
alpha and epsilon ATP synthase F1 subunits [PlasmoDB:
PFB0795w and MAL7P1.75] were up-regulated, indicat-
ing that parasites seem to produce ATP through mito-
chondrial respiration. Mitochondrial FoF; ATP synthase
is composed of two subcomplexes, Fy and F; F; is com-
posed of five subunits, and these have been reported in
the P. falciparum genome [62]. Recently, Mogi and Kita
have identified four F, subunits of P. falciparum ATP
synthase [63,64] and Mather et al. support the existence
of ATP synthase activity [65]. Two transcripts of ATP
synthase Fy subcomplexe, a subunit (ATP6) and b subu-
nit (ATP4), were up-regulated under hyperoxia expo-
sure, which is in favour of a mitochondrial respiration.
To adapt to hyperoxia, P. falciparum seems switch from
anaerobic glycolysis to aerobic respiratory metabolism
(Figure 7).

Glycolysis
Glucose
Glucose-6P

(PF14.0341) i
Fructose-6P = ~[*

GAPDH
(PF14_0598)

Pentose Phosphate Pathway

NADPH
Redox metabolism

Beta-globin (gil183817) 02

Oligopeptides —— Amino acids

G-6P isomerase -

Dihydroorotate (DHO)
1
i ATP synthase F1 complex
\J (PFBO795w - MAL7P1.75)
DHOD ATP
Cl g Ao\
Haemoglobin (Hg) 4 Niios \ .02 | V'
Digestion l 4
Haemoglobin !
Hg .

F IX Fe2+
s ¢ ( / respiratory chain
" FIXFe3+™ H202 V-type ATPase complex

Plasmepsin 2 (PF14_0077)

N Peptides acid pH (MAL13P1.271 -
Falcipain 2 precursor (P 161 Catalase PF13_0034 -
Falciga:n? ?utgﬁve EEE:;L&Z) (il4557014) PFE0965¢ -

alcipain al : PF11_0412 -
Oligopeptides Hemozoin H20+02 PF13_0227 -
PF13_0065)

Figure 7 A schematic representation of P. falciparum metabolic adaptation to hyperoxia exposure. Metabolic pathways based on the
Ginsburg Pathway [72] for glycolysis (cytoplasmic), respiratory chain (mitochondria, blue and yellow) and haemoglobin digestion (digestive
vacuolar, orange) are shown. The gene IDs (PlasmoDB) are reported for each enzymatic reaction. Human protein names are underlined. Up- and
down-regulated genes and reactive oxygen species (ROS) production are indicated in red and blue characters, respectively.
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In addition to mitochondrial metabolism, the digestive
vacuole is another ROS source organelle in P. falciparum
during haemoglobin digestion [10]. Haemoglobin diges-
tion is optimal at an acidic pH, which is also necessary
for protease activity. To provide the acidic environment
in the digestive vacuole, haemoglobin digestion stimu-
lates ATP consumption by the V-type H'-ATPase
pump [66-68]. In microarray analysis, the V-type
ATPase complex [PlasmoDB: MALI13P1.271, PF13_0034,
PFE0965¢, PF11_0412, PF13_0227, PF13_0065], a mem-
brane transporter, was found to be down-regulated
under hyperoxia. Therefore, P. falciparum exposed to
hyperoxia could generate a pH change in the digestive
vacuole responsible for vacuolar protease activity. Addi-
tionally, beta-globin accumulation occurred in hyperoxic
conditions. This beta-globin accumulation could result
from a decline in protease activity. To test these two
hypotheses, transcripts of the proteases involved in
beta-globin degradation were quantified. Reduced
expression of four genes involved in haemoglobin
degradation into AAs (plasmepsin 2 [PlasmoDB:
PF14_0077), falcipain 2 putative [PlasmoDB:
PF11_0161), falcipain 2 precursor [PlasmoDB:
PF11_0165] and falcipain 3 [PlasmoDB: PF11_0162])
was validated using qRT-PCR. In 2002, Oliveira et al
hypothesized that blood-feeding parasites reduced their
mitochondrial function to compensate for ROS genera-
tion from the digestive vacuole [10].

