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Abstract

Background: The transmission of malaria is the leading public health problem in Ethiopia. From the total area of
Ethiopia, more than 75% is malarious. The aim of this study was to identify socio-economic, geographic and
demographic risk factors of malaria based on the rapid diagnosis test (RDT) survey results and produce the
prevalence map of the area illustrating variation in malaria risk.

Methods: This study accounts for spatial correlation in assessing the effects of socio- economic, demographic and
geographic factors on the prevalence of malaria in Ethiopia. A total of 224 clusters of about 25 households each
were selected from the Amhara, Oromiya and Southern Nation Nationalities and People’s (SNNP) regions of
Ethiopia. A generalized linear mixed model with spatial covariance structure was used to analyse the data where
the response variable was the presence or absence of malaria using the RDT.

Results: The results showed that households in the SNNP region were found to be at more risk than Amhara and
Oromiya regions. Moreover, households which have toilet facilities clean drinking water, and a greater number of
rooms and mosquito nets in the rooms, have less chance of having household members testing positive for RDT.
Moreover, from this study, it can be suggested that incorporating spatial variability is necessary for understanding

and devising the most appropriate strategies to reduce the risk of malaria.
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Background
Malaria is a life-threatening disease affecting the world’s
most under-developed countries and regions where basic
healthcare infrastructure is lacking [1] as well some devel-
oped countries. Malaria is a major cause of morbidity and
mortality in Africa, especially in sub-Saharan African coun-
tries [1]. It is a leading cause of death amongst children in
many African countries [2]. With 68% of the total popula-
tion of Ethiopia living in areas at risk of malaria [3], it is a
major public health problem and for many years the prime
cause of illness and death [3,4]. From the total population
of Ethiopia (77,127,000 in 2007), more than 50 million
people are at risk from malaria [5]. In general, 4-5 million
people are affected by malaria annually [6,7].

Epidemics of malaria are relatively frequent [8,9] involv-
ing highland or highland fringe areas of Ethiopia, mainly
areas 1,000-2,000 meters above sea level [10-12]. Notably
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this altitude covers 48% of the regions of Amhara, Oromiya
and Southern Nations Nationalities and People’s regions of
Ethiopia. Malaria epidemics have serious consequences for
Ethiopia’s subsistence economy as the malaria transmission
peaks during the major harvesting seasons. To control the
risk of malaria, early diagnosis and prompt treatment is one
of the key strategies. To diagnose malaria, clinical diagnosis
is the most widely used. But, laboratory facilities are not
available in all areas of the country [13,14]. The standard
method to diagnose malaria is microscopy. However, this
form of diagnosis is not accessible or affordable in most
peripheral health facilities. The recent introduction of
rapid diagnostic tests (RDT) for malaria is a significant
step forward in case detection, timely treatment and
management, and reduction of unnecessary treatment.
RDT could be used in malaria diagnosis during
population-based surveys and to provide immediate
treatment based on the results.

RDTs offer the potential to extend accurate malaria
diagnosis to areas where microscopy services are not avail-
able such as in remote locations or after regular laboratory
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hours. Rapid malaria diagnostic tests have been developed
in the lateral flow format [15]. These tests use finger-
stick or venous blood, which takes only 10 to 15 minutes
to complete, and do not require a laboratory. Non-clinical
staff can easily learn to perform the test and interpret
the results [16].

It is essential to identify the socio-economic and demo-
graphic risk factors associated with the prevalence of mal-
aria using data obtained from the rapid diagnosis test. Such
a study of the identification of the socio-economic and
demographic risk factors is helpful in identifying house-
holds who have a critical need for intervention. In previous
studies, Ayele, Zewotir and Mwambi (2012) have concluded
that malaria problem in Amahara, Oromiya and SNNP
regions of Ethiopia are associated with key socio-economic,
demographic and geographic factors, in particular it was
noted that poverty levels of households are highly associ-
ated with the risk of malaria. Nevertheless the spatial distri-
bution of malaria was not considered or investigated [17].
Though identification of the household characteristics is
essential for grass root level intervention, the government
goals and targets are focused on achieving malaria
eradication/reduction within specific geographical areas.
Such studies are limited, and hence the conception of
this study. Therefore, the objective of this study is to
undertake a statistical analysis of malaria incidence. This
will identify important socio-economic, demographic
and geographic variables associated with the disease
and ultimately a prevalence map of the area illustrating
variations in malaria risk.

