

POSTER PRESENTATION

Open Access

Consistently high baseline estimates for the proportion of human exposure to rural African malaria vector populations that occurred indoors

Bernadette Huho^{1,2,3*}, Olivier Briët^{2,3}, Aklilu Seyoum⁴, Chadwick Sikaala^{4,5}, Nabie Bayoh^{6,7}, John Gimnig⁸, Fredros Okumu^{1,9}, Diadier Diallo¹⁰, Salim Abdulla¹, Thomas Smith^{2,3}, Gerry Killeen^{1,4}

From Challenges in malaria research Basel, Switzerland. 10-12 October 2012

Background

Insecticide treated nets (ITNs) and indoor residual spraying (IRS) are highly effective options for controlling malaria transmission in Africa because the most important vectors, which are from the *Anopheles gambiae* complex and the *An. funestus* group, prefer biting humans who are indoors at night. It is feared that sustained large scale use of ITNs and IRS can cause these vectors to shift biting in place and time where ITNs and IRS are not effective.

Materials and methods

Matched surveys of mosquito and human behavior from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya with ITN coverage ranging from 0.2% to 82.5% were used to calculate the proportion of human exposure to *Anopheles gambiae* sensu lato and *An. funestus* s.l. that occurs indoors (π_i) as an indicator of the maximum level of personal protection that ITN use can provide. The proportion of mosquitoes caught indoors (P_i) and between the first and last hours when most people are indoors (P_{fl}) were also calculated as underlying indicators of vector preference for feeding indoors or at night, respectively.

Results

The vast majority of human exposure to *Anopheles* bites occurred indoors ($\pi_i = 0.90\text{-}1.00$). Neither *An. gambiae* s.l. nor *An. funestus* s.l. strongly preferred feeding indoors ($P_i = 0.46\text{-}0.63$ and 0.22-0.72, respectively) but they overwhelmingly preferred feeding at times when most humans were indoors ($P_{fl} = 0.84\text{-}1.00$ and 0.93-0.99, respectively).

¹Biomedical and Environmental Thematic Group, PO Box 78373, Dares Salaam, United Republic of Tanzania

Full list of author information is available at the end of the article

Conclusions

These quantitative summaries of behavioral interactions between humans and mosquitoes establish baseline values against which behaviour observed in residual vector populations exposed to high ITN or IRS coverage can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and to evaluate the need for development of complementary measures targeting the outdoor-biting vectors.

Author details

¹Biomedical and Environmental Thematic Group, PO Box 78373, Dares Salaam, United Republic of Tanzania. ²University of Basel, Petersplatz 1, Basel, CH-4003, Switzerland. ³Swiss Tropical and Public Health Institute, Basel, Switzerland. ⁴Liverpool School of Tropical Medicine, Vector Group, Pembroke Place, Liverpool L3 5QA, UK. ⁵National Malaria Control Centre, Chainama Hospital College Grounds, Off Great East road, P.O.Box 32509, Lusaka, Zambia. ⁶Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya. ⁷Centers for Disease Control and Prevention, P.O. Box 1578, Kisumu, Kenya. ⁸Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 4770 Buford Highway, Mailstop F-42, Atlanta GA 30341, USA. ⁹London School of Hygiene and Tropical Medicine, Disease Control and Vector Biology Unit, Keppel Street, WCIE 7HT, London UK. ¹⁰Centre National de Recherche et de Formation Sur LePaludisme (CNRFP), Ouagadougou, Burkina Faso.

Published: 15 October 2012

doi:10.1186/1475-2875-11-S1-P50

Cite this article as: Huho *et al.*: Consistently high baseline estimates for the proportion of human exposure to rural African malaria vector populations that occurred indoors. *Malaria Journal* 2012 11(Suppl 1):P50.