Moreover, catalase [GenBank: gi|4557014], a human
protein, was found concentrated in the digestive vacuole
[69]. As the P. falciparum genome does not contain
a catalase gene, the parasite may import human catalase
to detoxify H,O, generated by oxidation of haem under
stress conditions. Collectively, metabolism in the
P. falciparum digestive vacuole would be perturbed in
response to hyperoxia, and ROS production would be
slowed (Figure 7).

Conclusions
Two complementary analytic approaches were used to
investigate the response of P. falciparum to hyperoxia;
(i) a transcriptomic study allowed us to detect whole
parasite transcripts, and (ii) a proteomic study identified
proteins significantly altered via post-translational modi-
fications and accumulated host proteins. Based on all
these results and according to published data mining
[29,46], a schematic representation of the adaptive
response of P. falciparum following hyperoxia exposure
was proposed (Figure 7). In order to prove this repre-
sentation, further biochemical approaches would be
required.

Hyperoxia exposure induces metabolic adaptations in
P. falciparum. These adaptations seem to involve, at
least, two parasite organelles, the digestive vacuole and
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the mitochondrion, both sources of ROS production. To
preserve parasite integrity from oxidative stress, all these
data suggest that the glycolysis pathway is suppressed in
favour of respiratory metabolism and that digestive
vacuole metabolism is slowed. Campanale et a/ demon-
strated that stress caused by haemoglobin digestion
modulates the glycolytic pathway [70]. Highly active
mitochondria release H,O,, which interacts with pro-
oxidant products (free iron and haem) in the digestive
vacuole. These two ROS sources could be potentially
synergistic. The equilibrium of oxidative stress is vital
for the parasite; indeed, Hsps could be regulated to facil-
itate adaptation of parasite to environmental stress as
observed in many organisms [56].

The knowledge of the metabolic pathways involved in
stress responses to environmental conditions is funda-
mental to understanding the mechanisms of parasite
adaptation. This study provides a starting point for
investigations into new anti-malarial treatments, particu-
larly drugs associated with hyperbaric oxygen therapy
[34], which has been successfully used to treat other
infections [71].
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Additional file 1: Primers sequence using real-time qRT-PCR.
Additional file 2: Single-Peptide-Based Protein Identifications.

Additional file 3: Raw data microarray at 8 hours time point under
hyperoxia versus normoxia conditions on synchronized parasites.

Additional file 4: List of altered genes following hyperoxia
treatment using GSEA data and PS 6.0 software.

Additional file 5: MS/MS peptide sequences, respective gi number,
gene ID and master spot number of proteins identified from the
differential 2-D DIGE analysis following hyperoxia exposure of P.
falciparum.

Additional file 6: Raw data microarray at 4 hours time point under
hyperoxia versus normoxia conditions on synchronized parasites.
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reactive oxygen species, rpal: replication protein Al.

Acknowledgements
We would like to thank N. Benoit (UMR-MD3, IMTSSA, France) and C. Chapus
(UMR-MD3, IMTSSA, France) for technical help. We thank the technical


http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S1.DOC
http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S2.PPT
http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S3.XLS
http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S4.XLS
http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S5.DOC
http://www.biomedcentral.com/content/supplementary/1475-2875-10-4-S6.XLS

Torrentino-Madamet et al. Malaria Journal 2011, 10:4
http://www.malariajournal.com/content/10/1/4

support team from Applied Biosystems for gRT-PCR optimization and the
technical support team from Ariadne Genomics (PS 6.0™) for their help in
the interpretation of microarray analysis. We acknowledge the financial
support of the DGA (Délégation Générale pour I'Armement) and the
Direction Centrale du Service de Santé des Armées (grant no. 06C0O008). This
manuscript has been reviewed and corrected by a journal expert.

All authors declare that they have no conflicts of interest.

