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Abstract

Background: Models of Plasmodium falciparum malaria epidemiology that provide realistic quantitative predictions
of likely epidemiological outcomes of existing vector control strategies have the potential to assist in planning
for the control and elimination of malaria. This work investigates the applicability of mathematical modelling of
malaria transmission dynamics in Rachuonyo South, a district with low, unstable transmission in the highlands
of western Kenya.

Methods: Individual-based stochastic simulation models of malaria in humans and a deterministic model of
malaria in mosquitoes as part of the OpenMalaria platform were parameterized to create a scenario for the study
area based on data from ongoing field studies and available literature. The scenario was simulated for a period
of two years with a population of 10,000 individuals and validated against malaria survey data from Rachuonyo
South. Simulations were repeated with multiple random seeds and an ensemble of 14 model variants to
address stochasticity and model uncertainty. A one-dimensional sensitivity analysis was conducted to address
parameter uncertainty.

Results: The scenario was able to reproduce the seasonal pattern of the entomological inoculation rate (EIR)
and patent infections observed in an all-age cohort of individuals sampled monthly for one year. Using an EIR
estimated from serology to parameterize the scenario resulted in a closer fit to parasite prevalence than an
EIR estimated using entomological methods. The scenario parameterization was most sensitive to changes in
the timing and effectiveness of indoor residual spraying (IRS) and the method used to detect P. falciparum in
humans. It was less sensitive than expected to changes in vector biting behaviour and climatic patterns.

Conclusions: The OpenMalaria model of P. falciparum transmission can be used to simulate the impact of different
combinations of current and potential control interventions to help plan malaria control in this low transmission
setting. In this setting and for these scenarios, results were highly sensitive to transmission, vector exophagy,
exophily and susceptibility to IRS, and the detection method used for surveillance. The level of accuracy of the
results will thus depend upon the precision of estimates for each. New methods for analysing and evaluating
uncertainty in simulation results will enhance the usefulness of simulations for malaria control decision-making.
Improved measurement tools and increased primary data collection will enhance model parameterization and
epidemiological monitoring. Further research is needed on the relationship between malaria indices to identify
the best way to quantify transmission in low transmission settings. Measuring EIR through mosquito collection
may not be the optimal way to estimate transmission intensity in areas with low, unstable transmission.
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Background
Rationale for work
In order to make informed decisions for malaria control,
programme managers require information on the opti-
mal mix of intervention strategies tailored to specific
transmission patterns of malaria [1-3]. This information
is often unavailable due to the difficulty in measuring
rates of malaria transmission and determining the
impact of control interventions on transmission. While
the efficacy of individual malaria control interventions in
reducing morbidity and mortality in western Kenya
has been demonstrated by field trials [4,5], there have
been fewer studies investigating the effects across a
range of transmission intensities or for combinations of
interventions [6,7].
Since 2008, a number of epidemiological and entomo-

logical studies have been carried out in Rachuonyo
South, Kenya, as part of the Malaria Transmission Con-
sortium (MTC). The availability of data from these and
other studies presents an opportunity for site-specific
parameterization of models of malaria transmission. The
results of these model simulations can be translated into
evidence-based decision making for malaria control
programme managers. This project applies individual-
based stochastic models of malaria to MTC sites with
transmission data to simulate the impact of a range of
malaria control strategies.

Study area
Rachuonyo South district is situated in Nyanza province,
bordering Lake Victoria in western Kenya (Figure 1) and
encompasses an area of 930km2. The main MTC study
Figure 1 Map of the study area. Map of a) Location and elevation of the
Province in relation to Kenya.
site is located in the south west of the district and repre-
sents a highland “fringe” area (1,400-1,600 meters above
sea level). Ethnicity in Rachuonyo South is predomin-
antly the Luo ethnic group. Residents depend upon
farming and cattle and goat herding for subsistence.
Homesteads are distributed broadly across a rolling
landscape intersected with small streams and rivers.
Total annual rainfall in this area averages 1,200 mm per
year (Figure 2) while average daily temperatures range
from 17-27°C. The area is characterized by generally
low malaria endemicity with marked seasonal and inter-
annual variations in transmission [8,9].
The main malaria vectors in the highlands were previ-

ously recorded to be Anopheles gambiae sensu stricto,
Anopheles arabiensis and Anopheles funestus [10,11].
In recent years, there is evidence that An. gambiae
s.s. is disappearing from lowlands Nyanza leaving An.
arabiensis as the predominant species within the An.
gambiae sensu lato complex [12] and An. funestus as
the primary Plasmodium falciparum vector (Stevenson,
personal communication). These changes are most
likely due to intensive targeting of malaria control inter-
ventions, but climatic factors may also have played a
role [12-14].
In western Kenya indoor residual spraying (IRS) cam-

paigns were carried out in the Kericho district in
the 1940s and Nandi district in the 1950s (using dichlor-
odiphenyltrichloroethane (DDT) and dieldrin, respect-
ively). It is thought that malaria transmission was
largely eliminated from large portions of the highlands
as a result [15,16]. While epidemics re-emerged in the
1980s [17,18], it was not until after the year 2000 that
study area in Rachuonyo South district; and b) Location of Nyanza



