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Abstract

Background

Artemisinin-based combination therapies (ACT) are widely used in African countries, including Cameroon. Between
2005 and 2007, five randomized studies comparing different treatment arms among artesunate-amodiaquine and
other ACT were conducted in Cameroonian children aged two to 60 months who had uncomplicated Plasmodium
falciparum malaria. In these studies, the categorical criterion proposed by the World Health Organization (WHO) to
assess the relative effectiveness of anti-malarial drugs was repeatedly evaluated on Days 14, 21 and 28 after treatment
initiation. The aim of the present study was to compare the effects of different treatments on this repeated ordinal
outcome, hence using the fully available information.

Methods

The quantitative synthesis was based on individual patient data. Due to the incomplete block design concerning
treatment arms between different trials, a mixed treatment comparison (MTC) meta-analysis approach was adopted.
The repeated ordinal outcome was modelled through a latent variable, as a proportional odds mixed model with trial,
period and treatment arms as covariates. The model was further complexified to account for the variance
heterogeneity, and the individual log-residual variance was modelled as a linear mixed model, as well. The effects of
individual covariates at inclusion, such as parasitaemia, fever, gender and weight, were also tested. Model parameters
were estimated using a Bayesian approach via the WinBUGS software. After selecting the best model using Deviance
Information Criterion (DIC), mixed treatment comparisons were based on the estimated treatment effects.

Results

Modeling the residual variance improved the model ability to adjust the data. The results showed that, compared to
artesunate-amodiaquine (ASAQ), dihydroartemisinin-piperaquine (DHPP) was significantly more efficacious.
Artesunate-chlorproguanil-dapsone (ASCD) was less efficacious than artesunate-sulphadoxine-pyrimethamine (ASSP),
artemether-lumefantrine (AMLM) and DHPP, the difference with the latter being significant. No difference in efficacy
was found between ASAQ and AMLM.

Conclusions
Bayesian mixed treatment comparisons of a network of connected randomized trials with repeated measurements of
the primary categorical outcome allowed to take into account both the individual- and between- studies sources of
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malaria in Cameroonian children.

comparisons, Bayesian approach

heterogeneity. The results of the present study complete the previous quantitative review based on a binary outcome
at a fixed time point, suggesting that DHPP represents an alternative for the treatment of uncomplicated P. falciparum

Keywords: Malaria, Plasmodium falciparum, Drug resistance, Ordinal data, Mixed models, Mixed treatment

Background

Although malaria is a global disease, over 90% of the
disease burden concern the populations in sub-Saharan
African countries, where Plasmodium falciparum par-
ticularly affects both the young children and pregnant
women. Eighty-five percent of the deaths concern children
less than five years of age [1].

The treatment strategy recommended by the World
Health Organization (WHO) is based on artemisinin-
based combination therapy (ACT), which rapidly
eliminates asexual parasites. Only a few cases of treat-
ment failure due to drug resistance have been reported
so far for these treatments [2]. Artemisinin, a natural
product extracted from Artemisia annua, was identi-
fied as a highly active anti-malarial drug. Its derivatives,
such as artesunate (AS), artemether (AM) and dihy-
droartemisinin (DH), were found to be among the most
potent of all anti-malarial drugs.

To compare the drug efficacy in Cameroon (Central
Africa), a series of five trials with different combination
therapies was jointly conducted by Organisation de Coor-
dination pour la lutte contre les Endémies en Afrique
Centrale (OCEAC) and Institut de Recherche pour le
Développement (IRD) in Yaounde, Cameroon. The stan-
dardized 2003 WHO protocol [3] was used to assess
drug efficacy in children under five years of age with a
patient follow-up on days 1, 2, 3, 7, 14, 21 and 28 and
evaluation of treatment outcome on day 14, day 21 and
day 28. A categorical outcome with four categories is rec-
ommended in the WHO standardized protocol, which can
be considered as an ordinal variable [4]: ACPR (adequate
clinical and parasitological response), LPF (late parasito-
logical failure), LCF (late clinical failure) and ETF (early
treatment failure).

According to the WHO protocol for intense transmis-
sion area, ETF is defined either as a development of danger
signs or severe malaria on day 1, day 2 or day 3, in the
presence of parasitaemia, or parasitaemia on day 2 higher
than day 0 count irrespective of axillary temperature or
parasitaemia on day 3 with axillary temperature > 37.5
°C or parasitaemia on day 3 > 25 % of count on day 0.
LCF is defined either as the development of danger signs
or severe malaria after day 3 in the presence of para-
sitaemia, without meeting any of the previous criteria of
Early Treatment Failure or the presence of parasitaemia
and axillary temperature > 37.5 °C on any day from day 4

to day 28, without meeting any of the previous criteria of
Early Treatment Failure. LPF is defined as the presence on
day 14 and after of parasitaemia and axillary temperature
< 37.5 °C, without meeting any of the previous criteria of
Early Treatment Failure and Late Clinical Failure. ACPR
was defined as an absence of parasitaemia and axillary
temperature < 37.5 °C without meeting any of the criteria
of Early Treatment Failure or Late Clinical Failure or Late
Parasitological Failure.

Each trial was conducted to test a new combination
of treatments in terms of failure or success. The out-
come of these studies presented a clinical heterogeneity
due to the diversity of treatments and different time-
periods between 2005 and 2007, which may correspond to
different malaria incidences in relation to environment.

Data were first analysed with the WHO criterion con-
sidered as a binary criterion (success/failure) fitted sepa-
rately on either day 14, or day 28 [5], according to the study
period. A multi-treatment binary mixed-effect regression
model was used with a study random effect modeling this
heterogeneity. In this first analysis [5], none of the tested
treatment was significantly different from the artesunate-
amodiaquine (ASAQ) treatment reference arm. However,
this previous work faced two limits: (i) a binary criterion
was used instead of the recommended primary categori-
cal outcome, and (ii) data were fitted separately on days
14 and 28, even though repeated measurements for each
individual were available. A possible solution of the first
limitation, concerning the use of a binary criterion instead
of the primary categorical outcome, was proposed in a
subsequent work [6], by analysing the data set on day
14 using the primary outcome as categorical. The second
issue regarding repeated measurements on days 14, 21 and
28 of the primary outcome is considered in the present
work with the aim to integrate the repeated measure-
ments of the categorical outcome in a global meta-analysis
approach.

