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Abstract

Background: With the encouraging advent of new malaria vaccine candidates, mathematical modelling of expected
impacts of present and future vaccines as part of multi-intervention strategies is especially relevant.

Methods: The impact of potential malaria vaccines is presented utilizing the EMOD model, a comprehensive model
of the vector life cycle coupled to a detailed mechanistic representation of intra-host parasite and immune dynamics.
Values of baseline transmission and vector feeding behaviour parameters are identified, for which local elimination is
enabled by layering pre-erythrocytic vaccines of various efficacies on top of high and sustained insecticide-treated net
coverage. The expected reduction in clinical cases is further explored in a scenario that targets children by adding a

vaccine intervention result in large community benefits.

pre-erythrocytic vaccine to the EPI programme for newborns,

Results: At high transmission, there is a minimal reduction in clinical disease cases, as the time to infection is only
slightly delayed. At lower transmission, there is an accelerating community-level protection that has subtle
dependences on heterogeneities in vector behaviour, ecology, and intervention coverage. At very low transmission,
the trend reverses as many children are vaccinated to prevent few cases.

Conclusions: The maximum-impact setting is one in which the impact of increasing bed net coverage has saturated,
vector feeding is primarily outdoors, and transmission is just above the threshold where small perturbations from a

Background
In recent years, dramatic progress has been made in
reducing the burden of malaria through the scale-up of
insecticide-treated net (ITN) coverage and the increasing
use of artemisinin combination therapy (ACT) as first-line
treatment [1-4]. Nonetheless, as of the 2010 WHO report
there were still over 200 million cases of malaria per
year with 800 thousand attributed deaths, mostly young
sub-Saharan African children [1]. Further reductions
in burden and large-scale clearance of the disease will
increasingly depend on combinations of interventions. In
the face of potential drug resistance [5,6], insecticide resis-
tance [7], and vector behaviour changes [8,9] an effective
vaccine could become an increasingly important tool.
Malaria vaccine development is particularly challeng-
ing given the complexity of the parasite life cycle and the
variation in its antigenic presentation [10-12]. In spite of
the early potential demonstrated in studies of irradiated
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sporozoites [13], it has only been in the last few years that
vaccine trials have shown sufficiently high and durable
efficacies to consider widespread deployment. The RTS,S
subunit vaccine targeting the circumsporozoite protein
(CSP) in the pre-erythrocytic phase has advanced the
furthest along the clinical trial pathway among current
vaccine candidates. In Phase IIb and Phase III field tri-
als to date, the following protective efficacies have been
observed: 34% against infection in Gambian adults waning
rapidly over 15 weeks [14]; 30% against clinical episodes
and 45% against infection in Mozambican children over
6 months [15] and persisting at similar levels out to 21
months [16]; 49-56% against clinical episodes over a year
in children from Kenyan and Tanzanian children [17]
and from seven African countries [18,19]. These trials
are consistent with a ‘leaky’ vaccine that provides par-
tial protection to most vaccinated individuals [20,21] by
reducing the number of successful sporozoites and the
size of the liver-to-blood inoculum [22]. Beyond RTS;S,
there are additional pre-erythrocytic vaccine candidates,
as well as blood-stage vaccines to reduce morbidity and
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gametocyte-blocking vaccines to limit human-to-vector
transmission [23]. While this latter class of ‘sexual-stage’
vaccines does not provide direct individual protection
against infection, it may be a potent tool in bringing down
malaria transmission. Recent Phase I trials targeting the
sexual stage of the parasite, in particular the ookinete
surface proteins Pfs25 and Pfs28, have demonstrated per-
sistent high antibody levels that are effective in blocking
oocyst formation in the mosquito [23-26].

The objective of the present modelling study is to
quantify the potential impact of first-generation vaccine
candidates as components in multi-intervention elimina-
tion strategies, to elucidate which geographical settings
in a wide range of transmission intensities and ento-
mological behaviours enable the greatest impact, and to
estimate efficacy targets for future vaccines as a func-
tion of desired impact. Among the many malaria vac-
cine scenarios to which mathematical modelling may be
applied, the focus of the present effort is limited to sim-
ulating pre-erythrocytic and sexual-stage vaccines, which
are distributed either by mass campaign or by routine
vaccination. Their effects will be quantified in terms or
reduced inoculation rates, prevalence, clinical incidents,
and interruption of transmission. Mathematical mod-
elling is especially relevant today as some countries are
looking for evaluations to inform decisions and potential
plans regarding incorporating RTS,S into their national
Expanded Programme on Immunization (EPI).