Figure 2 Seasonal patterns of rainfall, estimated EIR, and
timing of IRS interventions. The rainfall pattern (solid blue line)
collected by the weather station at Kogalo Primary School, Kowuor
Location, Rachuonyo South that informed the estimated seasonal
pattern of the EIR (dashed red line) in Rachuonyo South district over
the period June 2009 – June 2010. The black-capped bars indicate
the timing of the 2009 – 2010 deployment of IRS in Rachuonyo
South district.
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routine, large-scale vector control interventions were
introduced in these areas.
The main control methods used today in the epidemic

highland areas include mass-distribution of long-lasting
insecticide-treated nets (LLINs), IRS with pyrethroids,
and prompt and effective treatment of malaria [19-21].
Artemisinin-based combination therapy (ACT), specific-
ally artemether-lumefantrine (AL) was adopted as the
first line treatment drug in 2006 following a decline in
efficacy of sulphadoxine-pyrimethamine (SP) and amo-
diaquine, the previous first and second line treatments,
respectively [19]. In 2006 and 2011 Rachuonyo South
was included within the Kenyan national mass distribu-
tion LLIN campaign and distribution continues through
antenatal clinics, child welfare clinics, and comprehen-
sive care clinics for people living with HIV. Since
2005 Rachuonyo South has been targeted for universal
coverage of IRS once per year in advance of the main
transmission season. Different formulations of pyreth-
roid insecticide have been used over the years with
lambdacyhalothrin (ICON) used in 2009, alphacyper-
methrin (FENDONA) used in 2010, ICON again in
2011, and 2012 started with ICON and then switched
to deltamethrin.

Methods
OpenMalaria transmission model
A team at the Swiss Tropical and Public Health Institute
(Swiss TPH) and Liverpool School of Tropical Medicine
(LSTM) has developed stochastic simulation models of
transmission of malaria based on the simulation of
infection in individuals that are able to simulate the
impact (cost-effectiveness, clinical, epidemiological and
entomological) of numerous intervention strategies for
malaria control [22-26]. These models form part of the
OpenMalaria platform that makes the considerable code
base written in C++ freely available online [27]. Users
are able to carry out predictive simulations either via a
downloadable stand-alone programme or via a volunteer
grid computing resource and semi-automated experi-
ment design and analysis platform capable of handling
entire experiments of 10,000-100,000 scenarios.
Individual infections are simulated by stochastic series

of parasite densities, which determine an individual’s
morbidity and mortality risks as well as their infectious-
ness to vectors [22,27]. The simulated infections are
nested within simulations of individuals in human popu-
lations, and linked to a model of transmission of malaria
between humans and mosquitoes and to models of inter-
ventions [22,23,27]. The transmission model is based
on a periodically-forced difference equation model for
malaria mosquitoes feeding on, infecting and getting
infected from a heterogeneous population of hosts [26].
These dynamics are calibrated by a seasonal pattern of
EIR for each mosquito species assuming that in the ab-
sence of interventions EIR seasonality is fixed across
years [26]. Simulations are run for one human life span
to induce an “equilibrium” level of immunity in the
population. Subsequent dynamics are used to predict
available malaria outcomes, such as patterns of infection
in humans or patterns of disease by age and season,
which can then be compared to field data.
The details of the methods to build and parameterize the

transmission model used in this project have been pub-
lished elsewhere [22-26] and therefore are not covered in
this paper. In this paper the model components described
above are employed to an ensemble of 14 model variants
for malaria in humans to address stochasticity and model
uncertainty [25]. Simulations were repeated with multiple
random seeds to address parameter uncertainty.

Model parameterization
The models included in the OpenMalaria platform
were initially parameterized from published data from
Namawala, Tanzania [22-28]; 61 data sets were used to
optimize certain parameters [22-26]. To update the
parameterization for the Rachuonyo South scenario, data
collected as part of the MTC project in the study area was
the first choice to use for the model parameters. A de-
scription of these studies and how they were used to
parameterize the model can be found in Additional file 1.

MTC field studies
A number of field studies were carried out in Kisii and
Rachuonyo South districts between 2009 and 2011 with
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the goal of establishing an evidence base to help malaria
control programme managers monitor malaria transmis-
sion and implement and adjust malaria control interven-
tions. Data from these studies are currently being
analysed and will be described in detail in forthcoming
publications. For the purposes of the modelling work
described in this paper, the datasets used are described
in Table 1.
Where data were not available from MTC surveys,

parameter inputs were identified via a literature review
of publications using the PubMed electronic database
using the key words “Kenya, Nyanza, Rachuonyo, west-
ern Kenya, malaria, Plasmodium falciparum, transmis-
sion, antimalarials, artemether- lumfantrine, insecticide
residual spraying, insecticide-treated nets, larviciding,
intermittent preventive treatment, modelling, malaria
incidence, treatment seeking, mosquito resting duration,
extrinsic incubation period, Anopheles.” An internet re-
view was also conducted on the websites for the Kenyan
Ministry of Health, Division of Malaria Control, the
National Bureaus of Statistics, and the National Demo-
graphic Health Surveys. The sources were prioritized in
the following strata in order of precedence: study area
districts MTC data collection, study area districts exist-
ing literature, study area provincial data, national level
data, existing model parameterization. Where more than
one data source was found within any one stratum the
study with the closest site characteristics or, where
applicable, date of data collection closest to that of the
MTC studies was used.
To determine the annual average EIR, the transmission