Whatever the primary outcome is, the meta-analysis
approach is not straightforward when more than two
treatment arms are present. Indeed, a classical meta-
analysis assumes identical two treatment arms in all
the randomized trials. However, more complex situa-
tions occur when pooling studies with either more than
two treatment arms or no identical treatment arms
between studies. This results in a situation where a
common treatment effect among trials cannot be easily
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estimated. Mixed treatment comparison (MTC) meta-
analysis has been recently proposed as an extension
of classical meta-analysis, by including multiple differ-
ent pairwise comparisons across a range of different
interventions [7]. MTC was first introduced in case of
evidence synthesis [8], and is now developed in meta-
analysis of clinical trials [9,10]. In this situation, MTC
meta-analysis appears as a method for inferring relative
treatment effects based on a synthesis of both direct
and indirect evidence [11-13]. These direct and indirect
evidences are usually estimated using Bayesian methods
[10,14,15].

The main objective of this work was to compare the effi-
cacy of the available combinations over time and to study
the effect of individual covariates, by taking into account
the subject variability and between-trials heterogeneity
due to different treatment arms. A mixed model for
repeated ordinal data is proposed to analyse the clinical
and parasitological data. This seems to be the first mixed
meta-analysis approach in pooling anti-malarial drug, in
which the WHO criterion is considered as a repeated
categorical outcome though with possible time-censoring.

Data description

A total of 795 children aged two to 60 months were
included in five clinical trials, one in 2005, three in 2006
and one in 2007. These successive trials corresponded to
a prospective and systematic comparison of anti-malarial
drugs initiated in 2003 by both OCEAC and IRD. The
project at that time was approved by the Ministry of
Public Health and the Cameroonian national ethics comit-
tee. All parents or legal guardians gave their written
informed consent. The data set was made available by
the principal investigator of the project (LB), who initi-
ated the present re-analysis. Data were collected based
on the 2003 WHO protocol [3,16], with an evaluation
at three time-points, day 14, day 21 and day 28 after
the start of treatment. The primary outcome was the
four categorical response, ACPR, LPF, LCF, ETF, which
was repeatedly recorded on days 14, 21 and 28. The
category ETF was, in fact, never observed. Individual
covariates such as weight, age, gender, parasitaemia on
day O and day 3 were also measured. Each trial com-
pared two or three treatments among either amodiaquine
(AQ) in monotherapy or a combined treatment such
as amodiaquine-sulphadoxine-pyrimethamine (AQSP),
artesunate-amodiaquine (ASAQ), artesunate-sulpha-
doxine-pyrimethamine (ASSP), artesunate-mefloquine
(ASMQ), artemether-lumefantrine (AMLM), dihydro-
artemisinin-piperaquine (DHPP).

Figure 1 represents the set of treatment arms as a graph,
in which each treatment arm is a node. An edge between
two nodes exists when they were tested in the same ran-
domized clinical subtrial. This graph can be viewed as
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Figure 1 Treatment arms of the five clinical trials. Each edge is
attributed two subscripts, the first one identifies the randomized
clinical trial, the second one identifies the possibility of a direct
comparison between two nodes within a randomized clinical trial.
Only the study #2, which compared AQSP to ASMQ, is not connected
to the others.

a connected network with the exception of study # 2,
which is unconnected to the other studies. As suggested
by Jansen et al. [10], the following analysis was conducted
without this specific study since no increase in the cor-
responding treatment effect estimates could be gained by
pooling this specific trial with the others.

The sample size for each treatment arm was initially set
at 50 children, then adjusted to account for drop-outs.
Details of the observed categorical outcomes, including
missing responses (NA) according to each treatment arm
within the different trials are shown in Table 1. Forty-
nine children (6.1%) were either excluded or lost to follow
up before day 14. Consequently, 746 patients had their
responses assessed on day 14. Missing responses on day 21
and day 28 were related to previously observed treatment
failure or lost to follow-up after day 14. Indeed, as soon
as a failure was noticed, the patients received an alter-
native drug to prevent clinical aggravation and progres-
sion towards potentially severe and complicated malaria.
Finally, after excluding patients from study # 2, 621
patients were analysed in a per-protocol approach (PP).
The sensitivity of the models to the missing responses
was assessed by imputing the missing responses after day
14 using different scenarii, including the less favorable
scenario in the course of the treated acute episode.

Statistical analyses

The categorical outcome was regressed via a latent con-
tinuous variable on various covariates of interest, using
either fixed- or mixed-model formulation, with an attempt
to take into account the individual response heterogeneity
by modeling the residual variance.
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Table 1 Summary of the patient populations by treatment arm in the five clinical trials

Day14 Day21 Day28

Study Year Treat mq my ms3 ACPR LPF LCF ACPR LPF LCF NA ACPR LPF LCF NA

#
2005 AQ 64 3 61 58 2 1 54 0 2 5 50 2 2 7
Feb-May — ASAQ 60 3 57 56 0 1 49 0 4 4 43 3 3 8

1 ASSP 61 3 58 58 0 0 55 1 1 1 50 3 2 3
Subtotal 185 9 176 172 2 2 158 1 7 10 143 8 7 18
2006 1 AQSP 67 3 64 64 0 0 61 1 1 1 55 1 4 4
Apr-Jul ASMQ 69 8 61 61 0 0 61 0 0 0 60 1 0 0

2 Subtotal 136 1 125 125 0 0 122 1 1 1 115 2 4 4
2006 2 ASAQ 62 4 58 58 0 0 52 4 1 1 52 0 0 6
Sep-Nov AMLM 61 1 60 60 0 0 58 2 0 0 58 0 0 2

3 Subtotal 123 5 118 118 0 0 110 6 1 1 110 0 0 8
2006 3 ASCD 86 14 72 71 1 0 57 6 8 1 53 2 1 16

4 Dec-Feb ASSP 82 1 81 81 0 0 79 0 2 0 74 2 2 3
Subtotal 168 15 153 152 1 0 136 6 10 1 110 0 0 19
2007 ASAQ 92 4 88 87 1 0 78 6 3 1 73 5 0 10

5 Apr-Jul DHPP 91 5 86 86 0 0 86 0 0 0 84 2 0 0
Subtotal 183 9 164 173 1 0 164 6 3 1 157 7 0 10
Subtotal ASAQ 214 1 203 201 1 1 179 10 8 6 168 8 3 24

Others 581 38 543 539 3 1 513 10 14 8 484 13 1 35

Total 795 49 746 740 4 2 690 20 22 14 652 21 14 59

my: number of included patients, m,: number of drop-out and lost to follow-up before Day 14, ms: number of evaluated patients on Day 14. ACPR adequate clinical
and parasitological response, LPF late parasitological failure, LCF late clinical failure), NA: not available outcome. AQ, amodiaquine; SP, sulphadoxine-pyrimethamine; AS,
artesunate; AM, artemether; DHPP, dihydroartemisinin-piperaquine; LM, lumefantrine; CD, chlorproguanil-dapsone.

