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Abstract

Background: The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles
populations are well established. Models of the impact of climate change on the global malaria burden now have
access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model
calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address
these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests
response functions to fluctuations in land surface temperature and precipitation.

Methods: This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended
Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles
vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with
estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are
freely available through the Eclipse Foundation’s Spatiotemporal Epidemiological Modeller (STEM).

Results: Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a
positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root
mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed
measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to
increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in
predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a
potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with
monthly time sampling.

Conclusions: The high spatial resolution possible with state-of-the-art numerical models can identify regions most
likely to require intervention due to climate changes. Higher-resolution surveillance data can provide a better
understanding of how climate fluctuations affect malaria incidence and improve predictions. An open-source
modelling framework, such as STEM, can be a valuable tool for the scientific community and provide a collaborative
platform for developing such models.
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Background

Malaria remains a major health problem in much of the
tropics and subtropics. The World Health Organization
(WHO) estimates that there were 225 million cases of
malaria in 2009 and more than 780,000 deaths from the
infection in 2010 [1,2]. The malaria parasite is transmit-
ted from human to human primarily by the bite of the
Anopheles mosquito [3-5].

In 2006, Plasmodium falciparum accounted for 92% of
infections globally and for 98% in Africa, a continent
that had 91% of the global deaths that year [1]. Between
2001 and 2009, the global malaria burden increased by
over 34 million cases (~18%) [2]. According to the
Malaria Atlas project[6], global malaria incidence in 2007
was approximately 451 million cases (95% CI: 349,553)[6].
This estimate is 1.6-2.6 times higher than the total of ~200
million “suspected” cases reported by WHO for the same
year [2].

Control efforts begun in the 1940s “virtually eliminated”
malaria transmission in parts of the Americas, Europe,
and Asia, but “largely bypassed” the African tropics where
the intensity of transmission was much higher [7,8]. DDT-
resistance appeared in mosquito vector species, decreasing
its effectiveness in indoor residual spraying [8] and, in the
early 1970s, WHO abandoned malaria eradication as
“impracticable” [9]. The malaria parasite has also devel-
oped resistance to front-line drugs, notably to chloroquine
(its effectiveness compromised by extensive and widespread
use) and, more recently, to artemisinin (used in combin-
ation therapy as a replacement to chloroquine) [10,11].

The role of the Anopheles vector in malaria transmis-
sion has been appreciated since Ross [3], and multiple
studies [12-19] have established the effect of climate on
Anopheles populations. A number of groups have used
numerical simulation and modelling in an attempt to
prioritize and inform intervention and control efforts
[12-21]. The US Geological Survey (USGS) and others
have developed numeric models to inform public health
officials of non-endemic regions likely to experience an
increase in vector capacity based on climate change
[13-20]. Martens et al. [12] asked “if other things were
held constant in the world, what would be the impact
of climate change per se on the distribution of malaria?”
They applied two general circulation models (GCM), as-
suming a doubling of the atmosphere CO, levels by
2050 (the models were UKMO-GCM and ECHAMI1-A-
GCM). Their approach established a relationship be-
tween environmental factors (temperature and precipi-
tation) and the parasite’s reproductive number (Ry), and
led to the conclusion that malaria would potentially in-
crease globally and be re-introduced in countries such
as Australia, the USA, and Europe [12].

More recently, Ermert et al. [22] asked whether
“potential weather-driven changes” would affect malaria
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transmission. They carried out projections using a high-
resolution regional climate model (RCM) data set that
included greenhouse-gas and land-use and land-cover
(LUC) changes in a regional model (REMO). Their ap-
proach integrated bias-corrected temperature and pre-
cipitation data with the Liverpool Malaria Model at a
0.5° latitude-longitude grid. The higher spatial reso-
lution of the RCM allowed them to capture the
effects of local terrain on temperature and rainfall
and to account for future changes in land characteris-
tics (eg, diminished vegetation due to human activities).
They concluded that climate change will significantly
affect the geographic distribution of malaria in tropical
Africa “well before 2050” [22].