parameter in the model, seroconversion rates using the
MSP-1 antigen were estimated from the July 2009 cross-
sectional survey as described in Drakeley et al. 2005
[29] and derived EIR equivalents were calculated as
described in Corran et al. 2007 [30]. The average
monthly EIR values used to calibrate the seasonal pattern
Table 1 Use of datasets from MTC Field Studies

Study Timeframe Study p

Community-based cohort May 2009 – June 2010 3235 peo

Community-based cross sectional February 2009 2607 ind

Community-based cross sectional July 2009 3587 ind

4 x 4 Latin square entomological 2009 - 2010 8 househ

Pyrethrum spray catch entomological September 2009 - present 200 hou

Weather station Continuous Kogalo P
Rachuon
of transmission in the scenario were calculated by separ-
ating the annual average EIR from existing literature for
a neighboring district into the monthly proportion of
rainfall in Rachuonyo South recorded by the Kogalo wea-
ther station so that the peak malaria transmission month
corresponded to one month later than the peak rainfall
month (Figure 2). Because the annual average EIR is
based on serology, the model incorporates the overall
temperature and humidity effects but excludes the sea-
sonality of these effects.
In practice, many of the entomological and health

system parameters were based on data from elsewhere
used in other modelling exercises [26-32] as they are
thought to be fairly standard across anopheline species
and anti-malarials. However, because several entomo-
logical parameters are sensitive to temperature, particu-
larly the extrinsic incubation period (EIP) and mosquito
resting duration [33,34], these values were adjusted for
each study area based on the average annual temperature
collected by the Kogalo weather station. Also, the latest
data from the study site challenges the assumption that
vectors are normally predominantly endophilic and endo-
phagic [35]. For the purposes of this experiment, emphasis
was placed on overall vector biting behaviour rather than
simulating individual species. This was due to the design
of the entomological field studies for which results were
available at the time of model parameterization that
focused on indoor/outdoor species composition and trap
evaluation rather than the biting behaviour within individ-
ual species. The efficacy of LLINs and IRS were adjusted
to affect the indoor mosquitoes but not the outdoor mos-
quitoes and the proportion of bites on a human compared
to other mammals was reduced for the outdoor mosquitoes.
The monitoring measures serving as the outputs simu-

lated by the model were chosen based on the indicators
of malaria transmission measured by the field studies
described above.
opulation Type and purpose of data used

ple of all ages above 6 months Monthly malaria prevalence for
model validation Coverage levels
of LLINs and IRS for model simulation

ividuals Coverage levels of LLINs and IRS for
district-level sensitivity analysis

ividuals

olds Vector species distribution for
transmission model

seholds Indoor vs. outdoor vector biting
behaviour in areas with or without
indoor residual spraying and/or
insecticide treated nets

rimary School, Kowuor Location,
yo South

Seasonality of rainfall and temperature
to adjust entomological parameters



Table 2 Malaria transmission parameter values*

Month Average EIR Month Average EIR

January 0.003 July 0.079

February 0.129 August 0

March 0.261 September 0.152

April 0.173 October 0.117

May 0.123 November 0.104

June 0.125 December 0.236

Annual average EIR 1.5**

*All values based on Shililu 1998 [36], Ndenga 2006 [10] and data from the
Kogalo weather station unless otherwise noted.
**Annual average EIR based on seroconversion rates as described in Drakeley
et al. 2005 [29] of samples from a cross sectional survey of 3,587 individuals of all
ages conducted in the study area in June 2009. EIR equivalents were derived as
described in Corran et al. 2007 [30].
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Simulation
Before the main simulation, the scenario was run for
one human life span to ensure each simulated individual
acquired the expected natural immunity for his or her
age. The fitting of the dynamic EIR in the transmission
model to the pre-intervention calibration EIR was done
during the last five years of the life span simulation.
A subpopulation was considered as a cohort and received
mass drug administration (MDA) at the beginning of
the main simulation, to “mimic” the MTC cohort study
conditions, where participants were given a course of the
first-line malaria treatment upon enrollment into the
study to clear any existing malaria parasites. Finally,
the effect of interventions on epidemiological outcomes
of malaria in the full population of the study area was
simulated for two years.