Notations and associated latent variable modeling
The categorical ordinal outcome was measured in the
studies S,,, where m € {1, 3,4, 5}, as study S, was removed
for the present analysis. Each study S, hadi =1, ... , Ny
subjects observed at times ¢ = 1, ... , Oy, for subject i.
Let Z,,ir be the K = 3 category response of subject i at
time ¢ in study m coded as 1 for ACPR, 2 for LPF and 3 for
LCE, respectively, as the ETF category was never observed.
Categorical ordinal data are commonly analysed using
an ordinal logistic model [17]. Briefly, this model assumes
an underlying latent variable that is related to the ordinal
response Z,,;; through threshold values. This latent vari-
able corresponds to an unobserved variable, measured on
a continuous scale which drives, in each infected patient,
the patient’s response to the anti-malarial drug, he is
exposed to. This latent variable is assumed to depend
on observed covariates like patient’s nutritional status,
Plasmodium exposure, mosquito bite intensity, level of
education or family income for each individual with an
heterogeneity between subjects and is modelled accord-
ingly. The thresholds correspond to different distinct val-
ues, depending on the number of ordinal categories that
separate individuals into various response categories. The

response of a given subject is determined by the interval in
which its unobserved latent variable falls. Let L,;,;; be the
corresponding latent variable and oy, k = 1,...,K—1, the
thresholds which are assumed —00 = ag < a1 < ... <
ag—1 < ag = +o0o. The relationship between between
Zir and L, can be defined as follows

Zmit =k & o1 < Lypis < o

Let Quik = Pr(Zmie < k) = Pr(Lmi < o) be the
cumulative probability. A natural statistical model links
the cumulated probabilities Qy,;;x to the covariates via a
link function g. Assuming a normal or logistic distribution
for the underlying latent variable leads to an ordinal probit
regression model or an ordinal logistic regression model,
respectively. The complementary log-log link function can
also be used. In the following, a logit link function which
corresponds to the proportional odds model is used.

The latent variable L,,;; was assumed to follow a mixed
logit model and could be expressed in the following way:

Liit = Xmity + ti + emir

where X,,,;; is the matrix of covariates, y is the covariate
parameter vector, u; is the subject random effect, assumed
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to follow a centered gaussian distribution with constant
variance 72. The residuals e,;;, were assumed to be dis-
tributed according to a centered logistic random variable
with variance oy,;. Conditionally to u;, this model is
equivalent to

logit(Quitk) = (@ — XimitV — i)/ Omiz-

The covariate model X,,; and the variances o,,; are
detailed in the next two sections. No study random effect
was introduced as the number of studies was small.

Covariate model
The covariate model was the following:

6 3 5

Xmity = Z viTrty + Z ve Timei + Z YmStudyim,
=2 t=2 m=3

1)

where Trt;, [ = 2,...,6, are binary treatment covariates
coding for the 6 different treatments; Time;, t = 2,3,
are binary covariates coding for the 7),, = 3 measure-
ment times (day 14, day 21, day 28) and, Study,, m =
3,4,5 are 3 binary covariates coding for the four stud-
ies. Day 14 was selected as the reference time, study 1 as
the reference study. The ASAQ treatment was the refer-
ence treatment as it is currently in use in Cameroon, as
well as in many other African countries [18]. Comparison
was made between ASAQ and the remaining 5 treatments
{AQ, ASSP, ASCD, AMLM, DHPP}.

The parameter vector, y = (¥}, V& Vm) represents the
effect of the selected covariates, i.e., population mean,
treatment, time, and study, respectively. Each y; rep-
resents the treatment effect difference between ASAQ
and the corresponding /th treatment, assuming the other
fixed.

This general model assumes: i) that the same number of
categories for the outcome holds both in each study and at
the different time visit; ii) that, at each visit, the treatment
differential effects verify the proportional odds hypothesis
between studies. Each parameter is represented in terms
of the logarithm of the cumulative Odds Ratio (logOR).
The corresponding OR is obtained by taking the expo-
nential. Because data were treated as categorical, log(OR)
represents the posterior cumulative logarithm of odds
ratio, linking ACPR to LPF. A log(OR) greater than 0 with
a 95% confidence interval not containing 0 means that
there is an improvement of subject status over time for
a given treatment compared to the reference treatment.
A positive regression coefficient means that the effects
proceed towards the best response (ACPR), whereas a
negative regression coefficient means that the effects go
towards the worst response (LPF here).
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Modeling the residual

The simplest residual variance model is the classical con-
stant model (0,,,;; = o). This model is referred as Model
M1 or homogeneity model in the following sections.
Because of the presence of multi-treatments and hetero-
geneity of the discrete outcomes among treatment arms, a
more flexible, yet parsimonious, general model was intro-
duced to take into account the large heterogeneity of the
residual variance. This approach is derived from Foulley
& Jaffrezic [19], who proposed to model the residual
variance as a function of some relevant covariates. Rel-
evant covariates like treatment arms, different follow-up
period, the different studies, and a subject random effect,
were selected to enter the model. As described by Foul-
ley & Jaffrezic[19], a structural mixed model on the log of
variances was proposed:

6 3 5
log o,%”.t = Z 8;Trty + Z SpTimejs + Z SmStudyiy, + vi,
=2 t=2 m=3

2)

where v; ~ N(0,7%) models the between-subject het-
erogeneity of the discrete outcome, and the vector § =
(81,8, 8m) represents the vector of covariates effects to be
estimated. This leads to model M2.