The present work builds upon a substantial body of
work by the malaria modelling community to understand
the potential impact of malaria vaccines. Early malaria
models from Ross and Macdonald [27,28] were used to
focus on vector control. The modelling work to support
The Garki Project [29] represented a major advance in
modelling capabilities; evolutions of this model were used
in early models of vaccine action [30]. The clinical trials
of RTS,S and its potential rollout have helped to drive for-
ward a new generation of mathematical models with new
features, new capabilities, and more detailed representa-
tions of parasites and immunity [31-35]. The community
is benefiting from the array of independent modelling
efforts to understand vaccine rollouts, and more benefits
will accrue as ensemble modelling becomes the standard
in the field [36].

Methods

The present study utilizes the Disease Transmission
Kernel (DTK) model developed by the Epidemiological
Modelling (EMOD) group at Intellectual Ventures. This
individual-based model couples a detailed description of
the vector life cycle [37] with a comprehensive, mechanis-
tic representation of the intra-host parasite and immune
dynamics [38]. The model additionally includes a flexible
and powerful framework for configuring and distributing
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arbitrarily specified campaign interventions to targeted
groups of individuals [39].

Vector model

Multiple species of Anopheles mosquitoes may be sim-
ulated simultaneously, each population separately con-
figured according to its ecological and behavioural
preferences. For example, the female Anopheles arabiensis
deposits eggs primarily in temporary, rainfall-driven habi-
tat and has a higher propensity to feed outdoors [8]
or on livestock [40]. Vector populations are tracked as
cohorts throughout the full mosquito life cycle: from
eggs to larvae with a temperature-dependent develop-
ment period preceding emergence; a brief immature phase
including sugar-feeding and mating; repeating multi-day
gonotrophic cycles during which mosquitoes may be
exposed to infection by gametocytes; and a temperature-
dependent latency for sporogony [41]. This closed-loop
feeding cycle ensures that only successful blood meals,
which avoid potentially multiple modes of vector control,
result in viable eggs.

Critical to modelling multiple simultaneous interven-
tions accurately, the various feeding cycle outcomes —
death before, during, or after feeding; host unavailable;
successful human feed; etc. — are calculated from branch-
ing trees of conditional probabilities, the nodes of
which can be influenced by individual interventions. For
example, in the case of indoor-host-seeking mosquitoes
encountering both indoor residual spraying (IRS) and an
ITN, feeding outcomes will branch first at pre-feed IRS
killing and repellency from the house. The fraction sur-
viving these fates can be blocked by the ITN, which may
additionally kill a subset of the blocked fraction. The
unblocked fraction makes a feeding attempt, during which
some may be killed. Those surviving the feeding attempt
may at last be killed by IRS post-feed. Thus, the deterrent
and toxic effects of multiple interventions can be repre-
sented simultaneously. The allocation of mosquitoes to
feeding-cycle outcomes is done based on end-state prob-
abilities that have been aggregated over the individual
humans in the simulation. The presented simulations do
not examine interventions targeting other phases of the
vector life cycle (e.g. larvicides, larval habitat manage-
ment) or those targeting outdoor or animal feeds, as these
are not common components in vaccine rollout scenar-
ios. Nonetheless, the vector transmission model supports
such interventions.

Malaria infection and immune model

Within-host parasite dynamics are simulated by a micro-
solver for each individual in the simulation. Within
the framework of this microsolver, each new Plasmod-
ium falciparum infection begins with a fixed-duration,
liver-stage latency that is susceptible to drugs such as
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primaquine. The latent period ends with a configurable
burst of merozoites that commences the repeating two-
day cycles of the asexual blood-phase infection. The
model accounts for several antigenic components, to
which the immune system may develop immunity: the
merozoite surface protein (MSP) variant, the P, falciparum
erythrocyte membrane protein (PfEMP-1) presented on
the surface of the infected red-blood cell (IRBC), and
less immunogenic minor surface epitopes. A single clonal
infection is modelled with an antigenic repertoire of 50
unique PfEMP-1 variants, each associated with one of five
repeating minor epitopes. In the first asexual cycle, the
first five variants are expressed in equal numbers. The
blood-stage infection is updated in hourly time steps, dur-
ing which the immune system is stimulated by the IRBC
count of each antigenic variant, and concomitantly the
IRBC counts are decremented on account of immune and
drug killing effects.

At the end of each asexual cycle, the model calculates
the fraction of merozoites (16 for each previous IRBC)
that are killed by specific recognition of the MSP vari-
ant. It also calculates the fraction that is differentiated into
male and female gametocytes. To capture the dynamics of
the parasite’simmune evasion strategy, the model imposes
a constant per-parasite switching rate on the remaining
merozoites for advancing to subsequent antigenic vari-
ants in the repertoire. Super-infection is allowed for up to
five simultaneous infections. The full set of population-
level antigenic variants, out of which a single infection’s
repertoire is randomly drawn, consists of 100 MSP vari-
ants, 20 sets of five minor epitopes, and 1000 PfEMP-1
variants. The number of population-level variants affects
the age-pattern of natural immunity acquisition. The for-
mer two parameters drive the asymptotic levels of adult
detected parasitaemia; the latter parameter primarily gov-
erns the transition between child and adult detected
prevalence rates, provided the number of PfEMP-1 vari-
ants is substantially more than an individual would expe-
rience in a year. As in a previous study on the acquisition
of immunity through the mechanism of parasite popu-
lation diversity [42], the numbers of antigenic variants
in this study were chosen to resemble age-prevalence
curves from Namawala, Tanzania [43]. A ‘burn-in’ period
allows simulated individuals to build antibody responses
to a broad repertoire of parasite antigens appropriate
for their age, before perturbing the system with cam-
paign interventions. The simulations presented here used
a ten-year burn-in — a trade-off that allows population-
level transmission to approach asymptotic dynamics
while making appropriate use of available computing
resources.