Methods

Study design

From December 2006 and January 2007, a baseline house-
hold cluster malaria survey was conducted by The Carter
Center (TCC). The questionnaire was developed as a modi-
fication of the Malaria Indicator Survey (MIS) Household
Questionnaire. The questionnaire had two parts; the house-
hold interview and malaria parasite form. For this survey,
the sampling frame in each of the rural populations of
Ambhara, Oromiya and SNNP regions was a Kebele
(the smallest administrative unit in Ethiopia). The study
area with the selected households is presented in Figure 1.
From the three regions, 5,708 households located in 224
clusters were included in the survey. Out of these house-
holds, Amhara, Oromiya and SNNP regions covered 4,101
(71.85%), 809 (14.17%) and 798 (13.98%) households
respectively. Prior to conducting the survey, 224
Kebeles were selected. From each Kebele, 12 households
(even numbered households) were selected for malaria
tests. In the survey each room in the house was listed sep-
arately. In addition to the number of rooms and number of
nets, the persons sleeping under each net were listed. The
detailed sampling procedure is presented in [17-19].
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Before testing for malarial parasites, consent was
obtained from the participants. To collect the sample,
finger-prick blood was collected from the participants for
the malaria rapid diagnostic test. The test used is known as
ParaScreen which is capable of detecting both Plasmodium
falciparum and other Plasmodium species. Participants
with positive rapid tests were immediately offered treat-
ment according to national guidelines.

Variables of interest

Response variable

The outcome of interest is the malaria rapid diagnosis
test (RDT) result. RDTs assist in the diagnosis of malaria
by detecting evidence of malaria parasites in human
blood and are an alternative to diagnosis based on clinical
grounds or microscopy, particularly where good quality
microscopy services cannot be readily provided. Thus, the
response variable is binary, indicating whether or not a
person is positive for malaria using the RDT.

Independent variables

The independent variables or covariates were the base-
line socio-economic status, demographic and geographic
variables including gender, age, family size, region, alti-
tude, main source of drinking water, time taken to col-
lect water, toilet facilities, availability of electricity, radio
and television, total number of rooms, main material of
the room’s walls, main material of the room’s roof, main
material of the room’s floors, incidence of anti-mosquito
spraying in the past 12 months, use of mosquito nets
and total number of nets. Malaria test (RDT result), age
and sex were collected at individual level. Altitude, main
source of drinking water, time taken to collect water,
toilet facilities, availability of electricity, radio, television,
total number of rooms, main material of the room’s
walls, main material of the room’s roof, main material of
the room’s floor, use of anti- mosquito spray in the past
12 months, use of mosquito nets and total number of
nets were all collected at household level.

The statistical model

The distribution of malaria is nonrandom across a land-
scape in areas of higher or lower transmission intensity
and malaria risk. The transmissions are separated by
greater or lesser distances from each other. Based on
geographical aggregation, there are two distinct levels.
These are, the focal unit of malaria transmission, the
area over which human malaria is actively transmitted
originating from a specific aquatic breeding site and the
household or other reasonably identified point of contact
between a small group of humans and mosquito vectors.
The baseline household cluster malaria survey which
was conducted by The Carter Center from December
2006 to January 2007 includes the geographical locations
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Figure 1 Map of Ethiopia showing the surveyed households.

of the reference for each household. Therefore, it is of
interest to know whether the data display any spatial
autocorrelation. Furthermore, it is important to check
whether surveys that are near in space have malaria
prevalence or incidence that is similar with the surveys
that are far apart. This is important because spatially
correlated data cannot be regarded as independent
observations. If the analysis does not take account of the
correlation structure of the data, the estimates obtained
from the analysis may be inaccurate because of the
underestimated standard errors. Therefore, the objective
of this study is to undertake statistical analysis of malaria
incidence to identify important socio-economic, demo-
graphic and geographic variables associated with the
disease and to produce prevalence maps of the area
illustrating the variation in malaria risk using spatial
statistics analysis. Spatial statistics can be divided into
three methods. These are: point pattern analysis, methods
for lattice data and geostatistics [20,21]. Point referenced
data is often called geocoded or geostatistical data. Areal
data is often called lattice data. Some spatial data sets
feature both point and areal-level data. Point pattern data:
The response is often fixed (occurrence of the event), and
only the locations where it occurs are thought of at ran-
dom. Of these, the geostatistical approach is most relevant
to epidemiological analysis which is conducted at the land-
scape scale and based on remote sensing [22-24].

