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between them.

sporozoites.

Background: T1BT* is a peptide construct containing the T1 and B epitopes located in the 5" minor repeat and the
3" major repeat of the central repeat region of the Plasmodium falciparum circumsporozoite protein (CSP),
respectively, and the universal T* epitope located in the C-terminus of the same protein. This peptide construct,
with B = (NANP)s, has been found to elicit antisporozoite antibodies and gamma-interferon-screening T-cell
responses in inbred strains of mice and in outbred nonhuman primates. On the other hand, NMR and CD
spectroscopies have identified the peptide B" = (NPNA)5 as the structural unit of the major repeat in the CSP, rather
than the more commonly quoted NANP. With the goal of assessing the structural impact of the NPNA cadence on
a proven anti-plasmodial peptide, the solution structures of T1BT* and T1BT* were determined in this work.

Methods: NMR spectroscopy and molecular dynamics calculations were used to determine the solution
structures of T1BT* and T1BT*. These structures were compared to determine the main differences and similarities

Results: Both peptides exhibit radically different structures, with the T1BT* showing strong helical tendencies. NMR
and CD data, in conjunction with molecular modelling, provide additional information about the topologies of T1BT*
and T1BT*. Knowing the peptide structures required to elicit the proper immunogenic response can help in the design
of more effective, conformationally defined malaria vaccine candidates. If peptides derived from the CSP are required
to have helical structures to interact efficiently with their corresponding antibodies, a vaccine based on the T1BT*
construct should show higher efficiency as a pre-erythrocyte vaccine that would prevent infection of hepatocytes by

Keywords: Medicinal chemistry, NMR, Circular dichroism, Malaria

Background

Malaria is the most prevalent parasitic human disease. It
claims the lives of more children worldwide than any
other infectious disease [1] Malaria is caused by
micro-organisms of the genus Plasmodium and is
transmitted to humans by mosquitoes. Among other
species, Plasmodium falciparum causes the highest
levels of mortality and morbidity [2]. Currently used
prevention methods include indoor residual spraying,
vector control and mosquito nets. However, none of
these methods fully allows the eradication of malaria
worldwide among humans. With increasing global
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prevalence of malaria and emerging resistance of P.
falciparum to drug treatment, the need for an efficient
malaria vaccine is greater than ever. The use of synthetic
peptides for immunization is a very attractive strategy for
antigen delivery, since they are relatively easy to obtain in
large quantities with high purity. The circumsporozoite
protein (CSP), covering the membranes of mature
sporozoites, exhibits high immunogenicity and plays a
crucial role in hepatic cells invasion by malaria parasites.
This protein has been considered as a useful target for
peptide-derived anti-plasmodial vaccine developments [3].
The central repeat region of the CSP, conserved amongst
the different Plasmodium species, consists of 37 repeat
units of the NANP amino acid sequence and four repeat
units having the NVDP sequence for the NF54/3D7 strain
[4]. The immunodominant epitope of the infective form of
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P. falciparum is the tandemly repeating tetrapeptide
NANP [5]. Synthetic peptides derived from the repeat
region of P. falciparum CSP have proven to be able to
block CSP interactions with hepatocytes, as well as
invasion of HepG2 cells [6,7]. Peptides that correspond to
the epitope region of the CSP have been extensively
studied to understand their immunogenicity. A multi-
antigenic peptide construct, T1BT*, containing the T1
epitope (DPNANPNVDPNANPNYV) from the central
region, the B-cell activating epitope (NANP); from the
tandem repeat region, and the universal T* epitope
(EYLNKIQSLSTEWSPCSVT) from the C-terminus of the
CSP; was found to elicit antisporozoite antibodies and
gamma interferon-screening T-cell responses comparable
to more complex tetrabranched peptides in inbred strains
of mice and in outbred nonhuman primates [8].