The immune response to infection is characterized by
innate inflammatory and specific antibody components.
The cytokine-driven inflammatory response is modelled
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to depend on a temporary contribution from ruptur-
ing schizonts at the end of each asexual cycle, as well
as the concentration of IRBC surface antigens to which
an antibody response has not yet been developed. The
innate response — suppressed by the presence of specific
antibodies — is responsible for driving febrile symptoms
and broad-spectrum parasite suppression. The capacity to
generate specific antibodies grows in response to the con-
centration of each novel antigen. Above a threshold level
on the capacity, antibodies are produced in increasing
concentration until the corresponding antigenic variant is
cleared, at which time the capacity will decay to a non-
zero memory level. This mechanism captures the delayed
onset of specific antibody response that is reduced on
re-infection.

The model advances gametocytes through five stages
of development, characterized by different drug suscep-
tibilities, reaching maturity after ten days. Infectiousness
of individuals to mosquitoes is proportional to the num-
ber of mature gametocytes taken up in a blood meal,
but modulated by a factor that inactivates gametocytes at
high cytokine densities [44-49]. Peak infectiousness typ-
ically follows peak parasitaemia by about ten days. The
contribution of different age groups to transmission is
dependent on the more pronounced innate inflammatory
response in malaria-naive individuals, as well as the dif-
ferent durations of infection. The transmission-blocking
effect of sexual-stage vaccines is also applied at this stage
to directly reduce the probability of a viable human-to-
vector infection.

In the present study, the probability of a sporozoite-
positive mosquito feed infecting an individual is based
on a single random draw with 50% average transmis-
sion rate [50]. In the model, the generic pre-erythrocytic
vaccine takes an input efficacy parameter that defines
the fractional reduction in the probability of an infec-
tious bite causing an infection. In a time step (Af) with
a daily infectious biting rate (R), the probability of an
individual with vaccine efficacy (E) acquiring a new infec-
tion is: 1 — exp(—R - (1 — E) - Atf). For the sake of
simplicity, several additional model features related to
vector-to-human transmission have not been exercised in
this analysis. These include the potential to assign het-
erogeneous susceptibility, biting rates, and CSP-specific
antibody production in response to repeated challenges.

Simulated population and geography

Simulations have been run on the scale of a single vil-
lage with an initial population of 1,000 individuals, dis-
tributed exponentially in age with a mean of 23.2 years.
The annual birth rate of 36.5 per 1,000 individuals and the
age-dependent non-disease mortality rate result in a pop-
ulation doubling time of roughly 20 years. The age struc-
ture of individual immune systems is initialized through a
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10-year ‘burn-in’ period, after which various interventions
— insecticide-treated bed nets, pre-erythrocytic vaccines
(PEV), and sexual-stage vaccines — are distributed to a
subset of the population.

The climate and vector parameters were modelled on
the well-instrumented study site of Namawala, Tanzania
[51]. The rainfall data for January 1990 through December
1999 were obtained from the Global Precipitation Cli-
matology Centre (GPCC) [52], and the temperature data
from the Swiss Tropical and Public Health Institute (TPH)
[31]. The simulation includes distinct populations for each
of the three dominant species: Anophelesgambiaes.s.,
Anopheles funestus, and An. arabiensis, which account for
around 10%, 20%, and 70% of annual infectious bites,
respectively. The scale factors governing the available
habitat for each species have been set as in [37] by fitting
basic vector-model simulations with the seasonality and
species-mix of the Namawala series; the overall magni-
tude is varied over a range of values of the entomological
inoculation rate (EIR) that are all below those historically
seen in Namawala. The baseline transmission has a pro-
nounced rainy season, during which individuals in the
high-transmission scenarios average more than one infec-
tious bite per day. During the dry season, though, the
An. funestus component plays a disproportionately signif-
icant role, when for several months it accounts for the
majority of infectious bites. In order to present results
on vaccine impact that are more broadly applicable to
diverse geographic settings, simulations were configured
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over a range of values for the annual EIR (0 - 150) and the
fraction of An. arabiensis feeds that occur indoors (0 - 1).