As Ermert et al. demonstrate [22], output from
“coarse global climate models” is inadequate for mod-
elling the future of malaria. Hay et al. agree [23], noting
that, while dependent on climate factors, “malaria does
not respond to approximated averages.” While satel-
lite climate data is available with high resolution, the
malaria surveillance data required to calibrate models is
often available only as a country-wide spatial average;
reporting is often based on monthly or even yearly
totals. Uncertainty in absolute reporting fraction and
absolute disease incidence makes model calibration
problematic. Even with long-term systematic changes to
the earth’s climate, predicting malaria risk for specific
locales and regions is difficult [23]. Malaria may spread
to newly emergent regions only when local conditions
are favourable, and recede in areas when conditions are
unfavourable to the malaria protozoa or the Anopheles
mosquito vector [12]. Moreover, climate variability
(short-term fluctuations around the mean climate state)
may be “epidemiologically more relevant” than long
term mean temperature change [24].

To evaluate how changing environmental factors affect
the malaria burden, this study uses a response function
as a measure of malaria sensitivity to fluctuations in cli-
mate. The measure is inspired by the thermodynamic
“susceptibility” as defined in physics, namely the re-
sponse of a substance, or material property, to an applied
field [25]. In this case, the focus is on the response of
malaria incidence to fluctuations in climate variables.
Given the demonstrated effect of vector capacity on the
effective reproductive number for malaria transmission,
the response function is computed based on fluctuations
in land surface temperature and land precipitation.
Evaluation of sensitivity to other dependent variables is
possible (and left to future work).

The approach is to explore and test measures based
on relative differences in reported malaria incidence;
measures that would not depend on absolute calibration.
While available public health data may be based only on
national averages or monthly reporting, numerical
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models can be evaluated and compared at varying levels
of spatiotemporal resolution. The statistical bootstrap
method [26] is used to measure the uncertainty in pre-
dicted means as a function of spatial resolution based on
surveillance data and modelling to learn how improving
resolution might affect uncertainty.

The current study makes no attempt to predict future
climate change. Rather, it simply asks, “given the historic
variation in global climate in the years 2001 to 2010,
how did malaria potential increase or decrease by local
geographic region in those years?” It then uses historic
WHO data, and model predictions, to measure the
“sensitivity” of malaria incidence to actual changes in
temperature and precipitation. In principle, this ap-
proach would allow researchers to evaluate the response
to any variable believed to influence vector capacity.

Many environmental factors [16-23] influence the
sporogonic cycle of Anopheles [4]. To take these factors
into account in estimating regional malaria transmission,
this study constructs a composite model of malaria
using an Anopheles vector capacity model as input to a
Macdonald Ross malaria model [3-5,20,21]. The under-
lying vector capacity model is based upon a function of
earth science data. The earth science data includes global
land elevation from the National Oceanic and Atmospheric
Administration (NOAA), land surface temperature at night
from the National Aeronautics and Space Administration
(NASA), and historic precipitation and Normalized
Difference Vegetation Index (NDVI) from NASA Earth
Observatory (NEO) [20,21,27-30].

All models and all denominator data used here are freely
available as open source through the Spatiotemporal
Epidemiological Modeller project (STEM) [31,32]. As
an Eclipse Foundation project, STEM supports community
collaboration [33], making a variety of disease and popula-
tion models, models for interventions, and tools for fitting
models to reference data available to any researcher
[34]. Source code, executable binaries, and reference
documentation are available under the Eclipse Public
License (EPL) [35]. In addition to the extended MacDonald
Ross Model, STEM has stochastic and deterministic
models for a wide variety of infectious, vector borne,
food-borne, and zoonotic diseases. All STEM models,
including those described here, may be freely used,
modified, extended, and distributed; details of the
current model are available on Eclipsepedia [36,37].
The response function analysis is independent of any
particular model and is also evaluated based exclu-
sively on surveillance data.