Model M3 discarded the subject-specific random effect
v; on the log of the variances in equation (2):

6 3 5

log o,%”.t = Z 8;Trty + Z SpTime; + Z S Studyip,.
=2 t=2 m=3

®3)

Model M4 kept only the treatment effects in equation
(2) to form the following:

6
log aiz = Z 81 Trty;. (4)
=2

Finally, another model called M5 was also considered
by adding a subject random effect to equation (4), corre-
sponding to:

6
log (Ti2 = Z SiTrty + v;. (5)
=2

Parameter estimation, model comparison and validation

All analyses were based on individual patient data. A
Bayesian approach under the WinBUGS software [20] was
used to estimate the parameters of models M1-M5, as it
handles easily hierarchical logistic models, together with
model selection and model validation. The estimation
procedure was based on Gibbs sampling. The above mod-
els were implemented by setting priors to all parameters.
The threshold values «; were sampled as follows: o] was
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set to zero, ap was assumed a; + A, where A followed a
uniform prior distribution ¢/ (0, 5). Priors for the time and
study effects were assumed U (—5,5), whereas priors for
the variances 72 and n* were choosen I/ (0, 80) and 2£(0, 4),
respectively, as suggested by [19], where U(a,b) corre-
sponds to a uniform distribution on the interval (4, b).
Priors for the other individual covariates in the different
variance models, like weight, gender, age, parasitaemia,
were assumed normally distributed A/ (0, 100).

All Bayesian analyses were performed using one chain
of 50,000 samples, the first 25,000 of which were removed
to allow for burn-in. Credibility intervals were esti-
mated together with the parameters. All parameters were
expressed as logarithm of odds ratios. In practice, when
these intervals contained zero, the parameter was consid-
ered to be not different from 0. To take into account the
problem of multi-treatment comparisons, the Bonferroni
correction was used. The different models were compared
using the DIC (deviance information criterion) [21]. The
best model was considered to be the one with the smallest
DIC.

Sensitivity analysis and missing responses imputation

Limiting the analysis to the observed responses only
exposes to biases, as it does not take into account the
responses recorded as NA, the details of which are given
in Table 2. These NA responses could have several origins:
i) the absence of the child at the time of the scheduled
visit, due to some particular familial event related or not
to the perceived health status of the child by the parents.
The field worker usually managed to visit the family when
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they returned and record the outcome; ii) the decision
to switch to another treatment before the scheduled visit
when, at the previous visit or in the time interval between
the two visits, the observed outcome suggested treatment
failure and motivated the switch. Even if the child was
still followed up in the trial design, his or her real sta-
tus outcome was recorded not applicable. In the following
these responses will be called missing, although they were
recorded but considered not applicable, as the child was
no longer under the allocated treatment. In order to test
the sensitivity of the results to these missing responses,
missing responses were replaced with the last observed
response which was carried forward to all the follow-
ing visits, except situations #1 and #2 in Table 2, which
were imputed with the less favorable scenario LCF. This
approach is refered as the imputation approach therafter.

When a failure was recorded, blood samples were tested
using PCR for assessing either the persistance of the infec-
tion, i.e. a real treatment failure, or a new infection with a
different parasite strain. In the latter situation, treatment
failure could be cancelled and imputed ACPR. This PCR-
corrected data set was analysed in the sensitivity analysis
to compare with the PP analysis.

Results

Individual covariates, i.e., weight, gender, age, and par-
asitaemia, were tested in a fixed effect model together
with treatment, time and study-effects using a fixed
effect model, in the PP approach. As shown in Table 2,
none of the individual covariates was significant, whereas
both time- and treatment- effects were significant. ASCD

Table 2 Number of children by outcomes at the three scheduled visits

Type of situation Day 14 Day 21 Day 28 Number of
children (%)

1 ACPR NA (LCF) NA (LCF) 8(1.1)

2 ACPR ACPR NA (LCF) 4(04)

3 ACPR LPF NA (LPF) 20(2.5)

4 ACPR LCF NA (LCF) 21(2.6)

5 NA NA NA 49 (6.2)

6 LCF NA (LCF) NA (LCF) 2(03)

7 LPF NA (LPF) NA (LPF) 4(04)

8 ETF NA (ETF) NA (ETF) 0(0.0)

9 ACPR ACPR ACPR 652 (82)

10 ACPR ACPR LPF 21(26)

1 ACPR ACPR LCF 14(1.8)

Expected children 795 746 732

Missing 49 14 59 122 (15)

Fully observed 746 732 687

ACPR: Adequate Clinical and Parasitological Response. LPF: Late Parasitological Failure. LCF: Late Clinical Failure. ETF: Early Treatment Failure. NA: missing outcome.

The imputed states in the sensitivity analysis are indicated in brackets.
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appeared significantly less efficacious than ASSP. The neg-
ative time effect coefficient suggested that the complete
response (ACPR) decreased significantly over time, from
day 14 to day 28. This result can be related to a loss
of improvement due to treatment failure caused by re-
infections or recrudescence over time, or an overall effi-
cacy of drugs as early as Day 14. The results for the other
analyses performed with models M1, M2, M3, M4 and
M5 without individual covariates, are displayed in Table 3
for both PP- and imputation- approaches. Both PP- and
imputation- approaches gave similar results.

Comparison and validation of the different approaches

Different models were compared, starting with the stan-
dard threshold model with homogeneous variance (M1).
Modeling the heterogeneity of residuals considerably
improved the fit as shown in Table 4. This suggested a
gain in modeling the heterogeneity of residuals in the
presence of the treatment-, time- and study- covariates.
However, this gain decreased when modeling only the
treatment effect within the residual variance. As shown in
Table 4, the DICs in models M4 and M5 are larger than
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DICs in models M3 and M2. Consequently, the best model
was M3 for the PP approach and M2 for the imputation
approach.

Direct and indirect comparisons

The model M3, which gave the best adjustment to the data
set, was selected for a simultaneous comparison between
treatments. Figure 2 shows the treatment effects estimated
in Model M3 using the PP approach, ranked in chrono-
logical order of the trials. Direct and indirect treatment
effects could then be computed and are represented in the
same figure.

ASAQ and DHPP treatments differed significantly.
DHPP was globally more efficacious than ASAQ
(log OR = 2.88, 95%CI =[1.18;4.57]). DHPP was more
efficacious than ASCD (log OR = 4.13, 95%CI =[1.37;
6.88]). As compared to AMLM, the combination ASCD
was less efficacious (log OR = —2.60, 95%CI =[ —5.81;
0.61]); ASCD was found less efficacious than ASSP
(logOR = —2.84, 95%CI =[—5.90;0.22]), though both
differences were not significant. All the other direct and
indirect comparisons did not differ significantly as well.