Results and discussion

The simulated outputs presented in this paper address two
distinct deployment scenarios. The first section explores
the effect of adding a pre-erythrocytic or sexual-stage
mass-vaccination event to a large-scale distribution of
ITNs. This is not necessarily how first-generation vac-
cines are initially conceived to be deployed, but it is an
instructive exercise to understand what can or cannot be
achieved towards a goal of local disease elimination with
these tools alone. This scenario also explores the poten-
tial further reduction in burden once ITN campaigns
have saturated in their possible local impact. The second
section explores the effect of an EPI-like deployment of
pre-erythrocytic vaccines on the number of clinical dis-
ease cases in various age groups. These results should be
directly relevant to current and future vaccine deployment
plans, especially in pointing out the settings where the
greatest impact may be realized.

Mass-vaccination towards eradication

Figure 1 shows the simulated average population preva-
lence as detectable by slide microscopy (detection thresh-
old: 10 IRBC per pL) and the daily EIR in the decade
following a single mass-vaccination event with a PEV
efficacy that decays exponentially (5-year decay con-
stant) from the initially specified value. Each trace is the
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Figure 1 Effect of mass PEV distribution on parasite prevalence and EIR. The fraction of individuals with slide-microscopy detectable
parasitaemia (upper panel) and the daily entomological inoculation rate (lower panel) for ‘baseline’ simulations (darkest lines) in addition to four
PEV-distribution scenarios: 50% (red and blue lines) and 90% (orange and teal lines) efficacy, each at 50% or 80% demographic coverage. Results are
shown both for high-intensity (EIR=150, redder hues) and medium-intensity (EIR=15, bluer hues) transmission. The mean and standard deviation of
10 stochastic simulations are shown as lines and shaded areas, respectively. The An. arabiensis indoor feeding fraction is 50% at both transmission
intensities.
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mean of 10 stochastic simulations, with the 1-sigma vari-
ance represented by shaded bands. Redder colours cor-
respond to higher pre-intervention baseline transmission
(EIR=150), while bluer colours represent lower transmis-
sion (EIR=15). Five scenarios of increasing impact are
shown for each transmission level: a baseline scenario;
50% initial PEV efficacy and 50% demographic coverage;
50% efficacy and 80% coverage; 90% efficacy and 50% cov-
erage; and finally, 90% efficacy and 80% coverage. At lower
transmission and with 50% indoor An. arabiensis feed-
ing, the potential impact can be substantial. In contrast,
the high-transmission scenario has sufficiently high biting
rates (even during the dry season) that seasonal oscilla-
tions in prevalence are less prominent and there is min-
imal impact due to the mass-vaccination. Slightly more
individuals recover at the beginning of the dry season, and
the rise with the oncoming wet season is postponed. Note
that the last year of these simulations had very low rainfall
in the Namawala climate series, and thus the parasite lev-
els are lower than the preceding years, especially at lower
transmission intensities.

Whereas in the previous figure the single mass-
vaccination campaign was deployed in isolation, Figure 2
shows the effect of layering the same campaign on top of
sustained high ITN coverage levels. The concurrent distri-
bution of ITN is targeted at 80% of the entire population,
with a 90% efficacy for blocking indoor feeds and a 60%
killing efficacy. These values are kept constant to model
continuing replacement of old nets, including on-going
distributions to 80% of newborns. At high transmission
intensity (EIR=150) and with 50% indoor An. arabiensis
feeding (upper panel), the ITNs are responsible for a
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large reduction in An. arabiensis biting and almost com-
plete reduction in the fraction of transmission from the
more endophagic An. gambiaes.s. and An. funestus vec-
tors. While the corresponding PEV-only scenario corre-
sponds to a relatively flat part of the prevalence-to-EIR
correlation [53], the ITN-layered scenario is shifted into
the steeper region, such that successively higher-coverage
campaigns with higher-efficacy vaccines reduce preva-
lence to near-elimination levels. That is to say, even
with an order-of-magnitude higher baseline EIR than
the low-transmission, PEV-only scenario from Figure 1,
the effectiveness of the mass-vaccination is comparable,
on account of the transmission-reduction attributable to
ITNs. At low transmission intensity (EIR=15), the ITN
intervention alone interrupts transmission within two to
three years for the same fraction (50%) of An. arabiensis
indoor feeds (not shown). However, it is worth not-
ing that even with exclusive outdoor feeding of the
An. arabiensis species (lower panel), the large reduction
in the more ITN-susceptible vectors (especially the dry-
season An. funestus component) means that the combined
interventions can reduce prevalence to near-elimination
levels at sufficiently high coverage and efficacy.