Peptide vaccines elicit a variety of antibodies. Only
some of these antibodies may bind appropriately to the
cognate sequence in the native protein or the pathogen,
since short, flexible peptides in solution can afford a
variety of conformation. The production of effective
vaccines requires a strategy that involves rational design
of the peptide immunogen. In previous investigation of
the solution, conformations of various immunogenic
peptides in water solution, "H nuclear magnetic resonance
(NMR) and circular dichroism (CD) spectroscopies have
proven very useful in determining the conformational
preferences of peptides for folded forms [9-12]. These
investigations included peptides with sequences (NANP),
and (NPNA), with n = 1, 2, and 3; derived from the
central repeat region of the P. falciparum CSP. The data
derived from these studies were consistent with the
presence of turn-like structures stabilized by hydrogen
bonds. Spectral differences between peptides with different
cadences of the tandemly repeating unit indicated that
a repeating structural motif is formed by the NPNA
cadence, rather than the alternative NANP [13]. In another
set of studies, a computer model of Ac-(NPNA);-NH,
peptide showed a backbone conformation in which each
NPNA motif adopts a helical B-turn conformation [14]. In
the present study, the three-dimensional structures
of TIBT* and its analogue T1B'T*, where the B-cell
activating tandem repeat was modified to be B’ = (NPNA)
5, were determined through 'H-NMR spectroscopy. In
light of the results of the Dyson et al. structural investiga-
tion of (NANP); and (NPNA); peptides [13], the goal of
the investigation discussed herein is to determine the
structural impact of the NPNA cadence on a peptide that
has shown some level of protection against P. falciparum
malaria [8]. Since the NPNA tandem repeat is more
structured than the NANP repeat, further comparative
structural studies of synthetic peptide vaccines based on
NPNA and NANP are required. The possibility to change
structural preferences of the synthetic peptide, depending
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on the sequence of the tandem repeat, might be a key step
to improve the immunogenicity of CSP-based vaccines.

Methods

Studied peptides

Peptides T1BT*,1, T1B'T*, 2; and T1, 3 (Biomatik USA,
LLC) were investigated in this work. The amino acid
sequences for these peptides are: Ac-(DPNANPNV),
(NANP)3(EYLNKIQSLSTEWSPCSVT)-NH,, Ac-(DPNA
NPNV),(NPNA)3;(EYLNKIQSLSTEWSPCSVT)-NH,, and
Ac-(DPNANPNV),-NH,, respectively. A single-labelled
peptide with amino acid sequence: Ac-(DPNANPNV),
(NANPNA*NPNANP)(EYLNKIQNSLSTEWSPCSVT)-
NH,, 1} where A* denotes Ala-(2,3,3,3-D4) (Cambridge
Isotope Laboratories, Inc); and double-labelled peptides
with sequences Ac-(DPNA*NPNVDPNANPNV)(NANPN
ANPN*ANP)(EYLNKIQNSLSTEWSPCSVT)-NH,, 1”7, and
Ac-(DPNANPNVDPNA*NPNV)(NPN*ANPNANPNA)
(EYLNKIQNSLSTEWSPCSVT)-NH,, 2”, (American
Peptide Company), where A* and N* denote Ala-(2,3,3,3 —
D4) and Asn-(2,3,3 — D3, 12N2), respectively, were used
to facilitate NMR signal assignments.

Single-labelled peptide synthesis

The single-labelled peptide was chemically synthesized
on a Tribute-automated peptide synthesizer (Protein
Technologies, Inc) using standard FMOC solid-phase
techniques. The crude peptide was purified by reverse-
phase HPLC.

NMR and CD sample preparation

NMR samples for 1, 2, and 1’ were prepared from the
synthetic peptides by dissolving 3 mg in 25% deuterated
acetonitrile and 75% H,O, to a final volume of 650 pl
‘and a final concentration 1mM. NMR samples for 3 were
prepared by dissolving 3 mg of the synthetic peptide in
650 pl of solvent (10%D,0/90%H,0), to a final concentra-
tion of ImM. NMR samples for 1” and 2” were prepared
by dissolving 3 mg of dry peptide in 650 pl of solvent
(10%D,0/90%H,0), to afford a final concentration of
1mM. For CD studies, 20 uM samples were prepared by
dissolving 37.5 mg of dry peptide in 1.46 ml of H,O.