Table 3 Estimated study- treatment-, time- and individual covariate- effects using a fixed effect model

Parameters mean sd 2.5% 97.5%
o 491% 0.71 3.61 6.42
o) 5.77% 0.72 445 7.29
¥s3 (Study 3-1) 0.246 0537 -0.742 1371
¥sa (Study 4-1) 0572 0.584 —0.547 1.719
yss (Study 5-1) —0.505 0.367 —1.216 0.222
v (AQ) —0402 0434 —1.218 0.481
y3 (AMLM) 1.212 0.936 —0443 324

y4 (ASCD) —1.514* 0.682 —2.85 —0.186
ys (ASSP) —0.109 0465 —0.989 0.844
Y6 (DHPP) 2.353*% 0.852 0.924 4.288
yo21 (Day 21-14) —2.121% 0459 —3.112% —1.298
Yo2s (Day 28-14) —2.036* 0467 —3.030% —1.194
Weight 0218 0.360 —0478 0.933
Gender —0.154 0.234 —0.615 0.298
Age 0.189 0.505 —0.896 1.067
Parasitaemia Day O —0.171 0.352 —0.872 0.506
Parasitaemia Day 3 0.085 0.669 —1.083 1.542
Expected children 795 746 732

Missing 49 14 59 122(15)
Fully observed 746 732 687

sd: standard deviation, 2.5% and 97.5% : percentiles of the posterior distributions. Study reference: Study 1; Treatment reference: ASAQ; Day reference: Day 14. *:

significant effect at the 0.05% level.
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Table 4 Estimated effects for models M1-M5 in the per-protocol (PP) analysis

M1 M2 M3 M4 M5

Est sD Est sD Est sD Est sD Est sD
Study 3-1 247 1.01 —1.26 161 0.10 1.20 1.70 093 1.71 0.98
Study 4-1 1.03 1.26 133 1.40 0.78 1.04 1.07 1.04 1.03 1.12
Study 5-1 1.08 1.07 —1.88 1.23 —0.66 1.03 049 0.76 0.27 0.85
AQ 0.68 1.23 1.35 1.39 0.39 0.92 0.35 0.86 0.45 0.97
AMLM 2.04 1.30 1.50 1.20 1.35 1.07 1.65 115 1.71 1.23
ASCD —-1.76 137 —-1.97 141 —1.25 1.24 —1.56 1.22 —-1.69 1.26
ASSP —1.77 1.10 231 1.09 1.59 0.95 2.22% 1.07 2.00 1.20
DHPP 3.09% 0.74 293* 0.77 2.88% 0.68 2.27* 0.94 2.04* 1.04
yp21 (Day21-14) —4.17* 0.60 —3.14* 1.50 —2.99*% 0.72 —3.28*% 057 —3.46 0.61
vpag (Day28-14) —3.87* 0.98 —3.04* 153 —3.03*% 1.10 —3.69*% 0.60 —391* 0.63
T 6.57% 1.73 6.89% 1.75 7.52% 1.16 7.77% 1.00 7.40% 1.29
n 0.80* 0.26 0.34 0.29
DIC 636.69 371.24 302.32 536.82 532.07

Study # 2, excluded. Est=estimation; SD=standard deviation; *: significant effect at the 5% level. z: standard error of the subject random effect in modeling the logit-
cumulated categorical variable. n: standard error of the subject random effect in modeling the log- variance (model 2).

Discussion

The aim of this work was to pool the results from
five randomized clinical trials comparing the efficacy
of anti-malarial drugs based on the same repeated
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Figure 2 Direct and Indirect treatment differences based on the
PP approach with the M3 model (Study # 2, excluded). y
represents the logarithm of the cumulative OR. Each treatment is
compared to ASAQ (y; = 0). Solid lines mean that the corresponding
treatments were tested within the same study, whereas dashed lines
correspond to treatments compared between different studies.
Values in bold are significant differences. * means that a correlation is
taken into account for Cl (credibility interval) as AQ, ASSP and ASAQ
are tested within the same study.

observation-time design but with partially overlapping
treatment arms, in order to improve the estimated treat-
ment effects and their corresponding variances. Among
the five studies, one was discarded (study #2) as it was
not connected to the other ones, whereas the four remain-
ing studies (studies # 1,3,4,5) were analysed with a mixed
ordinal logistic model incorporating a between-subject
heterogeneity variance model. This approach can be con-
sidered as an extension of the multi-treatment approach of
Jansen et al. [22], which was limited to a binary response
at a single time point (day 28) or, an alternative to a recent
work carried by Dakin et al. [23], where the outcome was
continuous. Results concerning the unconnected study
are just mentioned for the sake of completeness, as they
were not part of the global analysis: they showed that the
combination ASMQ was more effective than AQSP. In
the global analysis, the best model was M3 with a ran-
dom individual effect, in which the residual variance was
a function of explanatory covariates. Modeling the subject
residual variance appeared to improve the model ability
to fit the data by reducing heterogeneity within the anal-
ysed trials. Based on model M3, DHPP was significantly
more efficacious than ASAQ, whereas ASCD appeared
less efficacious than ASSP, AMLM and DHPP, the latter
difference being significant. These results slightly differ
from the results of our previous work [5], in which no
significant treatment difference was found. Therefore, tak-
ing into consideration both the ordinal type of the WHO
criteria and the results at the repeated visits seems to
increase the power for finding a difference, if any.
Regarding the categorical outcome, LCF is symp-
tomatic, whereas LPF is not. It remains possible that a
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patient with LPF become symptomatic beyond day 28.
However, the protocol was designed to separate the two
endpoints when performing a 28-day treatment evalua-
tion. The clinical implications of LPF and LCF on day
28 seem to be quite different. Moreover, the more recent
WHO document [24] maintains the four treatment out-
comes.