Validation and sensitivity analysis
The project addresses uncertainty on three levels:
stochasticity, model uncertainty, and parameter uncer-
tainty. Each simulation was repeated by the OpenMalaria
simulator on an ensemble of 14 model variants using ten
random seeds in order to address model uncertainty and
stochasticity. Results in the form of graphs from the
ensemble of model variants were visually analysed and
compared to observed data from the study areas using
Stata (version 11; College Station, TX, USA). Further
analysis of the scenario simulation and observed data for
the selected impact measures was conducted using Stata.
The proportion of simulation results falling within the
95% confidence intervals of the observed cohort data
was measured in order to assess goodness of fit.
A sensitivity analysis to address parameter uncertainty

was driven by results of the visual comparison of sto-
chasticity. Elements of the model central to the epidemi-
ology and control of malaria in this particular study area
were identified based on whether there was uncertainty
about parameter estimates and their potential impact on
the composition and behaviour of vectors, effectiveness
of interventions, and population-level monitoring. These
included effectiveness of IRS, indoor versus outdoor
biting behaviour of the vectors, the detection limit of
the survey method used for malaria in humans, annual
average EIR, and climate and weather patterns affect-
ing vector biology and parasite development in the vec-
tor. Parameters were altered one at a time and results
analysed by comparing the simulated number of cases
per person per year for each scenario to those of the
baseline parameterization.

Results
Model design and baseline scenario parameterization
The following parameter estimates are based on cur-
rently unpublished data from the MTC studies described
above in Table 1. The key entomological feature of
the scenario involves one primary malaria vector that
bites and rests outdoors 62% of the time. At the time of
enrollment into the cohort, 30.3% of the cohort popula-
tion slept under a net the previous night and 69.3% of
survey households received IRS. The IRS deployment
schedule happened yearly over a period of two months
as described above in the Background section. The
annual mean temperature in Rachuonyo South from
2009 to 2010 was recorded as 20.3 degrees Celsius, set-
ting the estimate of the extrinsic incubation period of
An. gambiae at 14 days and the resting duration 3 days.
Malaria transmission is highly variable following two
distinct rainy seasons. The EIR is unstable with a last
recorded value from an entomological survey of 0.4
infectious bites per person per year [10]. This study
was conducted in neighboring Kisii district before LLIN
and IRS scale-up in 2006. More recent results from the
July 2009 MTC cross sectional study estimate an EIR of
1.5 infectious bites per person per year based on sero-
logical data (Table 2).
For OpenMalaria to simulate dynamics of the study

population, code was included in the scenario to select a
cohort representing 15% of the total population over one
year old matching the cohort enrollment criteria, all
of whom received a course of anti-malarials at the start
of the survey period. The validation of the model uses
the model outputs from only this cohort, while the
remaining simulations represent the larger study area
population of 10,000 individuals. The details of the
values used to parameterize the model along with their
sources can be found in Additional Files 2, 3, 4, 5, 6, 7.

Simulation and validation
OpenMalaria is able to simulate the seasonality and level
of the EIR for the Rachuonyo South scenario with
greater stochasticity in the peak months and in the sce-
nario with observed interventions (Figure 3). Simulations



Figure 3 Simulated seasonal transmission dynamics with and
without interventions. Baseline model simulation of EIR on a
population of 10,000 individuals for two years using 10 random
seeds for each of the 14 OpenMalaria model variants with (dark blue
shaded area) and without (light blue shaded area) interventions in
Rachuonyo South district. The daily EIR is calibrated from monthly
EIR values that are smoothed out with a Fourier transform to only
include an annual and biannual cycle as described in Chitnis et al.
2012 [26]. The shaded areas represent the range of results from
the 140 simulations.

Figure 5 Model validation with observed cohort prevalence
data. Simulated vs. observed proportion of a cohort of 1,655
individuals in Rachuonyo South District with detectable P. falciparum
infection for EIR values derived from a) entomological studies
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show prevalence between 5.58% and 10.81% in Rachuo-
nyo South’s peak transmission month and between
2.99% and 6.04% in the lowest transmission month
(Figure 4).
The Figures 5a and b compare the simulation of P. fal-

ciparum prevalence in the population with observed
data from the MTC cohort study conducted from
June 2009 – June 2010 in Rachuonyo South District as
Figure 4 District-level simulation of number of detectable P.
falciparum infections. Simulated number of P. falciparum infections
as detected by a rapid diagnostic test (RDT) in a population of
10,000 individuals. The simulation ran for two years using 10 random
seeds for each of the 14 OpenMalaria model variants. The red line
shows the median value of the 140 simulations at each time point.
The shaded grey area shows the interquartile range, and the two black
lines show the maximum and minimum value at each time point.

(0.4 infectious bites per person per year, seasonality from
neighboring district; and b) serology (1.5 infectious bites per
person per year from one primary vector, seasonality from study
site weather station). All simulations ran for three years for each of
the 14 OpenMalaria model variants. The black squares represent
the mean number of patent infections observed in the cohort at
each time point. The black-capped bars represent the upper and
lower 95% confidence intervals of the observed mean. The shaded
area represents the range of results from the 140 simulations.
The source of observed data is the MTC cohort study described in
the Methods section.
detected by a rapid diagnostic test (RDT) using EIR
values derived from entomological studies (0.4 infectious
bites per person per year, seasonality from neighboring
district, Table 2) versus serology (1.5 infectious bites per
person per year, seasonality from study site weather sta-
tion). The prevalence was especially high in June of
2010, possibly due to a combination of more rainfall
than normal during the rainy season and rollout of IRS
at a later month compared to the previous year.
While the model is able to predict the level of preva-

lence in both scenarios, using an EIR from serology and
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seasonality from weather station data represents a visu-
ally better fit with both level of overall and seasonal
prevalence compared to using an EIR and seasonality
from entomology. Using the proportion of simulation
runs falling within the 95% confidence intervals of the
observed cohort data as a benchmark for comparing
simulation results, the final scenario was able to improve
both the number of months (six months with more than
30% of simulations runs predicted compared to three
months, n=12) and the proportion of total simulation
runs (29.9% vs. 14.6%, n=1,680).