NMR data collection

NMR spectra were performed at 900 MHz in a Varian
NMR DirectDrive system (Agilent Technologies, Inc,
Santa Clara, CA, USA) equipped with a cryogenically
cooled, salt tolerant, >C enhanced, triple resonance
probe; and at 600 MHz in a Bruker Avance III 600
(Bruker BioSpin Corp, Billerica, MA, USA) with a 5.0
mm multi-nuclear broad-band observe probe. All NMR
spectra were collected at 278 K and referenced to HDO
as the internal standard with spectral widths of 16 ppm.
TOCSY and NOESY collected at 900 MHz spectra were
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initially recorded with mixing times in the ranges of
60-100 and 60-250 ms, respectively. The best results
were achieved with 100 ms mixing time for TOCSY and
200-250 ms for NOESY. These spectra were acquired
with 32 transients and a number of increments ranging
from 600 to 900 over a 90 kHz spectral width. In the
direct dimension 4,096 points were collected over a 14.7
kHz spectral width. TOCSY and NOESY collected at 600
MHz were recorded with 512 t; points and 2048 complex
points for each free induction decay. The number of scans
per t; point was usually 32. Water suppression for all
samples was performed with the WATERGATE sequence
incorporated into all the two-dimensional experiments.
Suppression of the acetonitrile signal was accomplished
through pre-saturation, along with CW decoupling of **C.
Processing and analysis of the two-dimensional NMR data
were performed on an Intel Xeon computer using
NMRPipe [15], NMRView] [16] and Topspin3.0 (Bruker
BioSpin Corp, Billerica, MA, USA) software. Spectra were
Fourier transformed using a Lorentzian-to-Gaussian
weighting and phase shifted sine-bell window functions.

CD spectra collection

CD spectra were recorded on a Jasco J-815 CD spectro-
photometer, using a 1 mm path cell at room temperature.
Each CD spectrum was an average of 16 scans. The CD
instrument was equipped with a Peltier temperature
control.

Average structure calculations

All calculations were carried out with Discovery Studio 3.1
(Accelrys, San Diego, CA) on an Intel Xeon 5600 series.
Information about NOE-connectivities was obtained from
the NMR experiments. The size of the NOEs was classified
as strong, medium or weak, based on the intensity of
each signal. NOE-derived distance constraints were set at
1.9-3.0, 2.5-4, and 3.5-5A for strong, medium, and weak
NOEs, respectively. The distance-dependent dielectric
constant algorithm was used with an implicit solvent
dielectric constant of 80. Nonbonded van der Waals
interaction was cut-off at 14 A. Molecular dynamics calcu-
lations used the Leapfrog Verlet dynamics integrator with
a 0.001 ps time step. All energy minimizations and charge
assignments used the CHARMm force field. Constant
temperature and volume (NVT) with Berendsen thermal
coupling was used as the dynamics ensemble for
non-periodic systems. Long-range electrostatics was
treated with spherical cut-off. The starting extended
peptide structures were first minimized by steepest des-
cent method followed by conjugate gradient minimization
to an rms gradient of <0.001. The distance constraints
were then applied, and the minimization steps were
repeated. The structures were heated and equilibrated
over 10 ps from 5 to 1,000 K, with velocities assigned

Page 3 of 11

every 0.001 ps. No distance constraints were used in this
first step in order to randomize the structures. Molecular
dynamics was ran for 4 ps, with distance constraints
applied with a force constant of 0.06 kcal mol ™A™, Next,
the force constants were scaled to 120 kcal mol™ A ™ over
7 ps in a series of 0.4 ps molecular dynamics runs. The
system was allowed to evolve for 6 ps, and then cooled to
300 K over 7 ps. At this temperature, the force constants
were reduced to their final values of 60 kcal mol™ A ™
over 4 ps in a series of 0.4 ps molecular dynamics runs.
The system was allowed to equilibrate for 5 ps, followed
by a final 15 ps molecular dynamics run. The coordinates
of the final 5 ps of the 15 ps molecular dynamics were
averaged and minimized by 1,000 steps of steepest descent
method followed by conjugate gradient minimization to a
rms gradient of <0.01 with distance constraints set to 60
mol™* A", The SHAKE algorithm [17] was used to fix all
bond lengths to hydrogen atoms.