While the population-level dynamics of parasite preva-
lence are similar for pre-erythrocytic and sexual-stage
vaccine interventions [39], the different modes of action
result in notable differences in disease burden in vacci-
nated individuals. Figure 3 presents the daily incidence
of new clinical cases, specifically malaria-attributable
fevers of over 38 degrees Celsius, for individuals over 10
years of age grouped according to intervention status.
The act of distributing ITNs to 80% of the population
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Figure 2 Effect of mass PEV and ITN distribution on parasite prevalence. The fraction of individuals with slide-microscopy detectable
parasitaemia for one scenario with sustained 80% ITN coverage plus four scenarios layering an additional PEV distribution with 50% (red and blue
lines) or 90% (orange and teal lines) efficacy, each at 50% or 80% demographic coverage. Upper panel: Baseline EIR=150, An. arabiensis vectors take
50% of feeds indoors. Lower panel: Baseline EIR=15, An. arabiensis feeds exclusively outdoors.




Wenger and Eckhoff Malaria Journal 2013, 12:126
http://www.malariajournal.com/content/12/1/126

Page 6 of 13

ITN + pre-erythrocytic vaccine
80% coverage, 50% vaccine efficacy

- —_ N
o w o

Daily Clinical Incidence per 1,000 individuals
wv

Years since Campaign

transmission.

Figure 3 Clinical cases by intervention status in PEV and sexual-stage vaccine distribution scenarios. The daily incidence (averaged over a
one-month sliding window) of new clinical malaria episodes in over-10 year-olds, grouped according to the protection provided by ITN and vaccine
interventions each with 80% demographic coverage: no protection (black), ITN-only (green), vaccine-only (blue), both ITN and vaccine (red). Left
panel: Pre-erythrocytic vaccine with 50% efficacy against acquiring infection. Right panel: Sexual-stage vaccine with 50% efficacy against
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is responsible for a large community-wide reduction in
incidence regardless of intervention status. The visible
year-to-year variation in clinical cases is a feature driven
primarily by the varying levels of annual rainfall in the his-
torical data series, but also to a lesser extent by waning
vaccine efficacy. Sleeping under a bed net always provides
personal protection on top of the community-level effect
on transmission (green line below black in both panels).
For the PEV scenario (left panel), individuals have addi-
tional personal protection against new clinical cases (blue
line below black; red line below green). For the analo-
gous sexual-stage vaccine scenario (right panel), there is
no additional personal protection, although for the same
vaccine efficacy, the community effect is comparable in
magnitude.

Having explored the characteristic dynamics of large-
scale vaccine-plus-ITN campaigns, the following question
can be posed: in which geographical and entomological
settings can such a campaign locally interrupt malaria
transmission? The left panel of Figure 4 maps out the
parameter-space regions of disease persistence and elim-
ination as a function of baseline annual EIR and of
An. arabiensis indoor feeding fraction for a scenario con-
structed as before with ITNs and PEVs (50% efficacy)
independently distributed to 80% of the population. The
outcome of each simulation is represented by a grey cross
(elimination) or circle (persistence). A novel Separatrix
Algorithm was utilized to iteratively infer the probability
of disease elimination at any point in phase space based
on previous simulations, and then to commission new

simulations with parameters most likely to resolve the
region of interest that separates persistence from elimi-
nation (Klein DJ, Baym M, Eckhoft P. submitted: 2012).
The inference part of the algorithm employs a variation
on binary kernel regression to calculate probability distri-
butions of ‘success’ (i.e. whether zero infected individuals
remain a decade following the campaign intervention)
based on the outcomes of all completed simulations. The
selection of subsequent simulations in parameter space
utilizes a Bayesian design-of-experiments methodology
that places samples to maximize the expected information
gain (in this case, on the location of the 50% probability
isocline in parameter space) as measured by a Kullback-
Liebler metric. Disease elimination is achieved at low
baseline transmission or high indoor-feeding where ITNs
are most effective. The upper-left corner of persistent
disease represents settings with high transmission from
vectors largely unaffected by ITNs.

The right panel of Figure 4 shows the marginal impact
of the additional vaccine intervention and how it depends
on vaccine efficacy ranging from 0% to 90%. Each iso-
cline corresponds to the location of the 50% elimination
probability isocline inferred as in the left panel. For exam-
ple, moving along a vertical slice at 50% An. arabiensis
indoor-feeding, a 50% effective vaccine increases the base-
line transmission intensity where elimination is achievable
from an EIR of 75 to an EIR of 80. However, a 90%
effective vaccine would allow disease elimination for a
pre-intervention baseline transmission up to an EIR of
110 when combined with a high-coverage ITN campaign.
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Figure 4 Regions of disease elimination and persistence after PEV and ITN distribution. Left panel: The separatrix between the regions of
parameter space with disease persistence (dark blue) and local disease elimination (white). Individual simulations are marked either with a cross (for
successful elimination) or a circle (disease persistence). ITNs and 50%-efficacy pre-erythrocytic vaccines (PEV) are distributed independently at 80%
coverage. Right panel: The location of the separatrix (50% probability isocline) between regions of parameter space with disease persistence for PEV

efficacy values ranging from 0% to 90%.