Methods

Simulations

Initializing a global malaria model is problematic as
quantitative data on disease state (population immunity,
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incidence, etc.) for the world’s human and mosquito
populations are unavailable [1,2,6]. In their place, this
study uses earth science data for the years 2001-2010 to
look for steady state solutions to the composite model in
each year independently. Ten global patch models were
built with the mosquito population computed by repeat-
ing each individual climate year for many years of simu-
lation time. In each model, 1% of the population was
initially infected in every region. With malaria “seeded”
everywhere, no transportation or mixing of infected indi-
viduals was allowed. STEM provides several models for
human transportation, but given the goal of studying the
effects of climate on malaria via changes in the vector
population, the decision was made not to add complex-
ity by including human or mosquito movement between
regions. As a result the model does not measure or pre-
dict malaria incidence based on travel to remote regions
The 10 simulations were repeated until steady state was
reached for each climate year. The simulation converged
fairly rapidly (~5 years), but was run for 30 simulated
years to guarantee convergence. Only the final 30™ year
of data were used for analysis.

Vector capacity model

The Anopheles population estimate produced by the
vector capacity model was used as input to the malaria
transmission model. The goal is to test a simple vector
population model able to capture relative changes in
mosquito population as a function of environmental
and climate factors, and to compare the models pre-
dictions to real surveillance data at varying resolution.
This approach has been pioneered by scientists from
several institutions [13-20]. The model is subject to
the assumption that the mosquito probability at time
t and location 7 follows a Poisson distribution, and
that the density depends on independent variables describ-
ing or defining the local environment at (t, 7). The loga-
rithm of the expected value for the (un-normalized)
probability can then be expressed as a linear combination
of the independent environmental variables [38-40].

P(t,7) ~kP(T,t,7) - P(R,t,7) - P(V,t,7) - P(E,7) (1)

Suppressing the space and time variables (¢, 77), P(7T)
represents the temperature dependence, P(R) represents
the rainfall dependence, P(V) represents the NDVI de-
pendence and P(E) the elevation dependence. If any
functions are zero, then the joint probability is also zero.
With the total risk expressed as a joint probability distri-
bution based on a product of environmental functions,
the expected mosquito probability can be normalized or
rescaled using a single population calibration constant k
based on malaria field surveys.
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Malaria transmission model
Malaria risk maps have been developed based on vector
capacity models alone. However, the effect of mosquito
biting rate on malaria transmission is known to be
highly non-linear [3], and human population susceptibil-
ity depends on historic transmission [3-5]. The
MacDonald-Ross model, extended by Aron and May,
was defined to capture the dynamics of malaria trans-
mission [3-5]. The malaria model is defined by a set of
differential equations describing the dynamics of the
disease in both the human and the Anopheles vector
[3-5,41]. The model captures the period of latency
from the time of the bloodmeal to the infectious stage.
For humans, this is defined as the time from initial in-
fection to the appearance of gametocytes in the blood;
for the Anopheles vector, it is the time from initial in-
fection to the appearance of sporozoites in the mos-
quito saliva glands (the period of the sporogonic cycle)
[41]. Once infectious, the Amnopheles mosquito is
assumed to remain so for the rest of its life, unlike
humans who can clear gametocytes from their blood-
stream over time and do not stay infectious indefin-
itely [42-49]. Once recovered from an infection, a
human has built up antibodies against the parasite.
These antibodies decay over time and after long periods
of no exposure result in lowered antibody titres within
individuals [42-49].

The differential equations describing the state of a
human population for a single region 7 are defined
as:

dSZt(t) - ‘”bN]\(ft(’g Vit )s(e7) +ar(e, 7)
de;t(t) - ﬂb%f’%)im 7 )s(t, 7 )-ee(t, )

difit( 2 ee(t, 7)-yi(t, 7)

dr;t(t) = yi(t, 7 )-ar(t, 7) (2a — d)

where (suppressing 77) s(t), e(t), i(t) and 1) are the relative
number of susceptible, exposed, infectious and recovered
humans, a is the biting rate on humans by a single mos-
quito (defined as the number of bites per unit of time), b is
the fraction of infectious bites on humans that produces an

infection, N (¢) is the total number of mosquitoes at time ¢
(from the Anopheles vector capacity model), N is the total

number of humans (assumed constant), i(¢) is the relative
number of infectious mosquitoes, « is the immunity loss
rate, 1/€ is the human latent period and y is the rate at

which humans recover from an infection. The ratio m = %

defines the number of mosquitoes per human host. In the
equations above, all regions 7 are treated independently.
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The corresponding set of differential equations for the
Anopheles mosquito population has fewer variables
(since mosquitoes never recover from an infection):

ds_(t

6’#( ) = —aci(t, 7)s(t, 7 ) + u' —us (t, 7))
de_ (t

;t( ) = aci(t, 7)3(t, 7)—@@7@)—/4?3(1; )
dﬁH t A —_

’;hf ) e ()it 7)