In the present study, analyses were based on the
observed treatment responses between day 14 and day
28 (due to the absence of ETF), and the contribution
of each observed category was evaluated. Pooling ran-
domized clinical trials raises the issue of heterogeneity
between studies. However, all studies included in this
analysis were based on the same population of children,
within the same age range and in the same geographic
area. These studies had the same design and were run by
the same investigators and field workers over the years.
Mixed treatment comparison (MTC) meta-analysis faces
several limits leading to the possibility of biased estimates.
Comparing treatment arms using indirect comparisons
apparently exposes to the loss of the benefits of random-
ization. However, it is partially preserved using adjusted
comparisons with possibly less biased differences towards
positive results, according to Song et al. [25]. A study
random effect was not considered in the models as the
number of studies was too small. None of the study fixed
effects was significant, but including them in the model
allowed for a correlation between the treatment arms
within a single study, which kept part of the randomisa-
tion process. Missing responses represent a frequent issue
in anti-malarials trials, usually carried out in field condi-
tions. The absence of a patient during a scheduled visit
could be due either to an earlier treatment failure leading
to another treatment, which could be considered as miss-
ing at random (MAR), according to Rubin [26], or a lost
to follow-up considered as missing completely at random
(MCAR) or an exclusion due to some protocol violation,
considered as missing not at random (MNAR). In order
to explore the internal validity of our results, a sensitiv-
ity analysis was carried out in which missing responses
were imputed according to different scenarii, including
the worst scenario where missing responses were imputed
as failures. None of the evaluations carried out before day
14 (i.e. days 1, 2, 3, and 7) was considered because early
treatment failure (ETF, for days 1 to 3) and late failure
between day 7 and day 13 were not observed. In addi-
tion the whole purpose for WHO to extend the follow
up beyond day 14 up to day 28 was to study the long
term efficacy of anti-malarial drugs following an acute
episode. Each of the 3 categories ACPR, LCF, LPF on
days 14, 21 and 28, according to the 2003 WHO protocol,
was observed. On the observed data, one subject can-
not be LPF or LCF without being ACPR at least on day
14. When the outcome of a subject is classified as LPF
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or LCF, the next outcome is missing since the evaluation
of drug efficacy is terminated for that particular patient
and an alternative treatment is necessary because of eth-
ical consideration. Therefore, outcomes are not strictly
speaking repeated. Modeling repeated observations over
time can been achieved either using a conditional model,
where the outcome at time t is modelled according to
the previous outcomes, or using a marginal model, where
the individual outcomes are modelled in relation to a
mean outcome at each time- point, the time dependency
reflecting this memory effect acting on the categorical
response. As the main objective of the present work was
to pool the results of different multi- arm trials, the lat-
ter approach was adopted, which could be directly related
to recent advances in meta-analysis developments [27].
Analyses with incomplete (PP) and complete outcomes
(imputation approach) were performed by imputing miss-
ing outcomes on days 14, 21 and 28. The results were
then compared to check for biases (Table 5). The results
remained similar in all approaches. It is now common
in anti-malarial drug trials to distinguish between new
infections and recrudescence by PCR, although, from the
pragmatic point of view, one might expect that an opti-
mal treatment of an acute episode would protect the
patients from new infection in the weeks following the
episode, in areas without a large variability in parasite
phenotype. In case of unevenly distributed missing cate-
gories at different times and/or treatment arms, difficul-
ties in adjusting the proposed models could occur. The
main difficulty was related either to a too small num-
ber or an absence of failure categories over time after
PCR correction. This could be considered as extreme
category outcomes, for which the clog- log link can be
more adapted than the logit link in the fitting process.
When the missing responses were imputed as previ-
ously described except for the cases of PCR-detected new
infections where the missing observations were imputed
ACPR, the analyses using the Gibbs sampler failed to
converge.

From the clinical standpoint, it is worth noting that
the present data set concerned the use of highly effi-
cacious anti-malarial combination drugs, thus explain-
ing the absence of the ETF category. AMLM is already
an alternative to ASAQ in Cameroon. Both ASAQ and
AMLM treatments are recommended by the WHO, based
on several published trials, comparing different subsets
of the treatments listed in the present analysis [28-38].
The results of the present analysis complete the previous
meta-analysis based on a binary outcome at a fixed time
point, where it was concluded that AMLM appeared to
be the most effective drug with no treatment failure due
to recrudescence, closely followed by DHPP. However, the
previous analysis did not take into account the individual
repeated measurements.
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Table 5 Sensitivity analysis: Estimated effects in the PP data set and the imputed data sets
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PP dataset Imputed dataset

Covariates OR 95% Cl OR 95% Cl

Study 3-1 1.1 0.16 11.58 372 0.70 19.68
Study 4-1 217 0.29 16.52 2.06 043 9.92
Study 5-1 0.51 0.07 3.857 223 0.05 9.03
AQ 147 0.24 8.89 1.84 0.39 8.64
AMLM 3.84 047 31.35 540 0.88 33.31
ASCD 0.29 0.02 3.30 0.41 0.05 3.27
ASSP 4.88 0.76 31.20 3.95 0.80 16.61
DHPP 17.89% 4.70 67.99 15.64% 3.59 68.10
Day21-14 0.05*% 0.01 0.21 0.02% 0.01 0.05
Day28-14 0.05% 0.01 041 0.02% 0.01 0.04

Model M3, study # 2 excluded. OR: Odds Ratio, 95% Cl: confidence interval. *: significant at the 5% level.

DHPP showed a higher efficacy as compared to the
reference treatment ASAQ in all tested models, whereas
ASCD appeared less efficacious than ASAQ. AMLM
did not differ significantly in efficacy from ASAQ. It
should be remembered that the present analysis discarded
study #2, as it was unconnected to others, increasing
the power for comparison between the remaining treat-
ment arms. The final result is in agreement with the
meta-analysis conducted by Sinclair et al. [39], which
was based on the binary outcome on Day 28. In that
study, both DHPP and ASMQ appeared more efficacious
than AMLM. ASMQ, which is not recommended by the
WHO in Africa at present, although it is the first-line
treatment in Southeast Asia, was not connected to the
other treatment arms in the analysed network of ran-
domised trials, and could only be compared to AQSP,
showing a significantly higher efficacy. Treatment failure
may have several origins including individual pharma-
cokinetic and pharmacodynamic variations and intensity
of transmission. For instance, as CD has a shorter half-
life than the other drugs, new infections could occur
more easily than with other drugs, which explains why
in a non PCR-corrected data analysis ASCD appears less
effective. While a 100% full success rate (ACPR) rep-
resents the optimal target when treating acute malaria,
it is worth noting that incorporating the information
about the other intermediary states and the absence
of parasitaemia appear to be of importance, at least
from the public health standpoint to limit the bur-
den of circulating parasites. Taking into account these
intermediary outcomes could more adequately participate
in the evaluation of different public health policies for
malaria control in parallel to other validated interven-
tions, such as the distribution of insecticide-impregnated
bednets, environmental drainage and other mosquito
control measures.