Results

NMR

The sequential assignment of the signals in the spectra
of 1, 2 and 3 was performed through the overlap of their
TOCSY and NOESY spectra. Repeating units and amino
acids duplication caused the overlap of these signals,
which required the use of single and double-labelled
versions of 1 and 2 to achieve complete assignments.
The resonance assignments for all peptides are shown in
Tables 1, 2 and 3.

Portions of the NOESY spectra for 1, 2 and 3 are
shown in Figure 1, and the NOE connectivities observed
for all peptides are summarized in Figure 2. For peptide
1 the presence of a strong dyn(i,i+l) and various
medium dgn(i,i+1) and dgn(i,i+2) NOEs in the central
region, B-epitope, indicates that this region of the
peptide tends to form turn-like structures as previously
indicated by Dyson et al. [9]. The right flank of this peptide,
T* epitope, displays one strong dyn(ii+1) NOE, with
medium dqg(i,i+1), and weak dgn(ii+1). The left flank of 1
exhibits weak dyn(i,i+1) and medium and weak dq(i,i+1)
and dqg(i,i+2). Both sets of NOEs are indicative of
turn-like structures also for the flanks. It is worth noticing
that most of the NOEs detected for the T1 and T* epitopes
are concentrated towards the ends close to the B epitope.
The N- and C- termini of 1 are apparently less structured
than its central part.

Helical conformations are hinted in 2 by: 1) a series of
strong dan(Li+1), dan(b,it+3), dan(bi+5), medium dan(i,i+7)
and dyn(Li+9) NOE connectivities in segments A4-N7,
N11-V16, N25-N32 and S37-V46; with no dun(i,i+1)
connectivities [18]; and, 2) a series of strong and
medium dgp(i,i+1) and dqg(i,i+2) [19]. Peptide 3 shows an
NOE patter similar to the one exhibited by the same
epitope in 2. There are strong long-range dan(i,i+5) and
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Table 1 Assignments of the "H-NMR signals for 1 (ppm)

Residue NH CH  CPH C'H C°H CH (Continued)
Ac 895 481 S43 839 432 402,397
D1 848 481 296, 2.85 P44 355 238,216 1.49 3.01,283
P2 390 238,216 149 301,283 S46 830 452 404,399
N3 848 507 2.82 V47 810 446 1.29 0.99
A4 787 423 1.02 T48 795 456 3.16 1.10
N5 859 512 293,288 Description: The data provided represents the assignments of the proton
signals derivated form 1.
P6 390 238,216 149 301,283
N7 846 480 294 281 dan(bi+7) NOE connectivities in segments D1-V8 and
va 810 416 200 098 N11-V16. Additionally, 3 shows strong dnn(ii+1) NOEs
09 843 434 305288 ?nq se‘rles of medium dap(1,1+1? and dgp(i,i+2) NOE§,
indicating the presence of a helix-type structure in this
P10 390 238,216 149 301, 283 .
peptide also.
N11 825 507 300,286 The regions where the flanks T1 and T* connect with
A12 791 440 1.50 the central B and B’ epitopes, interepitope regions, display
N13 853 479 2095283 sets of NOE connectivities which are different in both
P4 300 238 216 149 301 283 peptides. For 1, there are strong dun(i,i+1) NOE connec-
NI 848 481 296, 285 tivities in segment V16-‘A‘18, and medium dg(i,i+1) in
Ve o5 40 s 10100 segment P28-E29. Additionally, weak dyn(16,17) and
' i : R medium dqp(16,17) NOEs are also present. For 2, only a
N7 831 480 296 medium dyyn(16,17) is detected.
A18 802 438 149
N19 844 507 300 Average structures
P20 390 238,216 149 301,283 The average structures of 1 and 2 were derived from the
N21T 839 478 294 281 NMR data (NOESY) collected for these peptides, and
A 795 436 149 are shO\fvn in Flgure‘ 3. Tl}e molecular ’dynamlc simula-
tions, with NOE-derived distance restrains, show an 85%
N23 835 482 301,280 . .
agreement with the experimental NOE data. These struc-
P24 390 238,216 149 301,283 tures indicate that 1 exhibits a P-turn type of structure
N25 843 484 301 while 2 adopts a more helical conformation.
A26 797 437 148
N27 835 482 301,280 CD spectroscopy
P28 390 238,216 149 301,283 CD spectra for 1 and 2 were collected to confirm the
£29 833 459 306 301 structural preferences of these peptides, proposed based
V30 848 507 296285 or} NMR ‘data (Figure 4). Both p.ept%des showed similar
elipticity in the CD spectra, indicating the presence of
L31 795 428 1.78 167, 1.65 1.00
B-turns.
N32 843 468 293,290
K33 810 438 1.95,1.89 1.77 157,151 199 1.89 Discussion
134 825 436 148 148 109 Evidence supporting structural differences between the
Q35 795 420 325 315 NANP and NPNA motives in the CSP have been widely
N36 831 480 206 documented in the literature since the publication of the
. 1 .
537 830 452 404, 399 classic 1990 "H NMR‘ study by Dyson et‘ al., revealing
38 608 450 185 180 13 109,100 that the structural motive of the central region of the CSP
' ’ T ’ T corresponded more to the NPNA cadence than to the
539 825 453 405399 commonly quoted NANP [13]. The present investigation
T40 815 442 148 132 explores the structural impact that the NPNA sequence
E41 833 459 306,301 has on a proven anti-plasmodial peptide [8], through the
W42 811 476 341 331 structural investigation of the peptide constructs T1BT*