Author details

'"UMR-MD3 (Université de la Méditerranée), Antenne IRBA de Marseille
(IMTSSA, Le Pharo), Allée du Médecin Colonel Eugéne Jamot, BP 60109,
13262 Marseille cedex 07, France. 2Unité de Recherche en Biologie et
Epidémiologie Parasitaires (URBEP), Antenne IRBA de Marseille (IMTSSA, Le
Pharo), Allée du Médecin Colonel Eugéne Jamot, BP 60109, 13262 Marseille
cedex 07, France. *Centre d'Analyse Protéomique de Marseille (CAPM),
Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Bd.
Pierre Dramard, 13916 Marseille cedex 20, France. “Centre d'Immunologie de
Marseille Luminy (CIML), Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, Université de la
Méditerranée, Parc Scientifique de Luminy, 13288 Marseille Cedex 09,
Marseille, France. "UMR-MD2, Physiologie et Physiopathologie en Conditions
d'Oxygénations Extrémes, Institut Fédératif de Recherche Jean Roche, Faculté
de Médecine Nord, Bd. Pierre Dramard, 13916 Marseille cedex 20, France.

Authors’ contributions

MTM conceived the study and the design, carried out microarray and
proteomic studies, participated in bioinformatics analyses and wrote the
manuscript. LA carried out proteomic studies, conducted proteomic
statistical analyses and revised the manuscript. JD helped in the design of
molecular studies and revised the manuscript. YL participated in the
microarray design and conducted statistical and bioinformatics analyses. MB,
MP and PF carried out mass spectrometry identifications. YJ conceived the
study and edited the manuscript. DP initiated the project, designed the
method, participated in the analyses and revised the manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 29 September 2010 Accepted: 11 January 2011
Published: 11 January 2011

References

1. WHO: Word Malaria Report. World Health Organization, Word Malaria
Report 2008.

2. Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH,
Duffy PE: Malaria: progress, perils, and prospects for eradication. J Clin
Invest 2008, 118:1266-1276.

3. Torrentino-Madamet M, Desplans J, Travaillé C, Jammes Y, Parzy D:
Microaerophilic respiratory metabolism of Plasmodium falciparum
mitochondrion as a drug target. Current Molecular Medicine 2010,
10:29-46.

4. Srivastava IK, Rottenberg H, Vaidya AB: Atovaquone, a broad spectrum
antiparasitic drug, collapses mitochondrial membrane potential in a
malarial parasite. J Biol Chem 1997, 272:3961-3966.

5. Smilkstein MJ, Forquer |, Kanazawa A, Kelly JX, Winter RW, Hinrichs DJ,
Kramer DM, Riscoe MK: A drug-selected Plasmodium falciparum lacking
the need for conventional electron transport. Mol Biochem Parasitol 2008,
159:64-68.

6. Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P: Mitochondrial
oxygen consumption in asexual and sexual blood stages of the human
malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med
Public Health 1999, 30:636-642.

7. Krungkrai J, Prapunwattana P, Krungkrai SR: Ultrastructure and function of
mitochondria in gametocytic stage of Plasmodium falciparum. Parasite
2000, 7:19-26.

8. Krungkrai J: The multiple roles of the mitochondrion of the malarial
parasite. Parasitology 2004, 129:511-524.

9. Tsai AG, Johnson PC, Intaglietta M: Oxygen gradients in the
microcirculation. Physiol Rev 2003, 83:933-963.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31

32.

33.

Page 14 of 15

Oliveira PL, Oliveira MF: Vampires, Pasteur and reactive oxygen species. Is
the switch from aerobic to anaerobic metabolism a preventive
antioxidant defence in blood-feeding parasites? FEBS Lett 2002, 525:3-6.
Turrens JF: Oxidative stress and antioxidant defenses: a target for the
treatment of diseases caused by parasitic protozoa. Mol Aspects Med
2004, 25:211-220.

Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T: Excess
haemoglobin digestion by malaria parasites: a strategy to prevent
premature host cell lysis. Blood Cells Mol Dis 2004, 32:353-359.