Note that this range of intermediate EIR values corre-
sponds to relatively large swaths of sub-Saharan Africa as
estimated by the Malaria Atlas Project [54]. Alternatively,
consider a horizontal slice at a baseline EIR of 20. A 50%
effective vaccine reduces the lower limit of the elimina-
tion regime from an indoor-feeding fraction of about 18%
down to 10%; a 90% effective vaccine ensures that elim-
ination is achieved even for exclusively outdoor-feeding
An. arabiensis. The ITN campaign completely stops trans-
mission due to the other species, and the vaccine efficacy
is high enough to drive residual transmission into stochas-
tic fadeout.

The very significant reduction in transmission (i.e. local
elimination) that is shown here for 80% ITN cover-
age at high endophily is comparable to previous mod-
elling work that has shown dramatic reductions at high
population-wide coverage [55]. Similar large-scale reduc-
tions in transmission have also been noted in village-
scale trials with mass ITN coverage where the dominant
vectors were highly endophilic [56,57]. However, several
important confounding factors should be noted before
attempting to relate these simulations to operational dis-
cussions of disease elimination. First, distributed bed nets
do not necessarily translate to protected individuals — they
may fall into disrepair; they may not cover all residents
in a covered household; potentially-protected individu-
als may not use them every night. The latter effect is
especially notable, as individual usage is typically sub-
stantially lower than household ownership [1,58-60]. As

such, it is important to clarify that the simulations in this
paper correspond to consistent ITN usage in 80% of sim-
ulated individuals. Second, the sustained efficacy of ITNs
relies on the persistence of susceptible feeding behaviour
in the mosquito. While in many cases the indoor fraction
of human exposure remains high [61,62], in some set-
tings significant shifts in feeding time and location have
been observed [8]. Finally, while the present work focuses
on single-village dynamics, the interruption of transmis-
sion at larger spatial scales is likely to be significantly
more challenging, due to heterogeneity in transmission
intensity, spatial structure in ITN coverage [63], and re-
introduction from human migration [64,65]. While the
present analysis can show generically the magnitude of
the potential added-value from layering pre-erythrocytic
vaccines on top of mass-distributed I'TNs, it will be valu-
able to address the above considerations in the future in a
site-specific fashion.

Clinical incident reduction with child-targeted campaign

Because of the personal protection provided by even a
partially protective pre-erythrocytic vaccine, there are
several reasons why it is natural to consider a targeted
intervention to minimize cases in young children. This
group bears most of the current burden of disease [1],
and children have less acquired immunity than older indi-
viduals in the same geographic settings [66,67]. Further-
more, EPI represents the most logical existing vaccination
infrastructure within which to deploy a new vaccine. To
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this end, scenarios are constructed that represent an “EPI-
plus” rollout of a pre-erythrocytic vaccine (50% efficacy
and 5-year decay profile) and a potential future vaccine
(90% efficacy) as part of a one-time mass vaccination of
under-5 year olds followed by vaccination of new births
over the following decade. Both the initial campaign and
the ongoing routine vaccination coverage is 80% of tar-
geted individuals.

Figure 5 shows the clinical incidence in three age
groups (under-5, 5-to-10, and over-10) for a scenario
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with baseline EIR of 100, exclusive indoor-feeding of the
An. arabiensis vector, and 40% population coverage of
ITNs with the previous set of parameters. Compared to
the counterfactual of only bed nets (black line), the figure
quantifies the direct benefit of 17.4% (44.9%) fewer cases
after year-1 in the under-5 cohort that is targeted with
the 50% (90%) efficacy vaccine. Because of the waning
vaccine efficacy, the 5-to-10 year-old group experiences
a smaller 8.5% (22.5%) reduction in cases. The reduc-
tion in cases is more pronounced in the earlier years
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Figure 5 Reduction in clinical incidence by age after child-targeted PEV campaign. The daily clinical incidence grouped by age — under 5
years (upper panel), 5 to 10 years (middle panel), over 10 years (lower panel) — in a scenario with 40% population-wide ITN coverage (black lines)
compared to scenarios that additionally include a mass-vaccination of under-5 year-olds followed by routine vaccination of newborns with a 50%
(blue lines) or 90% (red lines) efficacy PEV at 80% coverage. Daily incidence rates are presented as the running average over a one-month window.




Wenger and Eckhoff Malaria Journal 2013, 12:126
http://www.malariajournal.com/content/12/1/126

as the older mass-vaccinated children age into this cat-
egory. Despite the fact that the over-10 cohort is com-
pletely unvaccinated (at least for the first five years until
the mass-vaccinated cohort ages in), a small 2.5% (9.5%)
reduction is still observed in this age group that is a result
of the community effect from fewer infected young chil-
dren. Note that the community effect on the older age
group is quite sensitive to assumptions on what fraction
of human-to-vector transmissions are from children and
being reduced by the fewer infections in that vaccinated
group [68].