(3a—c¢)

where (suppressing 7 ) §(t), é(t) and i(¢) are the relative
number of susceptible, exposed and infectious mosqui-
toes, a is the biting rate (as in Equation 2), ¢ is the frac-
tion of bites by susceptible mosquitoes on infected
people that produces an infection, 1/¢ is the latent
period for the mosquito, #™* is the background mosquito
birth rate and u is the background mosquito death rate.
The values assigned to these parameters in the model
are shown in Table 1, together with estimated values
reported in the literature [34,41-47,50].

The sporogonic cycle of malaria (and the rate of
anopheles larval development) depend on temperature
[4]. This dependency is typically expressed in terms of
degree-days which is a measure of heating (the integral
of temperature over time). The latent period of the
vector is defined as [4]

DD

n:T*Tmin

(4)
where DD is the total degree days for the parasite devel-
opment (111 for P. falciparum), T is the mean
temperature in degrees centigrade and 7, is the
temperature at which parasite development ceases
(16 C for P. falciparum). This temperature dependent
function is used to determine the latent period in the
model (1/n).

Given two climate years a and b, the response functions,
at region 7 , to fluctuations in temperature, T[°C], and
precipitation, P[mm], are defined in Equation 5.

L(77) = 1(7)
T(7) - BN
op(7,a,b) = (7)) ~ (")

(%) PPN

GT(7,zz,b):

(5a—b)

I,(7) is the incidence in year ‘@’ and [,(7) is the inci-
dence in year ‘b, N (7) is the human population for re-
gion 7 Ta(7) is the average night-time temperature
in year ‘@’ for region 7  and Pa(7) is the average

monthly precipitation for region 7 in year ‘@’. Note that
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Table 1 Model parameters and values
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Parameter Values reported in the literature Low High Study value
Latent period (human) 154, 9-10™ 9 15 12

;_ [days]

Latent period (vector) 104, 11% 10 11 ¢e="/,(q. 4
1 [days]

Biting rate (bites by single mosquito in a day) 00000833 ¥ 833x107 05 8E-3%*

a [day™] 054

bites/person-day 0.25-200 *' 0 200 0-50*

ma [day ] 19.3-82°°

Immunity loss rate 0.023",00023", 000184" 000184 0023 0.0207

a [day™]

Infectious biting proportion (human) 1.0%4 1.0 1.0 1.0

b

Infectious biting proportion (vector) 1.0%4 10 10 10

C

Recovery rate 0.011%, 00035 0.0035 0011 0.00725

y [day™]

Mosquito Life Expectancy 141% 75% 58-102% 58 14.1 14

4 [days]

Anopheles Model calibration constant k n/a n/a n/a 200%

* These are not independent parameters. The calibration of biting rate a and the scaling factor k were chosen to ensure that the number of bites per person per
day never exceeded 50 in Thailand, thus obtaining the product a*k = 1.6, with a=8E-3 [day™'1.> * For these values the human population background immunity

was in steady state.

upper case ‘I’ denotes incidence in 5, not to be confused
with the fraction infectious defined by lower case ‘7’ in
Equations 2 and 3. The incidence is the number of new
cases per unit time whereas the fraction infectious is a
measure of prevalence (the total number of cases in the
population) [38]. The human incidence is the un-
normalized mass action term in Equation 2a, namely
I = —abN(t, ?)E(t, 7 )s(t, 77) . Now take all possible
combinations of climate years a and b (a # b). Given that
UT(7 ,a, b) = aT(7 ,b, a), sensitivity is calculated only
for pairs of climate years where a>b. Given a set C of
years for which climate and malaria incidence data are
available, Equation 6 provides a set of sensitivity mea-
surements as function of location for temperature and
rainfall:

Sr(77) ={or(7" ,a,b)Va € C,¥b € C,a > b}
Sp(7) ={0op(7" ,a,b)Va € C,¥b € C,a > b}
(6a —Db)

For the WHO official malaria estimates [1,2] which
included yearly incidence data for 2001-2009, the sets
defined in Equation 6 contain at most 36 values. The
simulation, sampling yearly (in analogy to the WHO)
provides 45 measurements, sampling countries by year.
Sampling monthly (the resolution of the climate data)

provides 540 independent measurements. Because there
are some gaps in the NASA earth science data, years
and locations with missing denominator data are
removed from both calculations. Estimates for the re-
sponse of malaria to changes in temperature, x, precipi-
tation, xp are derived by averaging over the set of
sensitivity measurements (Equation 6) for a region 7
(25].

(7)

Using the bootstrap to create a sensitivity map

Given the limited size of the data set, to gain insight into
how the resolution of available data affects the uncer-
tainty or error in the measurement, bootstrapping [26] is
used to estimate the width of the distributed mean. The
original set of sensitivity measurements (Srand Sp) was
randomly re-sampled (with replacement) 5,000 times,
and estimates of the bootstrap means and standard devi-
ation were calculated. With this data, it is possible to
create a sensitivity map representing the response of
malaria to changes in temperature, X1, and precipitation,
xp along with an estimate of the confidence of the
measurement.
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Many variables can influence transmission of malaria,
and it is certainly possible to measure sensitivity to fac-
tors other than precipitation and temperature. More
complex vector capacity models, and more complex
malaria transmission models, could be created to cap-
ture effects such as relative humidity, hours of daylight,
etc. [16-23]. Unlike a thermodynamic susceptibility, mal-
aria responds to fluctuations in several variables. The
sensitivity of malaria to any particular factor may vary
based on the local environment. In some regions, for ex-
ample, malaria may be more sensitive to fluctuations in
precipitation than in temperature. In other regions, the
opposite may be true. The response to variation in any
particular factor could be positive, negative, or zero [24].
This study focuses on these two variable based on their
known role in sporogonic cycle of Anopheles [4]. An analo-
gous sensitivity measure can be defined with respect to
other climate variables and even to important human activ-
ities believed to create breeding sites for larvae (harvesting,
watering livestock, etc.) [22-24]. Introducing additional
variables necessarily adds modelling complexity, but this
can be justified when supported by new denominator data.

Results

Comparing the simulation with WHO estimates

To measure the sensitivity of malaria to fluctuations in
temperature, y,(7 ), and in precipitation, y,( 7" ), the
study used results of the simulation with both official
malaria estimates from WHO [1,2] and predictions by
the composite malaria/vector numerical model. The
WHO data was reported by country. The simulation was
conducted at the province or county (ISO 3166-2) reso-
lution for most of the globe and one additional year of
climate data (2010) was used. The WHO report fre-
quency was annual. Simulations were run with a daily
time interval. Data is shown only for countries where
WHO reported data and where malaria incidence was
non-zero. In the WHO report, some incidence in low-
risk countries may be imported (eg, from travellers) and
not from native malaria. As expected, the malaria inci-
dence determined by the extended MacDonald-Ross
model is not simply proportional to the mosquito popu-
lation or to the number of mosquitoes/human host, m.
Annual malaria incidence by region is highly non-linear
in m and exhibits orders of magnitude region-to-region
variation in incidence for the same average m.

Figure 1 shows the malaria sensitivity (Equation 7) to
temperature (1a) and precipitation (1c) based on WHO
Malaria Estimates from 2001-2009 [1,2], and corre-
sponding maps (1b, 1d) based on the MacDonald Ross/
Anopheles model. Red regions indicate an increase in
malaria potential in response to increasing temperature
or precipitation while blue regions show a decreased
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potential in response to increasing temperature or pre-
cipitation. White represents regions with no reporting
and/or no malaria. The height of the county polygons
provides a view of the signal-to-noise ratio determined
by bootstrapping. The simulation has higher spatial reso-
lution than WHO reports by country. In Figure 1b, d,
the model data was averaged spatially (weighted by local
population) and temporally to match the sampling used
in the WHO report. To obtain a country level estimate
from the simulation, earth science data was averaged
weighted by area of the administrative subdivisions. The
model results at full resolution are shown in Figure 2.
The colours in the figure represent the mean sensitivity
to temperature or precipitation and the elevation of the
polygons indicate the signal-to-noise ratio (SNR) defined
by the ratio of the mean to the standard deviation
derived from the bootstrap. Signal-to-noise can be high,
even for regions with low sensitivity to some environ-
mental factor. The average noise level for the WHO
derived maps was 5.9x higher for sensitivity to precipita-
tion and 1.6x higher for sensitivity to temperature than
the corresponding data from the simulation.