Abbreviations

ACT, Artemisinin-based combination therapy; AMLM, Artemether -
lumefantrine; ASAQ, Artesunate - amodiaquine; ASCD, Artesunate -
chlorproguanil - dapsone; ASSP, Artesunate-sulphadoxine-pyrimethamine;
DHPP, Dihydroartemisinin - piperaquine; ASMQ, Artesunate - mefloquine;
AQSP, Amodiaquine - sulphadoxine - pyrimethamine; PP, Per protocol; WHO,
World Health Organization.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

SWY developed the analysis plan and carried out both the statistical analyses
and software implementations under the close supervision of AS and JCT. She
also drafted the manuscript. LKB was responsible for the overall data collection
and supervision of clinical trials. All authors read and approved the final
manuscript.

Acknowledgements

We thank all the health workers of the Nlongkak Catholic missionary
dispensary where the clinical trials were conducted. The clinical studies were
supported by the French Ministry of Research (Programme PAL+), European
Union (INCO-DEV contract no. ICA4-CT-2001- 10078 and STREP contract no.
018602), and French Agence Nationale de la Recherche (RES-ATQ project,
ANR-08-MIE-024). We would also like to thank Jean-Louis Foulley (INRA, Jouy
en Josas, France) for his advices, suggestions contributions and support. The
first author was supported by the IRD doctoral grant.

Author details

'Ecole Nationale Supérieure Polytechnique, Université de Yaoundé 1, B. P.
8390 Yaoundé, Cameroon. ?Laboratoire MAP5, UMR CNRS 8145, Université
Paris Descartes, Sorbonne Paris Cité, France. 3Institut de Recherche pour le
Développement (IRD), Unité Mixte de Recherche 198, Faculté de, Médecine La
Timone, Université Aix-Marseille, 13385 Marseille, France. *Laboratoire de
Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre
les Endémies en Afrique Centrale (OCEACQ), B. P. 288, Yaoundé, Cameroon.
5Diagnostic Center, Hotel-Dieu, AP-HP, Paris, France.

Received: 29 July 2011 Accepted: 3 May 2012
Published: 3 May 2012

References

1. WHO: World malaria report 2008.Tech rep, 2008, http://www.who/int/
malaria/wmr2008/MAL2008-SumKey-EN.pdf.

2. Dondorp A, Yeung S, White L, Nguon C, Day N, Socheat D, von Seidlein L:
Artemisinin resistance: current status and scenarios for
containment. Nat Rev Microbiol 2010, 8:272-280.


http://www.who/int/malaria/wmr2008/MAL2008-SumKey-EN.pdf
http://www.who/int/malaria/wmr2008/MAL2008-SumKey-EN.pdf

Whegang et al. Malaria Journal 2012, 11:147
http://www.malariajournal.com/content/11/147

20.

21.

22.

23.

24.

25.

26.
27.

WHO: Assessment and monitoring of antimalarial drug efficacy for
the treatment of uncomplicated falciparum malaria Geneva: World
Health Organization.Tech rep, 2003.

Agresti A: Categorical Data Analysis, (2nd edn). New Jersey: Wiley; 2002.
Whegang S, Tahar R, Foumane VN, Soula G, Gwet H, Thalabard J, Basco L:
Efficacy of non-artemisinin- and artemisinin-based combination
therapies for uncomplicated falciparum malaria in Cameroon. Malar
J2010, 9:56.

Whegang S, Basco L, Gwet H, Thalabard J: Analysis of an ordinal
outcome in a multicentric randomized controlled trial: application
to a 3- arm anti malarial drug trial in Cameroon. BMC Med Res
Methodol 2010, 10:58.

Hasselblad V: Meta-analysis of multitreatment studies. Med Decis
Making 1998, 18:37-43.

Ades A: A chain of evidence with mixed comparisons: models for
multi-parameter synthesis and consistency of evidence. Stat Med
2003, 22:2995-3016.

Lu G, Ades A, Sutton A, Cooper NJ, Briggs AH, Caldwell DM:
Meta-analysis of mixed treatment comparisons at multiple
follow-up times. Stat Med 2007, 26:3681-3699.

Jansen J, Crawford B, Bergman G, Stam W: Bayesian meta-analysis of
multiple treatment comparisons: an introduction to mixed
treatment comparisons. Value Health 2008, 11:956-964.

Lu G, Ades A: Combination of direct and indirect evidence in mixed
treatment comparisons. Stat Med 2004, 23:3105-3124.

Glenny A, Altman DG, Song F, Sakarovitch C, Deeks JJ, D'’Amico R,
Bradburn M, Eastwood AJ, Group ISTC: Indirect comparisons of
competing interventions. Health Technol Assess 2005, 9:1-134.

Jansen J: Self-monitoring of glucose in type 2 diabetes mellitus: a
Bayesian meta-analysis of direct and indirect comparisons. Curr Med
Res Opin 2006, 22:671-681.

Griffin S, Bojke L, Main C, Palmer S: Incorporating direct and indirect
evidence using bayesian methods: an applied case study in ovarian
cancer. Value Health 2006, 9:123-131.

Caldwell D, Ades AE, Higgins JPT: Simultaneous comparison of
multiple treatments: combining direct and indirect evidence. BMJ
2005, 331:897-900.

WHO: Susceptibility of Plasmodium falciparum to antimalarial drugs.
Report on global monitoring 1996-2004.Tech rep, 2005.

McCullagh P: Regression models for ordinal data. J R Statist Soc 1980,
42:109-142.

Zwang J, Olliaro P, Barennes H, Bonnet M, Brasseur P, et al: Efficacy of
artesunate-amodiaquine for treating uncomplicated falciparum
malaria in sub-Saharan Africa: a multi-centre analysis. Malar J 2009,
8:203.

Foulley J, Jaffrezic F: Modelling and estimating heterogeneous
variances in threshold models for ordinal discrete data via
Winbugs/Openbugs. Comput Methods Programs Biomed 2010, 24:19-27.
Lunn D, Thomas A, Best N, Spiegelhalter D: WinBUGS- a Bayesian
modelling framework: concepts, structure, and extensibility. Stat
Comput 2000, 10:325-337.