A common approach to integrate spatially correlated
data with the random effects and proceed with maximum
likelihood based approaches for estimating the covariate

and covariogram parameters, is based on the theory of
generalized linear mixed models (GLMM). Using GLMM,
numerical approximation can be implemented [20,25].

Non-Gaussian spatial problems may be formally analysed
in the context of generalized linear mixed models (GLMM).
Specification of the likelihood of the random variable y(s) is
required where s generally denotes the location the obser-
vation is made. As in classical generalized linear models
(GLMs), there is a canonical parameter corresponding to
the distribution, which is nominally a function of the loca-
tion parameter via the link function g(.) for the distribution.
This function is assumed to be linear in the explanatory
variables. In the classical formulation of GLMs containing
only fixed effects, g(p) = Xf3, where X is the matrix of
explanatory variables [26-30]. To incorporate a spatial
process, we assume Y(s;|a) is conditionally independent
for any location s; with conditional mean E[y(s;)|a] = p(s;).
The parameter o is used to define the distribution of s.
Then, the spatially correlated random effect is incorporated
into the linear predictor as:

(k) = XB+ Za (1)

where X and Z are the design matrix. The error term
accommodates over-dispersion relative to the mean-
variance relationship implied by the distribution under
consideration. The random effect at location s;, a ~ Gau
(0, % () and e~Gau(O, 051), with spatial correlation is
parameterized by 0 in ¥ ,(6) [20]. Note that s; is just one
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location. s = (s, ,sx)” denotes a vector of k locations with
variance-covariance matrix .

Spatial dependence may be represented by a range of
functions [31]. To describe spatial correlation of observa-
tions, there are three major functions used in geostatistics.
These major functions are the correlogram, the covariance,
and the semivariogram. Semivariogram is also more simply
called the variogram. In geostatistics, the variogram is
the key function and is used to fit a model for the spatial
correlation in the data. The model which is obtained
using the variogram is used in kriging estimation proce-
dures, a method which was first used in minimizing [23].
Moreover, variogram models are also used to understand
maximum distances of spatial autocorrelation which can
further be used in construction of search parameters for
different interpolation techniques. A variogram represents
both structural and random aspects of the data under
consideration. The structural part of the variogram model
is represented by the range of a variogram. Furthermore,
the variogram values increase with increases in the distance
of separation until it reaches the maximum at a distance
known as the “range”. To develop the variogram, assume
u(s) is a constant, that is constant mean y(s), and define

var{Z(s1)-Z(s2)} = 2y(s1-52) (2)

In statement (2), the variance of s; and s, is through
their difference s;-s,, and the process which satisfies this
property is called intrinsically stationary. The function
2y(.) is called the variogram and y(.) the semivariogram.

The other concept here is isotropy. Suppose the process
is intrinsically stationary with semivariogram [y(k), & € R,
If y(h)=Yo(lhll) for some function Y, ie. if the
semivariogram depends on its vector argument / only
through its length llZll, then the process is isotropic.
Therefore, a process which is both intrinsically stationary
and isotropic is also called homogeneous. Isotropic
processes are convenient to deal with because there
are a number of widely used parametric forms for y,
(h). Using semivariance y,(t) for interval distance class
t, lag distance interval ¢, ¢, (nugget variance)>0,c;
(structural variance) > ¢y and R is the range parameter R,
some of the examples are:

1. Spherical:

0 ift =0,
3t 1/6\3
£ = - (= (<R
%olt) = Hat+a {ZR 2(12) } f < <R,
¢y +cit LftZR

It is a convenient form because it increases from a
positive value ¢, when ¢ is small, levelling at the
constant ¢y + ¢; at ¢ = R. This is the so-called
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"nugget/range/ sill" form which is often considered a
realistic and interpretable form for a semivariogram.
2. Exponential:

0ift = 0,
Yolt) = {CO + cl(l—eit/k ift > 1.

This is simpler in functional form than the spherical
case (and valid for all d) but without the finite range
of the spherical form. The parameter R has a similar
interpretation to the spherical model however, of
fixing the scale of variability.