The scale of response is consistent for both the model
and WHO malaria estimates. For the national data in
Figure 1, the maximum temperature sensitivity (colour sat-
uration) is 10%/°C and precipitation sensitivity 0.4%/mm.

Comparing results at higher spatial resolution

The data in Figure 2 shows how the response to differ-
ent climate factors varied in the model at higher spatial
resolution. Here the bootstrap was conducted using
monthly sampling over 10 years (instead of yearly as
done in Figure 1) increasing the number of sensitivity
measurements to 540 in Equation 7. The average noise
level for the low resolution WHO-derived maps (Figure 1)
was 20x higher for sensitivity to precipitation and
18x higher for sensitivity to temperature than the
corresponding high-resolution data in Figure 2.

The high-resolution data demonstrates another chal-
lenge if reporting is available only at the national level.
In some countries (Figure 1), the malaria response pre-
dicted by simulation is anti-correlated with the response
computed from the WHO data. For example, when mea-
surements are made at the national level only, for China,
both temperature and precipitation responses are anti-
correlated. The same is true for the precipitation re-
sponse in Brazil (precipitation). This negative correlation
could be due to public health policies (not modelled in the
simulation) or due to large variations in climate between
sub-regions within a country. For example, in Figure 1,
both the WHO data and the model suggest Brazil
and India exhibit a positive (red) malaria response to
increasing temperature. However, Figure 2 shows this
response derives from specific provinces with other
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Figure 1 A. Malaria sensitivity to increasing temperature from WHO data. B. Malaria sensitivity to increasing temperature from simulation.
C. Malaria sensitivity to increasing precipitation from WHO data. D. Malaria sensitivity to increasing precipitation from simulation.

regions anti-correlated to changes in the same climate
factors. Similarly, a nation with near zero sensitivity
measured on a national scale may have sub-regions
with strong positive and negative sensitivity.

The fact that malaria responds to different environ-
mental factors may be useful in understanding yearly
fluctuations. In some locations, temperature may be near
ideal for the P. falciparum/Anopheles life cycle, but
drought conditions could limit vector breeding habitat. The
observation of both positive and negative response is also
important. In extremely hot regions (eg, Saudi Arabia),
average temperatures may well exceed the optimal
range for Plasmodium development leading to a malaria
response that is anti-correlated with positive temperature
fluctuations.

The bootstrap analysis demonstrated how the signal-
to-noise ratio (SNR) of measured response to local cli-
mate variation improves when surveillance data (or
model results) are available at high spatial resolution.
Increasing the spatial resolution by decreasing the region
size from country level (admin 0) to county or province
level (admin 2) also affects the denominator in the sensi-
tivity analysis by smoothing fluctuations in precipitation
or temperature and possibly creating spurious results.
As discussed by Hay et al., malaria cases in a particular
country may be localized to sub-regions with unique
microclimates where regional climate fluctuations may
not be represented when averaging climate for the country
as a whole [13].

The data in Figure 2 highlights where malaria is most
sensitive to changes in temperature or precipitation. It is

useful to compare this data with other spatial informa-
tion on malaria risk published by WHO, the Pan American
Health Organization (PAHO), the Centers for Disease
Control (CDC), and other organizations [51-54].

