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Decreased prevalence of Plasmodium falciparum
resistance markers to amodiaquine despite its
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Abstract

Background: Zanzibar has recently undergone a rapid decline in Plasmodium falciparum transmission following
combined malaria control interventions with artemisinin-based combination therapy (ACT) and integrated vector
control. Artesunate-amodiaquine (ASAQ) was implemented as first-line treatment for uncomplicated P. falciparum
malaria in Zanzibar in 2003. Resistance to amodiaquine has been associated with the single nucleotide
polymorphism (SNP) alleles pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y. An accumulation of these SNP alleles in the
parasite population over time might threaten ASAQ efficacy.
The aim of this study was to assess whether prolonged use of ASAQ as first-line anti-malarial treatment selects for
P. falciparum SNPs associated with resistance to the ACT partner drug amodiaquine.

Methods: The individual as well as the combined SNP allele prevalence were compared in pre-treatment blood
samples from patients with uncomplicated P. falciparum malaria enrolled in clinical trials conducted just prior to the
introduction of ASAQ in 2002–2003 (n = 208) and seven years after wide scale use of ASAQ in 2010 (n = 122).

Results: There was a statistically significant decrease of pfcrt 76T (96–63%), pfmdr1 86Y (75–52%), 184Y (83–72%),
1246Y (28–16%) and the most common haplotypes pfcrt/pfmdr1 TYYD (46–26%) and TYYY (17–8%), while an
increase of pfcrt/pfmdr1 KNFD (0.4–14%) and KNYD (1–12%).

Conclusions: This is the first observation of a decreased prevalence of pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y in an
African setting after several years of extensive ASAQ use as first-line treatment for uncomplicated malaria. This may
support sustained efficacy of ASAQ on Zanzibar, although it was unexpected considering that all these SNPs have
previously been associated with amodiaquine resistance. The underlying factors of these results are unclear. Genetic
dilution by imported P. falciparum parasites from mainland Tanzania, a de-selection by artesunate per se and/or an
associated fitness cost might represent contributing factors. More detailed studies on temporal trends of molecular
markers associated with amodiaquine resistance are required to improve the understanding of this observation.
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Background
Zanzibar has recently undergone a rapid decline in Plas-
modium falciparum transmission following combined
malaria control interventions with artemisinin-based
combination therapy (ACT) and integrated vector con-
trol [1,2]. In the new epidemiological context, where
in vivo trials to assess ACT efficacy have been increas-
ingly difficult to conduct due to limited number of
patients, surveillance of molecular markers associated
with anti-malarial drug resistance may be useful as an
early warning system of development and spread of
ACT resistance.
Artesunate (AS) plus amodiaquine (AQ) combination

therapy (ASAQ) was implemented as first-line treatment
for uncomplicated P. falciparum malaria free of charge
to all age groups through public health care facilities in
Zanzibar in September 2003. AQ and its slowly elimi-
nated active metabolite desethylamodiaquine (DEAQ)
are 4-aminoquinolines and structurally related to chloro-
quine (CQ). Despite the similarities and putative cross-
resistance in between the compounds, AQ/DEAQ has
remained more efficacious [3,4].
Resistance to CQ, AQ and DEAQ has been associated

with the single nucleotide polymorphism (SNP) alleles
76T in the P. falciparum CQ resistance transporter
(pfcrt) gene and 86Y in the P. falciparum multi drug re-
sistance 1 (pfmdr1) gene [5-13]. Pfcrt 76T has been found
within different pfcrt 72–76 haplotypes. The strongest as-
sociation with AQ/DEAQ resistance has been found with
pfcrt SVMNT, mainly found in South America and parts
of Asia, while in Africa the dominating haplotype has
been pfcrt CVIET [14,15]. Further, the SNP allele pfmdr1
1246Y and the haplotype pfmdr1 (a.a. 86, 184, 1246) YYY
have been selected for among recurrent infections after
treatment with AQ monotherapy and ASAQ combin-
ation therapy in East Africa [10,16]. Selection and accu-
mulation of these SNPs in the parasite population over
time could potentially threaten ASAQ efficacy.
The aim of this study was to assess whether prolonged

use of ASAQ as first-line anti-malarial treatment selects
for P. falciparum SNPs associated with resistance to the
ACT partner drug AQ.