Wastling JM, Xia D, Sohal A, Chaussepied M, Pain A, Langsley G: Proteomes
and transcriptomes of Apicomplexa - Where's the message? Int J
Parasitol 2008, 39(2):135-43.

Trager W, Jensen JB: Human malaria parasites in continuous culture. J
Parasitol 1976, 91:484-486.

Bogreau H, Renaud F, Bouchiba H, Durand P, Assi SB, Henry MC, Garnotel E,
Pradines B, Fusai T, Wade B, Adehossi E, Parola P, Kamil MA, Puijalon O,
Rogier C: Genetic diversity and structure of African Plasmodium
falciparum populations in urban and rural areas. Am J Trop Med Hyg
2006, 74:953-959.

Henry M, Diallo |, Bordes J, Ka S, Pradines B, Diatta B, M'Baye PS, Sane M,
Thiam M, Gueye PM, Wade B, Touze JE, Debonne JM, Rogier C, Fusai T:
Urban malaria in Dakar, Senegal: chemosusceptibility and genetic
diversity of Plasmodium falciparum isolates. Am J Trop Med Hyg 2006,
75:146-151.

Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum
erythrocytic stages in culture. J Parasitol 1979, 65:418-420.

Uhlemann A-C, Trine S, Klinkerna M-Q, Hviidb L: Analysis of Plasmodium
falciparum-infected red blood cells. MACS&more 2000, 4:7-8.

Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error
model for gene expression analysis. Bioinformatics 2006, 22:1111-1121.
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods
2001, 25:402-408.

Pastorino B, Boucomont-Chapeaublanc E, Peyrefitte CN, Belghazi M, Fusai T,
Rogier C, Tolou HJ, Almeras L: Identification of cellular proteome
modifications in response to West Nile virus infection. Mol Cell Proteomics
2009, 8:1623-1637.

Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing
of proteins silver-stained polyacrylamide gels. Anal Chem 1996,
68:850-858.

Briolant S, Parola P, Fusai T, Madamet-Torrentino M, Baret E, Mosnier J,
Delmont JP, Parzy D, Minodier P, Rogier C, Pradines B: Influence of oxygen
on asexual blood cycle and susceptibility of Plasmodium falciparum to
chloroquine: requirement of a standardized in vitro assay. Malar J 2007,
6:44.

Gene Expression Omnibus. [http://www.ncbi.nlm.nih.gov/projects/geo/].
Gene Set Enrichment Analysis. [http://www.broad.mit.edu/gseal.

Yis U, Kurul SH, Kumral A, Cilaker S, Tugyan K, Genc S, Yilmaz O: Hyperoxic
exposure leads to cell death in the developing brain. Brain Dev 2008,
30:556-562.

Kappes B, Suetterlin BW, Hofer-Warbinek R, Humar R, Franklin RM: Two
major phosphoproteins of Plasmodium falciparum are heat shock
proteins. Mol Biochem Parasitol 1993, 59:83-94.

Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H:
Oxidative stress in malaria parasite-infected erythrocytes: host-parasite
interactions. Int J Parasitol 2004, 34:163-189.

Guerra R, Shaw C, Christian B, Fox G, Noyola-Martinez J, Stevens M, Garg N,
Gustin M: Oxidative stress genes in Plasmodium falciparum as indicated
by temporal gene expression. Conference’ 04 2004, Month 1-2, 2004.
Muller S: Redox and antioxidant systems of the malaria parasite
Plasmodium falciparum. Mol Microbiol 2004, 53:1291-1305.

Nirmalan N, Wang P, Sims PF, Hyde JE: Transcriptional analysis of genes
encoding enzymes of the folate pathway in the human malaria parasite
Plasmodium falciparum. Mol Microbiol 2002, 46:179-190.