Using the metric of clinical cases averted compared to
the ITN-only scenario, different settings are constructed
to understand where a vaccine rollout would be most ben-
eficial. To this end, 10 stochastic simulations were run for
all combinations of the following three parameters: annual
baseline EIR (15, 30, 50, 100, 150), An. arabiensis indoor-
feeding fraction (0%, 20%, 40%, 60%, 80%, 100%), and
population-wide ITN coverage level (0%, 40%, 60%, 80%).
The left panel of Figure 6 presents a parameter-sweep
summary of the average annual number of clinical cases
averted by an EPI-like rollout of either a first-generation
pre-erythrocytic vaccine (50% efficacy, bluer symbols) or
a potential future vaccine (90% efficacy, redder symbols).
In order to calculate the reduction per person-year, one

Page 9 0of 13

would divide the total reduction in annual incidents by
the average population in the post-intervention period,
roughly 1,780 individuals in all simulations. The horizon-
tal axis, the monthly under-5 clinical incidence in the two
driest months, is a measure of the difficulty to interrupt
transmission. It was found to be more predictive than
other experimentally measurable quantities like parasite
prevalence or annually averaged clinical incidence. The
total number of annual clinical cases in the no-vaccine
scenarios ranged from less than one on average to more
than 160 for the various parameter settings.

At the highest residual transmission levels (EIR=150
with 0% ITN coverage), despite protection from 50% or
even 90% of infectious bites, most individuals still spend
the majority of the year infected with one or more infec-
tions (see Figure 1). It can be easily understood, then, why
the total number of clinical cases in a year is only slightly
reduced as even vaccinated individuals inevitably become
infected. However, the fractional reduction in incidence
accelerates at lower residual transmission (i.e. higher ITN
coverage or lower baseline EIR as in Figure 2). This transi-
tion is also characterized by significant numbers of cases
averted in unvaccinated individuals. At very low residual
incidence, there are diminishing marginal benefits from
vaccinating a whole population to avert the last few cases.

Total clinical incidents averted annually in post-intervention decade

Daily Clinical Incidence per 1,000 (under-5 year-olds)

Monthly clinical incidence (under-5 year-olds in two driest months)
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Figure 6 Summary of clinical cases averted with addition of child-targeted PEV campaign. Left panel: Summary of the average clinical cases
averted in an EPI-like rollout of both an RTS,S-like vaccine (50% efficacy, 5-year exponential decay) and a potential future vaccine (90% efficacy).
Incidence reductions are compared to ITN-only scenarios for a parameter sweep over annual baseline EIR, An. arabiensis indoor-feeding fraction, and
population-wide ITN coverage. The horizontal axis, the monthly under-5 clinical incidence in the two driest months, is a measure of the difficulty to
interrupt transmission. The markers indicated by (a) and (b) correspond to the entomological and ITN settings of the subpanels shown on the right.
Right panels: Daily clinical incidence of under-5 year-olds with (green) and without (black) ITN protection for the no-vaccine simulations with (a)
baseline EIR=100, exclusive indoor-feeding An. arabiensis, 40% ITN coverage and (b) baseline EIR=15, exclusive outdoor-feeding An. arabiensis, 60%
ITN coverage. Daily incidence rates are presented as the running average over a one-week sliding window.
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The exception to this trend is the realization of continuing
dividends upon achieving local elimination. If vaccination
could be targeted at identifiable hot-spots [69,70] the cost-
effectiveness of the campaign would be extended to lower
transmission levels.

It is instructive to look more closely at why the accel-
erated reduction in clinical cases is more correlated with
the level of dry-season transmission than the annually
averaged parasite prevalence. The right panels of Figure 6
compare two parameter combinations, for which the
annually averaged parasite prevalence in the ITN-only
baseline scenario is around 28% and the annual number
of clinical cases is around 80. The two scenarios in the
right panels correspond to the no-vaccine baselines for
the points indicated by (a) and (b) in the left panel. For
the first set of parameters (baseline EIR = 100, exclusive
indoor-feeding An. arabiensis, 40% ITN coverage) shown
in the upper-right panel, all vectors are very susceptible
to bed nets. This is evident in the pronounced separation
in incidence between protected and unprotected individ-
uals. The latter group is responsible for maintaining the
moderate level of dry-season transmission. However, for
the second set of parameters (baseline EIR = 15, exclu-
sive outdoor-feeding An. arabiensis, 60% ITN coverage)
shown in the lower-right panel, the An. arabiensis com-
ponent is unaffected by ITNs while the components of
transmission due to An. funestus and An. gambiae s.s. are
essentially wiped out. This situation is evident in the
homogeneous risk of protected and unprotected individu-
als to the remaining transmission that is almost exclusively
exophagic. The very low transmission during the dry sea-
son makes the system sensitive to a relatively modest vac-
cine rollout. For these reasons, the latter scenario results
in 46 cases averted annually, compared to 16 cases averted
for the first set of parameters (see the 90% PEV efficacy
points indicated in left panel of Figure 6).