Methods
The prevalence of pfcrt 76T, pfmdr1 86Y, 184Y and
1246Y were compared in pre-treatment blood samples
collected on filter papers (3MMW, Whatman, UK). Sam-
ples were collected from individuals with uncomplicated
P. falciparum malaria, residing in North A (Unguja Is-
land) and Micheweni (Pemba Island) districts in Zanzi-
bar. Patients were enrolled in clinical trials conducted
just prior to the introduction of ASAQ in 2002–2003
(n = 208) [16,17] and seven years after wide scale use of
ASAQ in 2010 (n = 122) (Shakely et al. 2012, unpublished
data). Malaria diagnosis was confirmed by blood smear
microscopy and rapid malaria diagnostic (RDT),
respectively.
DNA extraction and genotyping of samples from

2002–2003 and 2010 was performed with similar methods
which have been described elsewhere [16,17]. In sum-
mary, DNA was extracted by ABI PRISM 6100 Nucleic
Acid PrepStationTM (Applied Biosystems, USA) and
genotyping analysis of pfcrt K76T, pfmdr1 N86Y, Y184F
and D1246Y were performed through previously de-
scribed PCR-RFLP methods [5,16,18]. All PCR reactions
contained 1 ×Taq polymerase reaction buffer, 2.5–3 mM
magnesium chloride, 0.2 mM dNTP, 0.5–1 μM of each
primer and 1.25 units of Taq DNA polymerase (Promega
Corporation, USA). RFLP reaction contained 1 ×NEBuf-
fer 1/3, 0–1 ×BSA and 10 U/reaction of ApoI, Tsp509 I
or EcoR V restriction enzymes. PCR-RFLP products were
visualized under UV transillumination (GelDoc 2000,
BioRad, HerculesW, CA, USA) after 2–2.5% agarose gel
electrophoresis and ethidium-bromide staining.
A mixed infection was considered to contain two P.

falciparum strains, contributing with one of each SNP
alleles during PCR-RFLP. In the haplotype analyses all
isolates including mixed SNP results at more than one
position were excluded. Allele and haplotype prevalences
between 2002–2003 and 2010 were compared by chi
square tests (SigmaPlotW 11.0, Systat Software Inc, USA).
Statistical significance was defined as p < 0.05.
The clinical trials were performed in accordance with

the Declaration of Helsinki [19] and Good Clinical Prac-
tice [20]. Informed written consent was obtained from
the parents/guardians of all enrolled participants. Ethical
approvals were obtained from the relevant ethical com-
mittees in Zanzibar at the time of the trials (ZHRC/GC/
2002, ZMRC/RA/2005 and ZAMEC/ST/0021/09) and
the Medical Ethics Committee at Karolinska Institutet
(KI Dnr 03–753, KI Dnr 2005/57-31) and the Regional
Ethics Committee in Stockholm, Sweden (2009/387-31).

Results
DNA was successfully extracted from 117/122 (96%) of
the blood samples from 2010.
The individual SNP prevalences before (2002–2003)

and seven years after (2010) ASAQ implementation in
Zanzibar are shown in Figure 1. There was a statistically
significant decrease in the prevalence of pfcrt 76T from
195/203 (96%) to 76/121 (63%) (p < 0.001), pfmdr1 86Y
from 170/227 (75%) to 64/124 (52%) (p < 0.001), 184Y
from 197/237 (83%) to 89/123 (72%) (p = 0.024) and
1246Y from 72/259 (28%) to 18/113 (16%) (p = 0.020).
The haplotype (pfcrt K76T/pfmdr1 N86Y, Y184F,

D1246Y) prevalence before and seven years after ASAQ
implementation are shown in Figure 2. The most com-
mon haplotypes before implementation were TYYD and



Figure 1 SNP frequencies in Zanzibar before (2002–2003) and seven years after (2010) ASAQ implementation. Asterisk (*) and (**)
indicate statistically significant differences of p < 0.05 and p< 0.001, respectively.
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TYYY. Their respective prevalence decreased from 123/
267 (46%) to 33/129 (26%) (p < 0.001) and 46/267 (17%)
to 10/129 (8%) (p = 0.017). On the other hand, KNFD
and KNYD increased over the time period from 1/267
(0.4%) to 18/129 (14%) (p < 0.001) and 3/267 (1%) to 16/
129 (12%) (p < 0.001).