Learngaramkul P, Petmitr S, Krungkrai SR, Prapunwattana P, Krungkrai J:
Molecular characterization of mitochondria in asexual and sexual blood
stages of Plasmodium falciparum. Mol Cell Biol Res Commun 1999, 2:15-20.
Maguire GP, Tjandra H, Michael CFP, Enny K, Ric N, Price , Emiliana T,
Nicholas MA: Lung injury in uncomplicated and severe falciparum
malaria: a longitudinal study in Papua, Indonesia. J Infect Dis 2005,
1:1966-1974.


http://www.ncbi.nlm.nih.gov/pubmed/18382739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20205678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20205678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9020100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9020100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9020100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18308406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18308406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10743643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10743643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15552397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15552397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12843412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12843412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12163151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12163151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12163151?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15051329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15051329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15121091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15121091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15121091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18996390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16760503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16760503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16837722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/383936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/383936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11846609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19395707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19395707?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8779443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8779443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17437625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.broad.mit.edu/gsea
http://www.ncbi.nlm.nih.gov/pubmed/18329209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18329209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8515785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8515785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8515785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15387810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15387810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12366841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12366841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12366841?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10527885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10527885?dopt=Abstract

Torrentino-Madamet et al. Malaria Journal 2011, 10:4
http://www.malariajournal.com/content/10/1/4

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

Blanco YC, Farias AS, Goelnitz U, Lopes SC, Arrais-Silva WW, Carvalho BO,
Amino R, Wunderlich G, Santos LM, Giorgio S, Costa FT: Hyperbaric oxygen
prevents early death caused by experimental cerebral malaria. PLoS ONE
2008, 3:e3126.

Gunasekera AM, Myrick A, Le Roch K, Winzeler E, Wirth DF: Plasmodium
falciparum: genome wide perturbations in transcript profiles among
mixed stage cultures after chloroquine treatment. Exp Parasitol 2007,
117:87-92.

Oakley MS, Kumar S, Anantharaman V, Zheng H, Mahajan B, Haynes JD,
Moch JK, Fairhurst R, McCutchan TF, Aravind L: Molecular factors and
biochemical pathways induced by febrile temperature in
intraerythrocytic Plasmodium falciparum parasites. Infect Immun 2007,
75:2012-2025.

Natalang O, Bischoff E, Deplaine G, Proux C, Dillies MA, Sismeiro O,

Guigon G, Bonnefoy S, Patarapotikul J, Mercereau-Puijalon O, Coppee JY,
David PH: Dynamic RNA profiling in Plasmodium falciparum synchronized
blood stages exposed to lethal doses of artesunate. BMC Genomics 2008,
9:388.

Le Roch KG, Johnson JR, Ahiboh H, Chung DW, Prudhomme J, Plouffe D,
Henson K, Zhou Y, Witola W, Yates JR, Mamoun CB, Winzeler EA, Vial H: A
systematic approach to understand the mechanism of action of the
bisthiazolium compound T4 on the human malaria parasite, Plasmodium
falciparum. BMC Genomics 2008, 9:513.

Radfar A, Diez A, Bautista JM: Chloroquine mediates specific proteome
oxidative damage across the erythrocytic cycle of resistant Plasmodium
falciparum. Free Radic Biol Med 2008, 44:2034-2042.

Prieto JH, Koncarevic S, Park SK, Yates J, Becker K: Large-scale differential
proteome analysis in Plasmodium falciparum under drug treatment. PLoS
ONE 2008, 3:4098.

Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL:
Expression profiling of the schizont and trophozoite stages of
Plasmodium falciparum with a long-oligonucleotide microarray. Genome
Biol 2003, 4:9.

Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL: The
transcriptome of the intraerythrocytic developmental cycle of
Plasmodium falciparum. PLoS Biol 2003, 1:5.

Foth BJ, Zhang N, Mok S, Preiser PR, Bozdech Z: Quantitative protein
expression profiling reveals extensive post-transcriptional regulation and
post-translational modifications in schizont-stage malaria parasites.
Genome Biol 2008, 9:177.

LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR,
Schoenfeld LW, Ota |, Sahasrabudhe S, Kurschner C, Fields S, Hughes RE: A
protein interaction network of the malaria parasite Plasmodium
falciparum. Nature 2005, 438:103-107.

Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M,

Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR, Winzeler EA: Global
analysis of transcript and protein levels across the Plasmodium
falciparum life cycle. Genome Res 2004, 14:2308-2318.

Bozdech Z, Ginsburg H: Antioxidant defense in Plasmodium falciparum-
data mining of the transcriptome. Malar J 2004, 3:23.

Horrocks P, Wong E, Russell K, Emes RD: Control of gene expression in
Plasmodium falciparum - ten years on. Mol Biochem Parasitol 2009,
164:9-25.

Shock JL, Fischer KF, DeRisi JL: Whole-genome analysis of mRNA decay in
Plasmodium falciparum reveals a global lengthening of mRNA half-life
during the intra-erythrocytic development cycle. Genome Biol 2007, 8:134.
Mash DG, ffrench-Mullen J, Adi N, Qin Y, Buck A, Pablo J: Gene expression
in human hippocampus from cocaine abusers identifies genes which
regulate extracellular matrix remodeling. PLoS ONE 2007, 2:1187.
Andreyev AY, Kushnareva YE, Starkov AA: Mitochondrial metabolism of
reactive oxygen species. Biochemistry (Mosc) 2005, 70:200-214.
Bhattacharyya MK, Kumar N: Identification and molecular characterisation
of DNA damaging agent induced expression of Plasmodium falciparum
recombination protein PfRad51. Int J Parasitol 2003, 33:1385-1392.

Seow F, Sato S, Janssen CS, Riehle MO, Mukhopadhyay A, Phillips RS,
Wilson RJ, Barrett MP: The plastidic DNA replication enzyme complex of
Plasmodium falciparum. Mol Biochem Parasitol 2005, 141:145-153.

Rider SD Jr, Cai X, Sullivan WJ Jr, Smith AT, Radke J, White M, Zhu G: The
protozoan parasite Cryptosporidium parvum possesses two functionally
and evolutionarily divergent replication protein A large subunits. J Biol
Chem 2005, 280:31460-31469.

Page 15 of 15

54.  Sugiyama T, Kantake N: Dynamic regulatory interactions of rad51, rad52,

and replication protein-a in recombination intermediates. J Mol Biol 2009,

390:45-55.

55. Botha M, Pesce ER, Blatch GL: The Hsp40 proteins of Plasmodium
falciparum and other apicomplexa: regulating chaperone power in the
parasite and the host. Int J Biochem Cell Biol 2007, 39:1781-1803.

56.  Acharya P, Kumar R, Tatu U: Chaperoning a cellular upheaval in malaria:
heat shock proteins in Plasmodium falciparum. Mol Biochem Parasitol
2007, 153:85-94.

57. Akide-Ndunge OB, Tambini E, Giribaldi G, McMillan PJ, Muller S, Arese P,
Turrini F: Co-ordinated stage-dependent enhancement of Plasmodium
falciparum antioxidant enzymes and heat shock protein expression in
parasites growing in oxidatively stressed or G6PD-deficient red blood
cells. Malar J 2009, 8:113.

58.  Shonhai A, Boshoff A, Blatch GL: The structural and functional diversity of
Hsp70 proteins from Plasmodium falciparum. Protein Sci 2007,
16:1803-1818.

59. McCarty JS, Walker GC: DnaK as a thermometer: threonine-199 is site of
autophosphorylation and is critical for ATPase activity. Proc Natl Acad Sci
USA 1991, 88:9513-9517.

60. Krungkrai SR, Suraveratum N, Rochanakij S, Krungkrai J: Characterisation of
carbonic anhydrase in Plasmodium falciparum. Int J Parasitol 2001,
31:661-668.

61.  Krungkrai J: Purification, characterization and localization of
mitochondrial dihydroorotate dehydrogenase in Plasmodium falciparum,
human malaria parasite. Biochim Biophys Acta 1995, 1243:351-360.

62. Vaidya AB, Mather MW: A post-genomic view of the mitochondrion in
malaria parasites. Curr Top Microbiol Immunol 2005, 295:233-250.

