

POSTER PRESENTATION

Open Access

Anti-plasmodial action of *de-novo*-designed, cationic, lysine-branched, amphipathic, helical peptides

Naveen K Kaushik*, Jyotsna Sharma, Dinkar Sahal

From Challenges in malaria research Basel, Switzerland. 10-12 October 2012

Background

A lack of vaccine and rampant drug resistance demands new anti-malarials under such circumstances antibiotic peptides may offer a novel approach to tackle the parasite.

Methods

In vitro blood stage anti-plasmodial properties of several de novo-designed, chemically synthesized, cationic, amphipathic, helical, antibiotic peptides were examined against Plasmodium falciparum using SYBR Green assay. Mechanistic details of anti-plasmodial action were examined by optical/fluorescence microscopy and FACS analysis.

Results

Unlike the monomeric decapeptides {(Ac-GXRKXH-KXWA-NH₂) (X= F, Δ F) (Fm Δ Fm IC₅₀ >100 μ M)}, the lysine-branched, dimeric versions showed far greater potency $\{IC_{50} (\mu M) \text{ Fd } 1.5 \text{ , } \Delta Fd \ 1.39\}$. The more helical and proteolytically stable ΔFd was studied for mechanistic details. ΔFq , a K-K₂ dendrimer of Δ Fm and $(\Delta$ Fm)₂ a linear dimer of Δ Fm showed IC₅₀ (μ M) of 0.25 and 2.4 respectively. The healthy/infected red cell selectivity indices were >35 (Δ Fd), >20 (Δ Fm)₂ and 10 (Δ Fq). FITC- Δ Fd showed rapid and selective accumulation in parasitized red cells. Overlaying DAPI and FITC florescence suggested that Δ Fd binds DNA. Trophozoites and schizonts incubated with ΔFd (2.5 μM) egressed anomalously and Band-3 immunostaining revealed them not to be associated with RBC membrane. Prematurely egressed merozoites from peptide treated cultures were found to be invasion incompetent.

Conclusion

Good selectivity (>35), good resistance index (1.1) and low cytotoxicity indicate the promise of ΔFd against malaria.

Published: 15 October 2012

doi:10.1186/1475-2875-11-S1-P55

Cite this article as: Kaushik *et al*: Anti-plasmodial action of *de-novo*-designed, cationic, lysine-branched, amphipathic, helical peptides. *Malaria Journal* 2012 11(Suppl 1):P55.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India