Discussion
This is the first observation of a decreased prevalence of
pfcrt 76T, pfmdr1 86Y, 184Y and 1246Y in an African
setting after several years of extensive ASAQ use as
first-line treatment for uncomplicated malaria. This may
support sustained efficacy of ASAQ on Zanzibar, al-
though it was unexpected considering that all these
SNPs have previously been associated with AQ/DEAQ
resistance.
The underlying factors of these results are unclear.

Genetic dilution by imported P. falciparum parasites
from for example mainland Tanzania could represent a
contributing factor. Even though Zanzibar is a part of
Tanzania, they are independent in some issues e.g. the
Figure 2 Haplotype (pfcrt K76T, pfmdr1 N86Y, Y184F and D1246Y) fre
(2010) ASAQ implementation. Asterisk (*) and (**) indicate statistically sig
malaria control programme. Mainland Tanzania imple-
mented artemether-lumefantrine (CoartemW) as first-line
treatment in 2006 when this ACT was widely manufac-
tured, price had reduced and studies were shown it was
safe to give children below ten kg. Artemether-lumefan-
trine, has shown to select for the opposite alleles i.e.
pfcrt 76K, pfmdr1 86N, 184F and 1246D [21-24].
Another contributing factor may be that AS per se po-

tentially selects for pfcrt 76K, pfmdr1 86N and 1246D,
which have been associated with decreased susceptibility
to the artemisinins in vitro [25,26]. Importantly however,
no such selection has been shown after monotherapy
with artemisinin derivatives in vivo.
A third contributing factor may be that SNPs asso-

ciated with AQ resistance cause a fitness cost to the
parasite, which would affect the selection pattern under
different drug pressures. In competition experiments be-
tween modified isogenic clones, only differing in the
pfmdr1 1246 position, pfmdr1 1246Y was found to be
associated with a substantial fitness cost to the parasite
(Fröberg et al. 2012, unpublished data). This could also
quencies in Zanzibar before (2002–2003) and seven years after
nificant differences of p < 0.05 and p< 0.001, respectively.
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apply on the other SNPs and also explain the haplotype
results in this study. Before ASAQ implementation the
most common haplotype was TYYD, indicating that the
previous first-line treatment i.e. CQ mainly selected for
pfcrt 76T, pfmdr1 86Y and 184Y. The second most com-
mon haplotype was TYYY, where pfmdr1 1246Y has
mainly been associated with AQ/DEAQ resistance.
Seven years later a significant selection of KNFD and
KNYD was observed. Hence, the individual SNPs pfcrt
76T, pfmdr1 86Y and 1246Y rarely exist alone, suggest-
ing that they may be associated with a significant fitness
cost and support each other in a possibly synergistic
and/or compensatory relationship, whereas pfmdr1 184Y
do exist alone and might not largely affect fitness.
Finally, even though these SNPs have been selected for

after AQ/ASAQ treatment, the association with AQ/
DEAQ resistance may not be that strong that it will
spread with prolonged wide-scale use of ASAQ.
Conclusions
Seven years after wide scale use of ASAQ as first-line
treatment in Zanzibar, SNPs associated with AQ/DEAQ
resistance have not been selected for. Instead, the preva-
lence of these SNPs has decreased, which may support
sustained efficacy of this ACT as first-line treatment in
Zanzibar. However, the results were unexpected, which
calls for more detailed studies of temporal trends of mo-
lecular markers associated with AQ/DEAQ resistance
both among symptomatic and asymptomatic P. falcip-
arum infections to improve the understanding of this
observation.
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