63. Kawahara K, Mogi T, Tanaka TQ, Hata M, Miyoshi H, Kita K: Mitochondrial
Dehydrogenases in the aerobic respiratory chain of the rodent malaria
parasite Plasmodium yoelii yoelii. J Biochem 2009, 145:229-237.

64. Mogi T, Kita K: Identification of mitochondrial Complex Il subunits SDH3
and SDH4 and ATP synthase subunits a and b in Plasmodium spp.
Mitochondrion 2009, 9:443-453.

65. Mather MW, Morrisey JM, Vaidya AB: Hemozoin-free Plasmodium
falciparum mitochondria for physiological and drug susceptibility
studies. Mol Biochem Parasitol 2010, 174:150-153.

66. Beyenbach KW, Wieczorek H: The V-type H+ ATPase: molecular structure
and function, physiological roles and regulation. J Exp Biol 2006,
209:577-589.

67. Saliba KJ, Allen RJ, Zissis S, Bray PG, Ward SA, Kirk K: Acidification of the
malaria parasite’s digestive vacuole by a H+-ATPase and a H
+-pyrophosphatase. J Biol Chem 2003, 278:5605-5612.

68. Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y:

Vacuolar H(+)-ATPase localized in plasma membranes of malaria parasite

cells, Plasmodium falciparum, is involved in regional acidification of
parasitized erythrocytes. J Biol Chem 2000, 275:34353-34358.

69. Koncarevic S, Rohrbach P, Deponte M, Krohne G, Prieto JH, Yates J, Rahlfs S,

Becker K: The malarial parasite Plasmodium falciparum imports the
human protein peroxiredoxin 2 for peroxide detoxification. Proc Nat/
Acad Sci USA 2009, 106:13323-13328.

70.  Campanale N, Nickel C, Daubenberger CA, Wehlan DA, Gorman JJ, Klonis N,

Becker K, Tilley L: Identification and characterization of heme-interacting
proteins in the malaria parasite, Plasmodium falciparum. J Biol Chem
2003, 278:27354-27361.

71.  Perkowski S, Sun J, Singhal S, Santiago J, Leikauf GD, Albelda SM: Gene
expression profiling of the early pulmonary response to hyperoxia in
mice. Am J Respir Cell Mol Biol 2003, 28:682-696.

72.  Ginsburg Pathway. [http://sites.hujiac.il/malarial.

doi:10.1186/1475-2875-10-4

Cite this article as: Torrentino-Madamet et al.: Global response of
Plasmodium falciparum to hyperoxia: a combined transcriptomic and
proteomic approach. Malaria Journal 2011 10:4.



http://www.ncbi.nlm.nih.gov/pubmed/18769544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18769544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18706115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18706115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18973684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18397762?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15520293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15245577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15245577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19110008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19110008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15807660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15807660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14527521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15926203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15926203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16014411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19445949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17428722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17428722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17428722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17307260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17307260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19480682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19480682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19480682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19480682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17766381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17766381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1835085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1835085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11336746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11336746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7727509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7727509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7727509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16265893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16265893?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19060309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19682605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19682605?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20674615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20674615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20674615?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12427765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12427765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12427765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10915784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10915784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10915784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19666612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19666612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12748176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12748176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12760966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12760966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12760966?dopt=Abstract
http://sites.huji.ac.il/malaria

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Plasmodium falciparum in vitro culture
	Plasmodium falciparum culture synchronization
	Hyperoxia exposure of P. falciparum cultures
	RNA extraction
	Microarray experiments and analysis
	Real-time quantitative RT-PCR
	Protein sample preparation and CyDye labelling
	Two-dimensional electrophoresis, image analysis and in-gel digestion
	Mass spectrometry analysis

	Results
	Effect of hyperoxia on P. falciparum and experimental design
	Plasmodium falciparum response to hyperoxia treatment: microarray analysis
	Plasmodium falciparum response to hyperoxia treatment: proteomic analysis

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