3. Gaussian:

0ift = 0,
}/Q(t) - ¢+ 1 (1—672/1?2)[]% > 1.

4. Exponential-power form:

0ift =0,
)/O(t) = o +¢ (1_67|t/R|P)?ft > 1.

Here 0 < p < 2. This form generalizes both the
exponential and Gaussian forms, and forms the basis
for the families of spatial covariance functions
introduced by Sacks et al. in 1989 [32]. However, in
generalizing the results from one dimension to
higher dimensions, these authors used a product
form of covariance function in preference to
constructions based on isotropic processes [33].

Spatial prediction

Modelling spatial data is not only useful for identify-
ing significant covariates but for producing smooth
maps of the outcome by predicting it at unsampled
locations. Spatial prediction is usually referred to as
kriging. Kriging is an optimal interpolation based on
regression against observed values of surrounding data
points, weighted according to spatial covariance values.
Interpolation refers to an estimation of a variable at an
unmeasured location from observed values at surrounding
locations [34]. Kriging has some advantages. These
advantages are that it

o helps to compensate for the effects of data
clustering, assigning individual points within a
cluster less weight than isolated data points,

e gives an estimate of estimation error (kriging variance),
along with an estimate of the variable,

e ensures availability of estimation error which
provides a basis for stochasticity,

o allows simulation of possible realization.

The spatial prediction which is called kriging can
statistically be defined as follows.
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Let Y, be a vector of the binary response at a new,
unobserved location sy;, i =, ,n, . Following the maximum
likelihood approach, the distribution of Yy is given by

6)dU,
(3)
Where ﬁ,&z and ¢ are the maximum likelihood

estimates of the corresponding parameters. As part of
the iterative estimation process, for penalized quasi-

likelihood (PQL), £I can be derived [35]. p(yo B, uo) is the

Bernoulli-likelihood at new locations and P(L[0|I:[ ,02, (}5)

is the distribution of the spatial random effects U, at new

P(Y0|/3’7 [1,&2,@) - IP(Y0|/3’7 u0>P(u0| 7,67

sites, given I/ at observed sites and is assumed to follow
the normal distribution that is

P<Y0 1,6%, A) = N(ZOIZLU’ZOO n ZOIZLZIO)
(4)

With £, = E(UU), Top = E(U,Llg) and > :Z; —E
(UOUZ)). The mean of the Gaussian distribution in (4) is

the classical kriging estimator [20].
The Bayesian predictive distribution of Y is given by

P(YolY) = JP(Yol|B, Uo)P(Us, |U, 0%, $)xP(B, U, 0>, $|Y)
xdpdUdUdo*d¢
(5)

Where P(B, U, 0%, ¢|Y) is the posterior distribution of the
parameters obtained by the Gibbs sampler or the sampling
importance re-sampling (SIR) approach. Simulation-based
Bayesian spatial prediction is performed by consecutive
draws of samples from the posterior distribution, the
distribution of the spatial random effects at new locations
and the Bernoulli-distributed predicted outcome. The max-
imum likelihood predictor (3) can be viewed or interpreted
as the Bayesian predictor (5), with parameters fixed at
their maximum-likelihood estimates. In contrast to Bayesian
kriging, classical kriging does not account for uncertainty in
estimation of 8 and the covariance parameters.

The data was analysed by fitting a generalized linear
mixed model (GLMM) using SAS 9.2 PROC GLIMMIX.

Analysis and results

Using the identified thirteen main effects and six two-way
and three-way interaction effects [17] several covariance
structures including SP(EXP) (Exponential), SP(EXPA)
(Anisotropic Exponential), SP(EXPGA)( (2D Exponential,
Geometrically Anisotropic), SP(GAU) (Gaussian), SP
(GAUGA)( (2D Gaussian), (Geometrically Anisotropic),
SP(LIN) (Linear), SP(LINL) (Linear Log), SP(MATERN)
(Matérn), SP(MATHSW)(Matérn (Handcock-Stein-Wallis)),
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SP(POW) (Power), SP(POWA) (Anisotropic Power),
SP(SPH) (Spherical) and SP(SPHGA)( (2D Spherical,
Geometrically Anisotropic) were fitted but SP(GAU)
(Gaussian) was found to be the best spatial covariance
structure for the model [36].