Sensitivity analysis
Indoor residual spraying
The two main malaria control measures in the study
area are distribution of LLINs and IRS. While net use is
assumed constant over the time frame of the simulation,
IRS is a timed intervention that occurred between April
and May of 2009 and June and July of 2010 (Figure 2).
To simulate the impact of IRS effectiveness at killing
and deterring vectors and the rate at which the insecti-
cide decays on model predictions, scenarios were created
to simulate very high and very low IRS effectiveness
(Table 3).
Compared to the baseline, increasing the duration and

effectiveness of IRS had the effect of greatly reducing the
simulated number of patent infections (Figure 6b).
While prevalence is greatly reduced, transmission is
never completely interrupted even in the scenario simu-
lating highly effective IRS.

Biting behaviour
To study the effects of changes in vector diversity and
biting behaviour, different scenarios of proportion of
indoor vs. outdoor biting are considered. The baseline
scenario assumes one primary vector species which bites
outdoors 64% of the time and indoors 36% of the time.
The experiment includes one scenario with increased
exophagy with 74% of transmission occurring outdoors
Table 3 IRS scenario variables

Variable Description Level

IRS description IRS decay half-life Baseline: 4 months

Highly effective: 9 months

Insecticide resistance: 2 months

IRS deterrent effect Baseline: 0.1116

Highly effective: 0.8632125

Insecticide resistance: 0.1

IRS postprandial
killing effect

Baseline: 0.2772

Highly effective: 0.8

Insecticide resistance: 0.1

Figure 6 Sensitivity analysis of IRS effectiveness. Effect of b)
highly effective IRS intervention with a half-life decay of 9 months
and a killing effect of 80% and c) ineffective IRS intervention with
a half-life decay of 2 months and a killing effect of 10% on the
simulated number of P. falciparum infections as detected by RDT
in a cohort of 10,000 individuals in Rachuonyo South district
compared to a) baseline model with half-life decay of 4 months and
a killing effect of 27.72%. The simulation ran for two years using
10 random seeds for each of the 14 OpenMalaria model variants.
The red line shows the median value of the 140 simulations at each
time point. The shaded grey area shows the interquartile range,
and the two black lines show the maximum and minimum value
at each time point.



Table 4 Detection Limit scenario variables

Variable Description Level

Detection Limit Parasites per microliter PCR: 10

Skilled microscopy: 100

Baseline (RDT): 200

Low-quality diagnostic: 500
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and 26% of transmission occurring indoors and a second
scenario with transmission is split equally indoors and
outdoors. This is modeled by reducing the effectiveness
of vector control interventions.
The scenario in which the biting behaviour of a single

vector species is altered and a greater proportion of EIR
is due to indoor biting (increased from 36% to 50%)
shows a reduction in prevalence (Figure 7c). This is
because the indoor mosquitoes would be affected by
the IRS campaigns conducted in April – May of the
first year and June – July of the second year. The
scenario with a greater proportion of transmission from
outdoor biting shows a similar level of transmission
during the low season but greater amplitude in peak
months (Figure 7b).

Survey detection limit
To address the model’s sensitivity to the ability of a
given test to detect a P. falciparum infection, an experi-
ment was created to mimic the detection limits of poly-
merase chain reaction (PCR), skilled microscopy, and a
low-quality diagnostic such as a poor-quality RDT or
unskilled microscopy (Table 4). The number of simu-
lated infections decreases with higher detection limits,
as does the stochasticity of the predictions (Figure 8).
This indicates a population that has a considerable
proportion of infections occurring characterized by
low parasitaemia.

EIR and climatic patterns
In order to account for differences in collection and cal-
culation method as well as micro-variations in EIR
within the study area, an experiment was conducted
with varying levels of the annual average EIR while keep-
ing the seasonal pattern the same over the baseline.
This includes a scenario with a low EIR value that was
measured in an neighbouring district a slightly higher
altitude before large-scale control programmes were
Figure 7 Sensitivity analysis of biting behavior. Effect of changing bitin
detected by RDT in a population of 10,000 individuals for a) baseline mode
b) increased exophagy (74%) and c) equal exo- and endophagy. The simul
model variants. The red line shows the median value of the 140 simulation
range, and the two black lines show the maximum and minimum value at
implemented in 2006, two scenarios with medium EIR
(one equal to double the recorded value and one equal
to the recorded value in the neighboring lowland dis-
tricts), and a larger EIR. OpenMalaria is able to simulate
the scenarios with EIRs of 7 and 20 with less stochasti-
city than the scenarios with smaller EIRs.
To examine model sensitivity to changes in the ento-