For example, on the PAHO maps and in the WHO re-
port, regions in Mexico with elevated malaria risk are
located along the coast and in the Yucatan Peninsula.
This is consistent with the results of the high-resolution
simulation which shows little malaria and little climate
response in the centre of the country and greater sensi-
tivity to fluctuations in temperature and precipitation in
coastal regions in Yucatan. In Brazil, malaria risk is
greatest in low-lying forested regions within the nine
states of the Amazonia region. The temperature re-
sponse measured in the model (2a) does not reproduce
this localization of risk, but the precipitation response
(2b) does indicate a greater sensitivity in regions of the
Amazonian Basin. In agreement with PAHO, the model
predicts malaria risk for Bolivia, Paraguay, and Argentina
is largest in a band between Bolivia and Paraguay, extend-
ing south into Argentina in regions bordering Jujuy and
Salta provinces (Bolivia) and Corrientes and Misiones pro-
vinces (Paraguay). Figure 2 suggests malaria in this zone is
most sensitive to fluctuation in precipitation. The model
correctly indicates no climate sensitivity (and no malaria)
outside the endemic regions of Bolivia and Paraguay. In
Argentina, the model predicts climate sensitivity further to
the south where malaria has been eliminated (eradication
efforts are not included in the model).

In Africa, both the simulation and the WHO data indi-
cate a large response function in regions along the inter-
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Figure 2 A. High resolution regional sensitivity of malaria in response to fluctuations in temperature. B. High resolution regional

sensitivity of malaria in response to fluctuations in precipitation.
-

tropical convergence zone (ITCZ) in western sub-Saharan
Africa. Indeed the largest variations in malaria incidence
are correlated with variations in climate factors in this
zone [55]. Thomson demonstrated a correlation between
the increase in meso-endemic malaria incidence with
the onset and rate of advance of the Southern El Nifio
Oscillation and Northern Annular Mode (NAM), and
the decrease associated with the North Atlantic Oscillation
(NAO) [56].

The high-resolution data in Figure 2b shows a systematic
sensitivity to precipitation all along the ITCZ. Interestingly,
close inspection of Figure 2a shows the malaria response to
be anti-correlated with increasing temperature in the hottest

northern-most ITCZ provinces (just south of the Sahara).
This effect is expected when median temperatures
exceed the optimal temperature for Anopholes larval
development in the early part of the wet season.

Comparing malaria fluctuations in the normalized data
sets

Measurement of malaria response to fluctuations in cli-
mate factors does not depend upon absolute calibration
of either the model or public health reporting. To test
the idea that one can gain useful insights from studying
fluctuations in malaria burden, it is interesting to com-
pare the yearly fluctuations in malaria reports with the
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variation in yearly incidence predicted by the model.
The World Malaria Report 2010 provides estimates of
“suspected” malaria cases by region and time as reported
by 106 malaria-endemic countries and other sources [1].
Figure 3 shows the suspected malaria incidence reported
by WHO along with the rescaled malaria incidence pre-
dicted by the composite model. This figure shows the
results of the simulation for the years 2001-2010. At the
time of the numerical studies, WHO malaria data was
not available for 2010 [1]; this last point has now been
published by WHO and that data (open circle) added to
the graph in Figure 3. Figure 3 illustrates the value of
comparing fluctuations in malaria by normalizing data
sets from public health reports and from numerical
models.

WHO estimates the malaria burden for 108 reporting
countries. This study compares the normalized incidence
for 86 countries where necessary denominator data is
available with at least the admin 2 spatial resolution
required for modelling. Figure 4 shows the nine-year
time averaged root mean square (RMS) error by country
sorted from least to greatest. The average error across
countries is 26%. Also indicated in the plot (shaded bars)
are those countries where, according to WHO, malaria

has been “eliminated,” or is in a “pre-elimination” phase,
or where “no data” on control efforts is available. The
largest RMS error is expected in these regions, as the
composite model does not capture vector control or
other interventions [25,57].

Comparisons of only the fraction of years in which the
model and WHO data agree that malaria in a country is
either above or below average for each country show
that the model and WHO data are “in phase” about 78%
of the time. The average correlation function is positive
for 65 out of 86 countries or 76% of countries studied.
For those countries where the model results are posi-
tively correlated with the WHO estimates, the average
incidence is 2.86x10° cases, 2.72 times higher than the
average incidence in countries with negative correlation
(1.04x10° cases). The average population of positively
correlated countries was 65x10° people, 2.02 times
higher than the average population in countries with
negative correlation. The higher the rate of malaria, the
more likely the model is to correlate with the WHO esti-
mated burden on the country level.