The result presented in Figure 2 is a spatial scatter plot
of the observed data. The scatter plot suggests distribu-
tion which is not indicative of a uniformly spread of the
RDT measurements throughout the prediction area. No
direct inference can be made about the existence of a
surface trend in the data. However, the apparent stratifica-
tion of RDT values might indicate a nonrandom trend. The
Spatial Autocorrelation is an inferential statistic tool, which
is important to test for randomness. This means that the
results of the analysis are always interpreted within the con-
text of its null hypothesis of a random occurrence of events.
For the randomness test Moran’s and Geary's C tests can
be used [37-41]. Furthermore, the distribution of observed
malaria infected households and distribution of observed
malaria rapid diagnosis test is presented in Figures 3 and 4.

For these tests, the null hypothesis states that the
spatial distribution of feature values is the result of random
spatial processes. The result from Moran’s (Z value = -40.4
and p — value <.0001) and Geary's ¢ (Z value =-11.2 and
P-value < .0001) tests indicate that the spatial distribution of
feature values is not the result of random spatial processes.
The Z values are negative for both Moran’s and Geary’s C
tests. This indicates that the spatial distribution of high
values and low values in the dataset is more spatially
dispersed than would be expected if underlying spatial
processes were random. A dispersed spatial pattern often
reflects some type of competitive process, i.e., a feature with
a high value repels other features with high values; similarly,
a feature with a low value repels other features with low
values. The observed spatial pattern of feature values could
not very well be one of many possible versions of complete
spatial randomness.

Figure 5 represents different semivariogram estimators
using classical and robust estimators. The classical estima-
tor was suggested by Matheron in 1963 [42]. The classical
estimator can be calculated by

. 1 )
Y(h) = IN(h)| ZN(h) (Z(s:)-2(s))",

where (s;) is the anscombe residual,
N(h) = {(si-s) : [[si=sj[| = h+ €} and [N(h)|

is its cardinality. But, the classical estimator is sensitive to
outliers. For this reason a robust estimator was pro-
posed by Cressie and Hawkins in 1980 [43]. Among the
different types of isotropic covariograms given above,
Gaussian type was selected. Thus as discussed earlier, the
best spatial covariance structure from all possible types was
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Figure 2 Scatter plot for the malaria prevalence.

found to be the SP(GAU) (Gaussian) covariance structure.
Therefore, the Gaussian type of the variogram was used
to perform variogram analysis. The figure (Figure 3)
shows first a slow, then a rapid rise from the origin.
Therefore, the shape of the graph suggests a Gaussian
type form which is given by

o =arafi-on(- )]

In general, from Figure 3, it is possible to distinguish
three main features. The first one is the Y-axis well above

zero, indicating the possible presence of a nugget effect.
Moreover, the shapes of the semivariogram up through
distances in the low 40s have roughly the shape of a spher-
ical covariance model. Besides these, the semivariogram
values are extremely high for the largest distances.

Tables 1 and 2 presents the significant effects for the
model which incorporate spatial variability using SP (GAU)
(Gaussian) covariant structure. Among all significant effects
namely family size, altitude, toilet facilities, availability of
radio and television, number of rooms per person, main
material of the room's wall, spraying of anti- mosquito, use
of mosquito nets and number of nets per person, were not

vari

Figure 3 Distribution of observed malaria infected households.
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involved in the interaction effects. The significant two-way electricity. Based on these results for a unit increase in fam-
and three-way interaction effects were found to be main ily size, the odds of positive rapid diagnosis test increases
source of drinking water and main material of the room's by 2.34% (OR = 1.0234, P-value < 0.0001). Furthermore, for
roof; time to collect water and main material of the room's  a unit increase in altitude, the odds of positive rapid diagno-
floor; gender and main source of water; gender and main  sis test decreases by 1.4% (OR =0.996, P - value <0.0001).
Material of the room's floor; age, gender and main source ~ With reference to individuals with no toilet facilities, the
of drinking water; and age, gender and Availability of odds of a positive malaria rapid diagnosis test is lower for
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Figure 5 Classical and robust semivariogram for malaria prevalence.
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Table 1 Socio-economic, demographic and geographic of
effects on malaria RDT test for main effects
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Table 2 Socio-economic, demographic and geographic of
effects on malaria RDT test for interaction effects