mological parameters that could occur as a result of dif-
ferent climate patterns an experiment was created to
simulate decreased rainfall, increased rainfall, decreased
temperature, increased temperature, and two long rainy
periods instead of the long and short rains the study
area currently experiences. Compared to the baseline,
simulating increased rainfall in the same seasonal pat-
tern did not have as great an effect on number of patent
infections as did the scenario which increased the short
rainy season to match the longer rains. Simulating
temperature changes by altering the extrinsic incubation
period and resting duration did not have a visible impact
on the predicted number of patent infections (Figure 9).
Figure 9 demonstrates the overall results of the one-

way sensitivity analysis in relation to the baseline sce-
nario for Rachuonyo South.

Discussion
Validation and model analysis
The scenario parameterized for Rachuonyo South dis-
trict is able to replicate the overall level of prevalence
in the given population for the majority of the months
out of the year. However, the timing of the peak
g behaviour on the simulated number of P. falciparum infections as
l with one primary vector species 64% exophagy and 36% endophagy,
ation ran for two years using 10 seeds for each of the 14 OpenMalaria
s at each time point. The shaded grey area shows the interquartile
each time point.



Figure 8 Sensitivity analysis of detection limit of monitoring methods. Effect of changing the detection limit (number of parasites per
microliter) at which the survey is able to detect P. falciparum infection on the simulated number of P. falciparum infections in a population of
10,000 individuals for a) baseline model with a detection limit of 200, equivalent to RDT; b) detection limit of 40, equivalent to PCR; c) detection
limit of 100, equivalent to skilled microscopy; and d) detection limit of 500, equivalent to a poor quality diagnostic. The simulation ran for two
years using 10 seeds for each of the 14 OpenMalaria model variants. The red line shows the median value of the 140 simulations at each time
point. The shaded grey area shows the interquartile range, and the two black lines show the maximum and minimum value at each time point.
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transmission month is delayed and the depth of the
trough in November of the first year of simulations is
not captured. Thus, the number of runs simulating
the number of patent infections falling within the 95%
confidence intervals (CIs) of the observed number of pa-
tent infections is lower than optimal. This could be due
to several factors, such as inter-annual variation in trans-
mission in the study area.
A main challenge for transmission models is calibra-

tion and validation with data from the field. The Open-
Malaria transmission model is calibrated primarily by
the intensity of malaria transmission, or EIR, for each
vector. There are several methods to measure EIR in the
field, and the method used varies by location depending
on the implementer of the study [37]. Usually the types
of surveys necessary to quantify transmission are not
done on a regular basis, and in low transmission settings
where mosquito densities are low, the longitudinal stud-
ies required to estimate EIR are intensive and inherently
expensive. Entomological studies with the aim of identi-
fying sporozoite-positive mosquitoes, while important
for monitoring vector biting behavior, are not suitable
for developing a seasonality pattern for a given total
EIR in this area of low, unstable transmission. Perhaps
monthly or even weekly studies measuring mosquito
density and changes in vector biting behaviour over one
or multiple years would be a way of determining the sea-
sonality pattern of transmission.
Despite a clearer picture of overall annual transmis-

sion, serology is not able to characterize seasonality of
transmission, and without a baseline is unable to give an
indication of pre- vs. post- intervention exposure. Ser-
ology combined with a seasonality pattern from rainfall
data offered a more accurate picture than entomological
data alone. While this information can be approximated
from weather station data and from remote sensing
in areas lacking a weather station, a challenge is relating
the amount and seasonality of transmission to the
amount of rainfall as their relationship is not linear [38].
The method of evaluation used in this study was to

analyse the number of simulation runs which fall within
the 95% CIs of the observed data. There is not yet
any consensus on how to evaluate uncertainty and
goodness-of-fit for model ensembles [39]. The merits of
different methods have been discussed for models used
in meteorology, climate change and macroeconomics,
but questions remain on whether model averaging is
appropriate and how to quantify an acceptable level of
stochasticity for basing programmatic decisions on model
predictions [40]. A consensus should be achieved on these



Figure 9 Summary sensitivity analysis compared to baseline model. Summary statistics for the effect of changing key parameters on the
simulated number of P. falciparum infections per person per year averaged across all model variants during the study period of the MTC cohort
study (July 2009 – June 2010) as detected by RDT in a population of 10,000 individuals. The simulation ran for two years using 10 seeds for each
of the 14 OpenMalaria model variants. The red circles represent the mean and the black plus signs represent the minimum and maximum.
The dotted line represents the baseline mean as a measure of comparison.
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criteria if quantitative projections from such models are
to become an integral part of the range of decision-
making tools for malaria control.

Implications of the sensitivity analysis
The sensitivity analysis highlights the robustness of the
OpenMalaria transmission model for simulating a range
of entomological and epidemiological scenarios. The
majority of the simulation results for extreme scenarios
of the entomological and biological components of the
model remain similar to the simulation results for the
baseline scenario, suggesting that small changes in these
parameters are unlikely to have a large impact on preva-
lence, while changes in EIR and effectiveness of IRS have
a greater impact on the estimated prevalence in the
study area (Figure 9).