and T1B'T*. The NMR results presented herein indicate
that the T1BT* peptide, containing the NANP cadence,
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Table 2 Assignments of the "H-NMR signals for 2 (ppm)

Residue NH C°H  CPH C'H C°H CH (Continued)

Ac 882 478 S43 824 450 402,396

D1 837 480 3.5,302 P44 391 238, 211 2.06 2.85,2.82

p2 381 237,203 201 281,278 C45 816 473 338,328

N3 843 481 3.04 S46 824 450 402,396

A4 803 423 146 V47 808 443 1.27 1.05, 1.04

N5 841 477 296,288 T48 821 464 201 1.29

P6 381 237,203 2.01 281,278 Description: The data provided represents the assignments of the proton

N7 841 477 296,288 signals derivated form 2.

V8 805 411 196 095 exhibits a structure radically different from that of its
D9 839 429 302,288 T1B'T* analogue with a modified (NPNA);z B-cell epitope.
P10 387 238211 505 299, 261 The NOE evidence strongly suggests that the structured
0 645 475 201 28] conforme}rs of 1 arlld. 2 contain helical z.md/or reverse

' turns, with 2 exhibiting the most helical character.
A2 792 434 14 Regarding the CD data, a significant minimum at ~ 222
N13 837 508 298 nm is expected when helical structures are present in so-
P14 375 238,210 205 295 lution. The CD spectra in Figure 4 indicate that 2 exhibits
NT5 833 475 203,292 a hint of a minimum at ~ 222 nm, while this minimum is
Vie 286 419 518 099 absent in the CD spectrum of 1. These facts are consistent
17 954 507 297 08 with the NMR data collected for 1, and 2, which ipdif::?tes a
' more helical character for 2. The lack of a significant

P18 350 238,211 200 252,251 minimum in the CD spectrum collected for 2 is not
N19 822 474 292,28I necessarily an indication of the absence of helixes in
A20 805 435 146 its structure. In helical peptides where the carbonyl
N21 835 504 292, 277 groups are not strictly aligned, CD spectra can exhibit a
52 351 238 210 503 558 greatly .dir‘ni.nishec‘l i’ntensity at 208 and 222 nm [19,20].
03 63 475 293 201 The elipticity minimum at ~202 nm, the lack of a
A24 801 435 1.46 Table 3 Assignments of the "H-NMR signals for 3 (ppm)
N25 841 481 296,288 Residue NH C°H CPH C'H C®H
P26 347 239,210 201 2.52 Ac 8.93 463