Parameters Estimate OR SE P -value Parameters Estimate OR SE P-value
Intercept —-0.2460 0.7819 58100 0.9995 Gender and main source of drinking water (ref. Male & protected water)
Age 0.0209 1.0212 0.0503 06772 Female and tap water —2.747 0064 0861 0.001
Gender (ref. male) Female and unprotected water  1.224 3402 1064 0250
Female —2.5463 0.0784 3.0804 0.4084 Gender and material of room'’s floor (ref. Male and earth/Local dung plaster)
Family size 0.02311 1.0234 0.0527 <.0001 Female and cement -0.839 0432 0571 <0001
Region (ref. SNNP) Female and wood 0.762 2143 0387 <0001
Amhara —-0689  0.5018 04502 0.1256 Age, gender and main source of drinking water (ref. Male & protected water)
Oromiya -0.837 04330 0579 0.1487 Female and tap water —-0.045 0956 0.000 <.0001
Altitude —0.0037 09963 0.0001 <.0001 Female and unprotected water ~ 0.042 1.043 0000 <0001
Main source of drinking water (ref. protected water) Age, gender and availability of electricity (ref. Male & yes)
Tap water -0.5557 05737 0722  <.0001 Female and no 0.066 1.068 0.000 <.0001
Unprotected water 06372 1.8912 06871 0.005
Time to collect water (ref. > 90 minutes)
< 30 minutes _07829 04571 0252 00019 those individuals using a flushing toilet to those who have
between 30 to 40 minutes  —0.603 05472 12666 0.6341 septic tanks (OR =0.399, P - value <0.0001) or pit latrine
slabs (OR = 0.644, P - value <0.0001). Moreover, for a unit
between 40-90 minutes ~40189 00180 28957 01652 increase in the number of total rooms, the odds of malaria
Toilet facility (Ref. No facility) diagnosis test for an individual decreased by 37.07%
Pit latrine -04403 06438 06433 <.0001 (OR=0.629, P - value <0.0001). Similarly, with a unit in-
Toilet with flush 09177 03994 06413 <.0001 crease in the number of nets in the house, the odds of rapid
Availability of electricity (ref. no) diagnosis test of malaria for individuals decreased by 60.7%
Yes 31919 00441 10961 00044 (OR=0.392, P - value <0.0001). Furthermore, for a unit
o - increase in the number of rooms in the household sprayed
Availability of television (ref. no) with anti- mosquito, the odds of a positive malaria diagno-
Yes 06991 20119 02121 0001 sis test decreased by 53.3% (OR = 0.467, P - value <0.0001).
Availability of radio (ref. no)
Yes -06991 04970 02121 0001 Interaction effects
Number of rooms/person 04631 06293 00688 <0001 Figures 6 and 7 show the distribution of malaria rapid
Main material of room's wall (ref. cement block diagnosis test against age, main source of drink‘ing water
for both males and females respectively. As age increased,
Mud block/wood 41691 00155 1.2646 0038 positive malaria diagnosis was less likely for males than fe-
Corrugated metal -3.119 00442 1.2576 0.004 males who were using protected, unprotected and tap water
Main material of room's roof (ref. corrugate) for drinking. Furthermore, as age of respondents increased,
Thatch 15031 44956 16732 0005 malaria rapid diagnosis test was less likely to be positive for
Stick and mud 0454 15746 06726 00058 individuals who use tap water for drinking for males and

Main material of room's floor (ref. earth/Local dung plaster)

Wood -1.1407 03196 0803 0.004

Cement -09273 03956 0.114 0.028
Anti- mosquito spraying

No 1.237 34453 0.1734 <0001
Use of mosquito nets (ref. no)

Yes -08741 04172 0.1541 <.0001
Number of months room sprayed —0.7626 04665 0.1274 <.0001
Number of nets/person -09349 03926 0.0977 <.0001

for females. More specifically, positive malaria diagnosis
rate increases with age for females whereas it decreases as
age increases for males (Figures 6 and 7). The figures fur-
ther show that the gap in the rapid diagnosis test between
respondents with unprotected, protected and tap water
widens with increasing age.