IRS
Pyrethroid resistance has already been documented in
western Kenya and elsewhere and much depends on the
effectiveness of these insecticides [41-43]. In the study
area there are not yet reports of pyrethroid knockdown
resistance (kdr) mutations due to the lack of presence of
An. gambiae s.s., but there may be other resistance
mechanisms present, for example metabolic resistance,
given the high numbers of An. funestus in the study area.
The results of the sensitivity analysis suggest that
malaria incidence and prevalence are likely to increase
as this resistance continues to rise. As noted in the
background section, the Kenya DOMC has alternated
deployment of different types of pyrethroid insecticides
for different years. While this could potentially have
the effect of discouraging resistance to any one form-
ulation, until new insecticides are developed the con-
tinued use of only pyrethroids has the potential to
encourage resistance.
Biting behaviour
Initial results of entomological surveys (Cooke, personal
communication) show evidence of a shift in the relative
importance of outdoor biting compared to what has
been observed in the neighbouring highland district
in the past [10,44]. It is unclear whether this is a behav-
ioral change in response to high LLIN and IRS cover-
age or whether there have been alterations in overall
species composition. For Rachuonyo South there are no
baseline data to compare this to. Evidence from lowland
districts within Nyanza indicate that both composition
and biting behaviour of the malaria vectors has changed
over the past five years, coinciding with a substantial
scaling up of vector control interventions [12]. Entomo-
logical surveys conducted in 2009 – 2011(Stevenson,
personal communication) show that An. arabiensis is
now seen more frequently inside and outside dwellings
than An. gambiae s.s., the previously-documented major
vector in Kisii district [10,44]. Preliminary data from the
study sites also indicate that An. funestus or other spe-
cies may be playing an ever increasingly important role
on malaria transmission in the area [35].
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The observed data more closely resemble the scenario
with indoor/outdoor biting profile based on 2009 – 2011
data, which supports the hypothesis of a greater propor-
tion of outdoor biting. If this is the case, there is a limit
to the effectiveness of the current vector control interven-
tions in Rachuonyo South (IRS and LLINs) at controlling
P. falciparum because they target the shrinking propor-
tion of the infective bites occurring indoors. While these
interventions will still offer an important level of deter-
rency, interventions that have a killing effect on exophagic
mosquitoes may be an appropriate addition to existing
indoor interventions [45]. Larviciding, area repellents,
and even interventions targeting the human-stage of the
parasite could also be taken into consideration to comple-
ment existing methods. Implementation of a number of
these methods is currently being piloted in Rachuonyo
South (Bousema, personal communication).

Survey detection limit
The outcome simulated in this scenario is number of
patent infections as measured by a ParacheckW rapid test
kit manufactured by Orchid Biomedical Systems. The
2010 WHO malaria case management guidelines recom-
mend treatment after parasite-based diagnosis [46].
Quality assurance measures for these tests are based
on their ability to detect either 100 or 200 parasites per
microliter, not because of the limitations of the RDT
technology but rather because of limited accuracy and
error of expert microscopy, the “gold” standard in mal-
aria diagnosis in the absence of PCR [47,48]. In addition,
there is evidence for changes in the accuracy of diagno-
sis by RDTs in the East African highlands both over time
and across age groups [49].
The implication of the sensitivity of the model to a

change in survey detection limit is that if RDTs used
in surveys perform poorly, whether the result of low
quality manufacturing or improper storage conditions
or use, according to simulation results up to 50% of
infected individuals would be misclassified. When put in
a broader public health context, there are a number of
scenarios applicable to the study area when decision-
making can be affected by detection limit. These range
from a health worker deciding to administer an anti-
malarial drug following malaria diagnosis in an individ-
ual, to country-wide planning in the public sector health
system for estimating quantities of antimalarial drugs
required for a given year, to deciding the appropriate
time to change the vector control strategy if the measure
of transmission is based on an estimate of prevalence.
When approaching a situation where transmission is

interrupted, attention must be paid to the type of
screening strategy (active vs. passive case detection) and
screening method used to detect the last remaining
parasitaemia in the population. In these cases the higher
presence of asymptomatic, sub-patent infections repre-
senting the infectious reservoir of parasites in the popu-
lation indicates the PCR method would be preferable
over a less sensitive method. While molecular diagnostic
tools such as PCR and loop-mediated isothermal ampli-
fication (LAMP) are both able to detect infections at a
much lower parasite density than microscopy or RDTs
and may be appropriate in study settings, studies show
these methods are not currently suitable for routine
diagnosis at a community level [50,51]. However, even
the most sensitive PCR diagnostic does not detect all
infections in a population. If a large proportion of infec-
tions occur at a high parasite density the detection limit
of the diagnostic would not be as important a consider-
ation. This sensitivity analysis shows that observed
prevalence depends on the method used for detection, a
point relevant for study design and modelling alike.