The predictive ability of the model was tested using
the sensitivity estimates derived from the original 2001—
2009 bootstrap analysis to see how well the model
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predicts changes in malaria at the country level for the
year 2010. The product of the sensitivity to precipitation
and the difference between the country average monthly
precipitation and 2010 average monthly precipitation
provides a predicted response of malaria to precipitation
alone. Adding to this the product of the sensitivity to
temperature and the difference between the country
average temperature and the 2010 average temperature
provides an estimate (Equation 8) of whether the 2010
malaria burden should be above or below average based
on only two climate factors.

SI(7 ) yor0 ® X7 (T )OT (7 ) + xp( 7 )SP(7")

where
1 2009
ST(7) =< T(7,2010) > ( Y <T1(7 1) >)
9,2
t=2001
and
2009
SP(7) =< P(77,2010) > — | > <P(7,t) >
9t:2001

(8)

The results were then compared to the recently pub-
lished WHO malaria estimates for 2010. For the ten
countries in which WHO reports the greatest fotal inci-
dence in 2010, the sensitivity analysis correctly predicted
whether malaria would be above or below average in
seven of ten countries. Of the ten countries where 2010
incidence was largest relative to the country average, the
sensitivity analysis correctly predicted that malaria
would be above average in eight of ten countries. For the
ten countries showing the largest year to year increase in
malaria (2009-2010), the analysis correctly predicted in-
creasing malaria burden in seven of ten cases. Predictive

accuracy of 70-80% supports the hypothesis that precipi-
tation and temperature are major factors driving yearly
variation in malaria incidence, but they are not the only
factors. In the future, Equation 8 and the sensitivity ana-
lysis can be extended to include malaria response to
fluctuations in other important variables.

Conclusions

This paper reports the use of an open source tool,
the Spatiotemporal Epidemiological Modeller, to cre-
ate a global malaria model built on top of a global
model of the Anopheles vector. Results of the simula-
tion are compared with national malaria estimates
from WHO and the Malaria Atlas project. Calibration
of absolute incidence is problematic as official esti-
mates of malaria burden are available only at the na-
tional level whereas accurate modelling requires data
at higher spatial resolution.

To overcome this difficulty, this study explores new
measures of malaria response to fluctuations in key cli-
mate variables. The measures can be applied to both
simulation and surveillance data at different spatial and
temporal resolutions to identify those locations where
malaria is most sensitive to variation in temperature,
precipitation, or other climate variables. In the future it
is certainly desirable to measure sensitivity to other vari-
ables known to influence malaria transmission including
relative humidity, hours of daylight, vector control
efforts, etc.[16-23]. In some regions these other factors
may even dominate local changes in malaria burden.
Malaria response requires coordinated global policies.
The high spatial resolution possible with state-of-the-art
numerical models can inform public health and identify
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those regions most likely to require intervention in a
given year based on variations in weather and climate.

Bootstrapping analysis finds a potential 20x improve-
ment in accuracy if data were available at the level ISO
3166—2 national subdivision and with monthly time
sampling. When limited to data at the national level,
knowledge of country average sensitivity of malaria to
changes in precipitation and temperature allows one to
predict whether malaria burden will increase or decrease
(given accurate climate data) with approximately 70-75%
confidence. The sensitivity analysis should become more
accurate by including the response to other important
factors (eg, relative humidity), known country level
intervention efforts, and by increasing the spatial reso-
lution of malaria surveillance allowing measurement of
sensitivity to climate on smaller spatial scales.

Surveillance data with this resolution would also sup-
port more accurate calibration of predictive models of
malaria burden. In such endeavours, the availability of
an open-source modelling framework, such as STEM,
would allow diverse communities of scientists to build
on the tools and data it provides, incrementally re-using,
refining, and extending its capabilities. The model itself
can be improved over time as the historic climate and
historic malaria data sets improve. New denominator
data can be added reflecting actual malaria interventions
and mosquito vector control efforts by country.
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