Spiegelhalter D, Best N, Carlin B, van der Linde A: Bayesian measures of
model complexity and fit (with discussion). J R Stat Soc 8 2002,
64:583-640.

Jansen F, Lesaffre E, Penali L, Garcia-Zattera M, Die-Kakou H, Bissagnene E:
Assessment of the relative advantage of various artesunate-based
combination therapies by a multi-treatment Bayesian
random-effects meta-analysis. Am J Trop Med Hyg 2007, 27:1703-1717.
Dakin HA, JWelton N, Ades AE, Collins S, Ormec M, Kelly S: Mixed
treatment comparison of repeated measurements of a continuous
endpoint: an example using topical treatments for primary
open-angle glaucoma and ocular hypertension. Stat Med 2011,
20:2511-2535.

WHO: Rapport 2009 sur le paludisme dans le monde.Tech rep, 2009.
Song F, Harvey |, Lilford R: Adjusted indirect comparison may be less
biased than direct comparison for evaluating new pharmaceutical
interventions. J Clin Epidemiol 2008, 61:455-463.

Rubin D: Inference and missing data. Biometrika 1976, 5:581-592.
Liu'Y, Agresti A: The analysis of ordered categorical data: an overview
and a survey of recent developments. Societas de Estadistica e
Investigacion Operativa 2005, 24:1-73.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

Page 11 of 11

Hutagalung R, Paiphun L, Ashley E, McGready R, Brockman A, Thwai K,
Singhasivanon P, Jelinek T, White N, Nosten F: A randomized trial of
artemether-lumefantrine versus mefloquine-artesunate for the
treatment of uncomplicated multi-drug resistant Plasmodium
falciparum on the western border of Thailand. Malar J 2005, 4:46.
Meremikwu M, Alaribe A, Ejemot R, Oyo-Ita A, Ekenjoku J, Nwachukwu C,
Ordu D, Ezedinachi E: Artemether-lumefantrine versus artesunate
plus amodiaquine for treating uncomplicated childhood malaria in
Nigeria: randomized controlled trial. Malar J 2006, 5:43.

Guthmann J, Cohuet S, Rigutto C, Fortes F, Saraiva N, Kiguli J,
Kyomuhendo J, Francis M, Noel F, Mulemba M, Balkan S: High efficacy of
two artemisinin-based combinations (artesunate + amodiaquine
and artemether + lumefantrine) in Caala, Central Angola. Am J Trop
Med Hyg 2006, 75:143-145.

Smithuis F, Kyaw MK, Phe O, Aye K, Htet L, Barends M, Lindegardh N,
Singtoroj T, Ashley E, Lwin S, Stepniewska K, White N: Efficacy and
effectiveness of dihydroartemisinin-piperaquine versus
artesunate-mefloquine in falciparum malaria: an open-label
randomised comparison. Lancet 2006, 367:2075-2085.

Hasugian A, Purba H, Kenangalem E, Wuwung RM, Ebsworth EP,
Maristela, R, Penttinen PMP, Laihad F, Anstey NM, Tjitra E, Price RN:
Dihydroartemisinin-piperaquine versus artesunate-amodiaquine:
superior efficacy and posttreatment prophylaxis against
multidrug-resistant Plasmodium falciparum and Plasmodium vivax
malaria. Clin Infect Dis 2007, 44:1067-1074.

Yeka A, Dorsey G, Kamya M, Talisuna A, Lugemwa M, Rwakimari J,
Staedke, S, Rosenthal P, Wabwire-Mangen F, Bukirwa H:
Artemether-lumefantrine versus dihydroartemisinin-piperaquine
for treating uncomplicated malaria: a randomized trial to guide
policy in Uganda. PLoS One 2008, 3:e2390.

Sagara |, Diallo A, Kone M, Coulibaly M, Diawara S, Guindo O, Maiga H,
Niambele M, Sissoko M, Dicko A, Djimde A, Doumbo O: A randomized
trial of artesunate-mefloquine versus artemether-lumefantrine for
treatment of uncomplicated Plasmodium falciparum malaria in Mali.
Am J Trop Med Hyg 2008, 79:655-661.

Mens P, Sawa P, van Amsterdam S, Versteeg |, Omar S, Schallig H, Kager P:
A randomized trial to monitor the efficacy and effectiveness by
QT-NASBA of artemether-lumefantrine versus
dihydroartemisinin-piperaquine for treatment and transmission
control of uncomplicated Plasmodium falciparum malaria in western
Kenya. Malar J 2008, 7:237.

Arinaitwe E, Sandison TG, Wanzira H, Kakuru A, Homsy J, Kalamya J,
Kamya, M R, Vora N, Greenhouse B, Rosenthal PJ, Tappero J, Dorsey G:
Artemether-lumefantrine versus dihydroartemisinin-piperaquine
for falciparum malaria: a longitudinal, randomized trial in young
Ugandan children. Clin Infect Dis 2009, 49:1629-1637.

Kayentao K, Maiga H, Newman R, McMorrow M, Hoppe A, Yattara O,
Traore H, Kone Y, Guirou E, Saye R, Traore B, Djimde A, Doumbo O:
Artemisinin-based combinations versus amodiaquine plus
sulphadoxine-pyrimethamine for the treatment of uncomplicated
malaria in Faladje, Mali. Malar J 2009, 8:5.

Faye B, Ndiaye J, Tine R, Sylla K, Gueye A, Colle A, Gaye O: A randomized
trial of artesunate mefloquine versus artemether lumefantrine for
the treatment of uncomplicated Plasmodium falciparum malaria in
Senegalese children. Am J Trop Med Hyg 2010, 82:140-144.

Sinclair D, Zani B, Donegan S, Olliaro P, Garner P: Artemisinin-based
combination therapy for treating uncomplicated malaria. Cochrane
Database Syst Rev 2009, 3:1-270.

doi:10.1186/1475-2875-11-147

Cite this article as: Whegang et al: Multiple treatment comparisons in a
series of anti-malarial trials with an ordinal primary outcome and repeated
treatment evaluations. Malaria Journal 2012 11:147.




	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Data description
	Statistical analyses
	Notations and associated latent variable modeling
	Covariate model
	Modeling the residual
	Parameter estimation, model comparison and validation
	Sensitivity analysis and missing responses imputation

	Results
	Comparison and validation of the different approaches
	Direct and indirect comparisons

	Discussion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