N27 818 474 292,279 D1 847 4.63

A28 797 434 146 P2 434 226,220 195, 1.90 3.71,3.69
E29 827 426 276,275 291,290 N3 842 4.66 2.79, 2.66

Y30 805 453 321,31 A4 7.73 417 133

L31 801 421 178,176 1.63 1.01, 1.00 N5 842 4.75 272,254

N32 827 464 293,277 P6 434 2.26,2.20 1.95, 1.90 3.71,3.69
K33 811 430 169, 1.68 1.61 148,145 179,177 N7 848 4.64 2.74, 2.66

134 825 432 1.30 1.05 1.01 V8 801 4.01 1.98 0.84

Q35 785 461 315311 3.05 D9 8.6 4.85 2.79, 259

N36 843 482 3.04 P10 3.85 2.09, 203 1.89,1.76 227,223
S37 839 454 393 N11 842 2.79, 265

L38 825 446 1.81 1.69 1.02 A12 7.86 418 1.32

S39 826 449 402,397 N13 848 2.74, 2.66

T40 815 464 292 145 P14 3.52 2.06, 2.03 1.89, 1.75 229,222
E41 833 456 282,281 301,298 N15 851 4.66 277,268
W42 816 456 337,328 V16 797 4.04 2.06 0.88

Description: The data provided represents the assignments of the proton
signals derivated form 3.
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Figure 1 NOESY spectra collected for 1, 2, and 3. Portions of the 900 MHz NOESY spectra for A 1, B 2 and € 3. 1 and 2 were dissolved in
25% deuterated acetonitrile and 75% H,O to a final concentration 1 mM. 3 was dissolved in 10% D,0/90% H,O to a final concentration 1 mM.
The mixing time was 200-250 ms. The left panel displays NOEs in the NH region for each peptide. The left panel shows other structurally
significant NOEs detected for these peptides. Signals enclosed in squares are interepitope NOEs.

significant minimum at 222 nm, and the NMR data Other NMR data have been used to give information
for this peptide indicate the that the structural model for on the conformational preferences of peptides. These
2 should be one where only a small population of include temperature coefficients of the amide proton
molecules contain more than one helical turn [13]. chemical shift and the *Jyng coupling constant [12,13].
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Ac-(DPNANPNV)(DPNANPNV)-NH»
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Figure 2 Summary of NOE connectivities observed for all peptides at 278K. Data for 1, 2 and 3 were obtained from 900 MHz NOESY

Unfortunately, the presence of repeating units and
amino acid duplication in the primary structures of 1 and
2 caused severe overlap of these signals, which prevented
the collection this kind of NMR data. In order to further
the available knowledge regarding the solution structures
of the peptides studied in this investigation, structural ex-
plorations with restrained molecular dynamics simulations
were performed. The conformational ensemble of most

short linear peptides in aqueous solution consists of a
large number of rapidly interconverting conformers. The
peptide samples a wide variety of conformational states,
which makes quantitative calculations of structure
meaningful mostly for peptides that adopt unique
conformations in solution. However, the average struc-
tures calculated in this work can be used to visualize the
structural trends depicted by the NMR data, as long as the

a T1 epitope.

Figure 3 Calculated structures. Calculated average structures for A 1, B 2, and C 3. The T1, B and B’ epitope regions are indicated. Peptide 3 is
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Figure 4 Circular dichroism spectra. 1 (black) and 2 (red). The solutions were 20 uM in water at the room temperature.

J

derived structures are not interpreted as unique. The aver-
age structures calculated for 1 and 2 are shown in Figure 3.
As mentioned in the results section, the NMR data
collected for 2 hints the presence of helical structures,
while 1 exhibits a more turn-like conformation. The NMR
data derived for 3 also indicates the presence of helical
structures. The NMR findings are confirmed by the calcu-
lated average structures.