EIR and climatic patterns
The sensitivity analysis results show that an increase in
EIR corresponds to an increase in cases of malaria. The
OpenMalaria transmission model is dependent on the
length of the gonotrophic cycle of the vector, which is in
turn affected by environmental changes. The mosquito
resting duration and EIP both decrease as the ambient
temperature decreases [33,52,53]. If the EIP duration
decreases, a vector infected with P. falciparum becomes
infectious more quickly. A shorter gonotrophic cycle
means both increased biting frequency and increased
daily mortality of the vector. The highlands of western
Kenya have variable seasonal temperature and rainfall
changes; for example, in the late 1990s the study area
experienced a resurgence of malaria not seen for decades
[54]. Simulation results indicate that changes in
temperature resulting in a change in EIP or resting dur-
ation and changes in the overall volume of rainfall
resulting in a slight change in EIR are not likely to effect
the impact of IRS deployment or result in a shift in
P. falciparum prevalence in the population. In addition,
there is preliminary evidence that in the study area
increased relative humidity is associated with an
increased number of anophelines (Cooke, personal com-
munication). However, even taking into account the
caveats for the relationship between malaria transmis-
sion and rainfall, changing the pattern of transmission to
simulate the effect of an extension of the historically
short rainy season to match the rainfall profile of the
longer rainy season could result in greater amplitude of
incidence in the peak months.

Limitations
Data
Many parameters in the model remain from the initial
Tanzanian model parameterization [26], for example the
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parameters for the mosquito feeding cycle (Additional
File 2) and treatment-seeking behaviour (Additional
File 3), because there are not yet site-specific studies
with this focus. While ample entomological data were
collected in the study area, there was less available infor-
mation on treatment-seeking behaviour and its conse-
quences outside the public sector.
CoartemW was given to all MTC cohort study partici-

pants to clear any prevalent P. falciparum parasitaemia
making it possible to measure malaria incidence at each
follow-up. The study excluded pregnant women from
the cohort due to the limited data on use in pregnancy
and contraindication in the 1st trimester pregnancy of
artemether-lumefantrine [19], the active ingredients of
CoartemW. Infection with P. falciparum during preg-
nancy has been shown to be associated with increased
parasitaemia of the mother due to a weakened immune
system as well as an increased likelihood of manifest-
ation of clinical disease in addition to adverse affects on
the fetus and newborn [55]. Although this is unlikely to
have a major effect on transmission in the population
as a whole, the patent infections and uncomplicated
episodes in the age groups for women of childbearing
age could be underestimated.

Model
Since the OpenMalaria transmission model was devel-
oped to examine the effect of moderate to high trans-
mission, it does not include a mechanism to account
for inter-annual variation in EIR as driven by climatic
factors. Thus, every year is treated as the same, which is
not the case in the study area. In the western Kenyan
highlands sharp increases in incidence occur every few
years [54] and are likely to be driven by climate variabil-
ity; the higher than usual transmission in the cohort
following heavy rains during the time of the survey pro-
vides an example of such a sharp increase. As a result
of the validation using one year’s data in this area of sub-
stantial year-to-year variation, firm conclusions are
unable to be drawn about the longer-term seasonal
transmission in the population.
Nyanza province has the highest prevalence of HIV

in Kenya at 15.1% of the population [56,57]. HIV infec-
tion increases an individual’s susceptibility to malaria
infection and severity of clinical outcomes and decreases
immunity [58,59]. A limitation of the transmission
model is that it does not account for the interaction
between malaria and HIV.
The models analysed here do not explicitly take spatial

associations into account. Variation in proximity to
breeding sites could be a factor driving the difference in
epidemic profile of the study area. The parameteriza-
tions used in this study do not take into account the
rate of imported cases from lowland areas, as there is
frequent travel between the highland Kisii and Nyamira
districts and the lowland areas of Rachuonyo North,
Nyando and Kisumu districts. Heterogeneity in availabil-
ity to vectors and imported cases should be taken into
account in future simulations of the study area.
Conclusions
Individual-based stochastic simulations of malaria can
be used as a tool to assist decision making for malaria
control programmes by testing assumptions about the
seasonal pattern of transmission, vector diversity and
behavior, and intervention effectiveness in district-level
settings. Efforts should be made to ensure models aid-
ing in the understanding of site-specific transmission
dynamics are more accessible to programme managers.
The sensitivity analysis shows that in order to simulate
malaria in the Rachuonyo South highlands, attention
must be paid to vector biting behaviour, their suscepti-
bility to IRS, and the detection method used for human
surveys. These features will have an impact on predict-
ing the impact of interventions in areas with low and/or
variable P. falciparum transmission. The sensitivity ana-
lysis also demonstrates the accuracy of the model and
can lend confidence to end users of these results in
informing control options. New methods and tools for
analysing and evaluating simulation results will enhance
the usefulness of simulations for malaria control deci-
sion-making. Measuring EIR through mosquito collec-
tion may not be the optimal way to define transmission
in areas with low, unstable transmission. Further re-
search into the relationship between different measures
of malaria is needed to better quantify transmission in
low transmission settings.
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