At this point, it is worthwhile to note that the predic-
tions of previous modelling efforts are largely consistent
with what has been presented in the this paper. It has been
noted previously that pre-erythrocytic vaccines should be
more effective when deployed in low-transmission envi-
ronments [34] and more cost-effective when combined
with transmission-blocking elements [71]. Similarly, it has
been shown in an individual-participant pooled analysis
of phase II RTS,S data that vaccine efficacy against clini-
cal episodes drops quickly from 60% at low transmission
to 4% at high transmisison [72]. While substantial positive
effects of mass-vaccination near the elimination thresh-
old (EIR=2) have been predicted, at higher transmission
(EIR=20) EPI should be more cost-effective, especially if
it can be targeted at low-transmission areas [36]. Finally,
heterogeneity in biting exposure (as e.g. in Figure 6) has
also been shown to affect the apparent efficacy of vaccine
trial data if the effect is ignored [20].
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Conclusions

Towards the long-term eradication of malaria, the his-
tory of other vector-borne diseases, such as yellow fever,
suggests that an effective, long-lasting vaccine will be an
invaluable tool [26]. Looking at the current generation of
vaccines, a goal of global eradication is certainly daunting.
However, pushing to higher efficacy (as shown in Figure 4)
provides a potentially complementary way of ‘shrinking
the map’ [73] of malaria endemic regions beyond what is
achievable with high sustained ITN coverage — especially
in areas with plentiful exophagic vectors. A few features
of the presently constructed mass-vaccination campaign
will warrant future studies. In order to maximize the wan-
ing vaccine effectiveness at transmission chokepoints, it
would appear preferable to engage in mass-vaccinations
at least a year following the initial drop in incidence
from ramping up ITN coverage. Furthermore, investiga-
tions including boosting doses and newborn vaccination
would be expected to benefit from sustaining high effi-
cacy over several years before elimination. In this study,
vaccine doses and ITNs have been distributed indepen-
dently. However, while this is an assumption that may be
justified under certain circumstances, the modes of dis-
tribution may be such that the interventions are more
correlated (e.g. ITN distributions at ante-natal clinics [74]
or accompanying the vaccination campaign [75]). Finally,
the potential to combine pre-erythrocytic and sexual-
stage vaccines in a single dosing schedule would likewise
provide complementary increased impact.

A broad survey of how a ‘catch-up + EPI’ rollout of
an RTS,S-like vaccine can effect a reduction in clinical
disease cases has been presented. Over the many scenar-
ios considered, a rough scaling emerges in the magnitude
of the clinical case reduction versus the dry-season inci-
dence, revealing subtle thresholds that depend on het-
erogeneous vector behaviour and intervention coverage.
Figure 6 reminds us that for the same average transmission
levels, homogeneous populations (e.g. the dark-coloured
0% ITN coverage points) are an easier target than pop-
ulations with heterogeneous baseline intervention cover-
age. The unprotected sub-population represents a pocket
of more persistent transmission, and the protected sub-
population already has some potential infections blocked
by ITNs, which need not be perfectly complementary to
the addition of vaccines. Especially relevant to the ques-
tion of where vaccines would have the most impact, it
has been shown that regions with similar parasite preva-
lence levels can have significantly different responses to
vaccine interventions. One characteristic pattern is where
ITN coverage is low and vector behaviour is conducive to
ITN control. In this case, a small ramp-up in ITN cover-
age would not only have a greater effect than introducing
a vaccination campaign, but would also make a poten-
tial vaccination campaign much more effective. On the
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other hand, there are settings with negligible marginal
benefit of additional ITN, since only a strongly exophagic
residual vector population remains. Especially when the
ITN-susceptible vectors were responsible for a large frac-
tion of dry-season transmission (as for the Namawala
ecology), this type of setting makes a good candidate for
introducing vaccines.

In this paper, ITNs and vaccines have been compared in
their combined effectiveness at preventing clinical cases.
That is to say, at 80% coverage of the 218 children under
age 5 in year-0 and the 62.7 new births per year in the
following decade, 680 vaccinations are being dispensed
to prevent up to 200 or 450 clinical cases with a 50%
or 90% effective vaccine, respectively. These and related
models and simulations can thus provide a bridge from
vaccine efficacies measured in single-patient challenge
studies to the efficaciousness at preventing clinical dis-
ease in community rollouts in different settings. Meriting
future efforts will be an extension of this study to compare
to a metric that is weighted even more to the younger ages
who disproportionately experience the most severe symp-
toms and deaths [1], and to judge the cost of potential
vaccine interventions not simply against the absence of
additional benefit from more ITNs, but also against other
interventions that can provide personal protection against
outdoor feeding vectors [76-78].
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