While 1 and 2 only differ from each other in the B
epitope, the NMR data collected and the calculated
average structures for these peptides are very different
from each other. It is safe to infer then that the central B
epitope has a strong influence in the global structure of
both peptides. The interepitope NOEs detected for 1 and
2 attest for these differences. As mentioned previously,
only 1 displays multiple interepitope NOE connectivities.
Most of the T1-B interepitope NOEs observed for 1
involve the amino acid sequence N15V16N17A18. The
equivalent amino acid sequence in 2 is N15V16N17P18. It
appears that the substitution of A18 in 1 with P18 in 2
might change the conformation of the interepitope region.
An alternative way of accounting for the structural
differences observed between 1 and 2 is to consider the
sequences N13P14N15V16N17P18N19A20N21P22N23A
24N25P26N27A28 for 2, and N13P14N15V16N17A18N
19P20N21A22N23P24N25A26N27P28, for 1. In 2, the
T1-epitope region involved in interepitope NOEs,
N13P14N15V, is followed by the structural cadence
(NPNA)s. In 1, the structural cadence is shifted by the
presence of the amino acids N17A18, and interrupted at
P28. These interferences in the structural cadence alter its
original helical conformation, generating the structures
depicted in Figure 3A. It is interesting to notice that
the helical tendencies of 3 are carried over to 2, but
not to 1, which may be a consequence of the different

conformational tendencies displayed by both epitopes B
and B’. The uninterrupted helical conformations of
epitopes T1 and B’ in 2 allow the formation of a
continuous helix involving both epitopes, which exhibit
mostly intraepitope NOEs. Peptide 2 is possibly an
example where cooperative effects leading to a global
near-helical conformation for the T1B'T* construct are
active. Support of the helical nature of the repeat region of
CSP has been provided by structural studies performed by
other scientist. The crystal structure of the NPNA peptide
was determined [21] and compared to the structure of the
NPMNA motif in (NPMNA), peptides derived from
NMR studies [22]. Strong similarities between both mol-
ecules were found, indicating a type-I B-turn structure.
The lack of full elipticity for NPNA in its crystal structure
could be attributed to the presence of only one re-
peat motif in this peptide. The structure of CSP was
determined by Plassmeyer et al. [23] through the use of
CD, AEM, and molecular modeling. The results of this
investigation indicated that the repeat region in CSP forms
a stem-like superhelix. Although helical tendencies have
not been established as a common trend present in all
immunogenic peptides [24], strong correlations of im-
munogenicity and antigenicity with helix formation have
been previously documented [10,25-28]. Despite the
variations in structural tendencies observed for immuno-
genic peptides, which illustrate the diversity of the
immune system, it is possible that peptides derived from
the CSP are required to have helical structures to interact
efficiently with their corresponding antibodies. In that
case, a vaccine based NPNA repeat should show higher
efficiency as a pre-erythrocyte vaccine that would prevent
infection of hepatocytes by sporozoites. Attempts along
this line have been reported [29-31]. In an effort to reduce
the number of conformations available to native peptides
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containing the (NANP); and (NPNA); sequences, and
therefore improve their immunogenicity against live P.
falciparum sporozoites, Satterthwait and co-workers
synthesized conformationally-restrained versions of these
peptides where possible hydrogen bonds linking the N
residues were replaced by covalent bonds (Figure 5).
Among the results derived from these interesting studies,
it was observed that peptide A antiserum showed little or
no reaction with peptide B. This finding indicates that
anti-peptide A antibodies are conformationally specific,
and reinforce the notion that structural considerations
cannot be put aside when it comes to peptide-based
vaccines. Peptide A antiserum also exhibited a strong
reaction when titrated against living sporozoites in these
studies, indicating that this shaped peptide can generate
antiserum that cross reacts with the native form the P. fal-
ciparum CSP. This result suggests that the NPNA sequence
must be the one to deserve a very close look as an integral
part of an anti-plasmodial vaccine, rather than its analog
NANP.

In the work described herein, the T* epitope only
displays important NOE information in the B-T*
interepitope region. The average structure calculated for 2
exhibits a mixed structural character to the T* epitope,
with helical character close to the B epitope, and a more
extended nature toward the C-terminus of the peptide
(Figure 3). The crystal structure for region III (amino acids
310 to 375) of CSP was solved by Doud et al. [32]. In this
structure the T* epitope (amino acids 318 to 337) is distrib-
uted among a al-helix (partial sequence EYLNKIQN-), the
linker (partial sequence —SLS-), and the strand 1 (partial
sequence —TEWSPCSVT) regions. The structural results
are somewhat consistent with the crystal structure of T¥,
assigning helical character to the first few amino acids in
T# and a more extended tendency for the rest of the
peptide. As found for epitope T1, the structural features
displayed by T* in 2 are not mirrored by those exhibited
by this epitope in 1, since T* loses its helical nature in this
construct. This result seems to indicate that having the
proper repeat unit in a peptide construct generates
cooperative effects that favor structural tendencies toward
that of the cognate sequence.

It is well known that the repeat regions of CSPs form
different Plasmodium exhibit major and minor repeats.

T T
Peptide A Cys-N-P-N-A-N-P-N-A-N-P-N-A-NH)

I
Peptide B Cys-N-A-N-P-N-A-N-P-N-A-N-P-NH2

Figure 5 Conformationally restricted CSP central repeats. The
cross bars represent the hydrogen bonds replaced with ethylene
bridges that link N sidechains.
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In P. falciparum CSPs the NPNA and NVDP sequences
account for the former and latter, respectively. In spite
of their ubiquity in CSPs, the role of the minor repeats
has not received enough attention in the investigation of
peptide-based vaccines. An extensive comparison of CSP
amino acid sequences from various Plasmodium including
falciparum, knowlesi, malariae, brasilianum, cynomogli,
vivax and simium Vk210 and Vk247, has unveiled the
presence of key amino acids in the minor repeats that
could play a very important role in the stabilization and
cohesion of the overall protein structure. CSP-derived
peptides containing minor-repeat elements are currently
being characterized to test this hypothesis. If confirmed,
the overall helical character of the central region of CSP
would be retained, with the minor repeats serving the
purpose of determining the relative location of different
helical segments.

Another issue that requires close attention when
considering peptide-based vaccines is the polymorphism
observed for particular epitopes. Among these epitopes
T* exhibits a high degree of polymorphism identified to
alter the amino acid sequence in the region between E29
and L38 for different P. falciparum strains. The elegant
studies reported by Parra-Lépez and co-workers on the
evaluation of the specificity of the T* sequence regarding
its binding to the human class II MHC protein DR4
(HLA-DRB1*041) [33] indicate that the residues in the
peptide required for anchoring to DR4; L31, 134, N36, and
S39 in the sequence numbering used here; were highly
conserved in the Plasmodium sequences described to
date. On the other hand, our NMR study of peptide con-
structs containing the T* epitope indicates that it exhibits
partial helical character when bound to B; but it loses it
when bound to B. If the following factors are considered:
1) the important protein binding sites are conserved in
most strains [33], 2) the required partial elipticity is
brought about by cooperative effects (B instead of B) as
suggested by the results reported herein, and 3) individ-
uals vaccinated with one T* sequence exhibit significant
cross-reactivity with variants of the CSP present in other
Plasmodium strains [34,35]; it can safely be expected that
T* polymorphism should not affect the efficacy of malaria
vaccines containing it, regardless of the amino acid
sequence considered.

The results derived from the present investigation
should be helpful in the design of more effective,
conformationally defined malaria vaccine candidates. The
relative efficiency of T1IBT* and T1B'T* as immunogenic
peptides remains to be tested. Efforts along this line are
underway and will be reported as soon as available.

Conclusions
The present study investigated the structural behaviour
of the synthetic peptide constructs T1BT* and T1BT*,
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containing the tandemly repeated motifs (NANP); and
(NPNA), in water-based solvents. Experimental NMR
and CD data, in conjunction with molecular modelling,
provide additional information about the topology of
each peptide, and appears to be a useful tool to design
efficient vaccines that might be used against various
Plasmodium species. The presence of B’ in in T1B'T*
seems to stimulate cooperative effects, which help shape
epitopes T1 and T*in conformations similar to those
assumed by these peptides in the cognate structure of
CSP. The work presented also highlights the importance
of the structural aspects of biological molecules when it
comes to consider them as vaccine candidates. Antigen-
antibody interactions require the proper structural
conformations to be effective. The structural contribu-
tions of both members of this medicinal couple cannot be
ignored, and a lot of trial-and-error work could be
avoided, if the structures of chemotherapeutic molecules
are considered in detail as part of the research performed
around them.
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