The relationship between age, gender and availability of
electricity is presented in Figure 8. As the figure indicates,
positive malaria rapid diagnosis test decreases as age
increases for both male and female respondents, whether
or not they have access to electricity, except for females
who responded to having electricity. However, the rate of
decrease was not the same for males and females after
controlling for other covariates in the model.
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Interaction effects between the main source of water
and the main material used for the room’s roof is
presented in Figure 9. From the figure, it is clearly seen
that positive rapid diagnosis of malaria was significantly
higher for households with a stick and mud roof followed
by thatch and lastly a corrugated iron roof. This occurred
with respondents who reported using tap water as well as
protected and unprotected water for drinking (Figure 9).
Furthermore, there was a significant difference in rapid
diagnosis test between tap, protected and unprotected
sources of drinking water for those who reported having
thatch and stick and mud roofs. It is also shown that for
corrugated iron roofs, the positive rapid diagnosis test was
significantly lower for respondents who reported using tap
water for drinking than for those who used protected and
unprotected water for drinking.

The other significant two-way interaction effect was
between the time taken to collect water and the main
flooring material (Table 2). This result is presented
graphically in Figure 10. A positive rapid diagnosis test
was significantly higher in those rooms with earth and
local dung plaster floors than for those with cement and

wooden floors, for respondents who took <30 minutes
and >90 minutes to collect water. But, for respondents
who took less than 30 minutes to collect water but had a
cement floor, the positive rapid diagnosis was low. Fur-
thermore, with respondents who took between 30 to
40 minutes to collect water, there was a lower positive
rapid diagnosis test for those with earth and local dung
plaster floors compared to wooden floors.

The relationship between the main source of drinking
water and gender is presented in Figure 11. As the figure
indicates, a positive rapid diagnosis test was significantly
higher for female respondents than for male respondents
who reported using unprotected water. There was however,
no significant difference in a positive rapid diagnosis test
between females and males who reported using protected
and tap water for drinking.

The spatial model which is described above was used
to produce a map of predicted prevalence of positive
diagnosis malaria incidence rates for Amhara, Oromiya
and SNNP regions of Ethiopia. When there is spatial
data, the basic concern is the potential for spatial correl-
ation in the observations. These spatial correlations could
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lead to incorrect estimates (estimates with underestimated
standard errors). Spatial clustering of disease is almost
to be expected since human populations generally live
in spatial clusters rather than in a random distribution
of space. An infectious disease that is highly associated
with socio-economic, demographic and geographic fac-
tors is likely to be spatially clustered. This spatial clus-
tering can occur even if the population distribution is
not clustered. The model derived in this study explains
some of the spatial patterns of the prevalence of malaria.
The predicted prevalence of malaria is given in Figures 12
and 13. The prediction map (Figures 12 and 13) shows
that the socio-economic, geographic and demographic
factors are closely associated with the risk of malaria,
mostly in the SNNP region followed by the Amhara and
Oromiya regions. As can be seen from the map, the risk
of transmission of malaria is of a moderately high intensity
in almost all parts of the SNNP region. But, for the
Oromiya region, the majority of households experience a
lesser prevalence of malaria. Furthermore, from the map it
can be seen that there is a high predicted value for the
prevalence of malaria around the borders. This could be

caused by cross-border migration of infected persons and
the proximity of uncontrolled areas across the border,
which may further add to the intensity of transmission in
border areas.

Discussion

The first priority in the acute stage of a malaria epidemic
is prompt and effective diagnosis and treatment. Having
well-planned and timely vector control can significantly
contribute to a reduction in the risk of infection and
consequently in saving lives. Vector control must be
proactive and should be implemented at an early stage
of epidemic development. Timing depends on effective
early warning and early detection. Because of this, the
government of Ethiopia has developed strategies related
to human resource development, monitoring, and evalu-
ation to control malaria and reduce the hardship it
causes. Based on this strategy, the main objective of the
government is to make those areas with historically low
malaria transmission, malaria free and a near zero
malaria transmission in the remaining malarious areas
of the country [44]. Based on some studies which were
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conducted previously, malaria was regarded as a dis-
ease of the poor or a disease of poverty [45]. Looking
at the global distribution of malaria in the world
suggested that the concentration of the disease is in
the world’s poorest continents and countries. Accurate
information on the distribution of malaria in epidemic-
prone areas on the ground permits interventions to be
targeted towards the transmission and high-risk loca-
tions and households. Such targeting greatly increases
the effectiveness of control measures but the inadvertent
exclusion of these locations causes potentially effective
control measures to fail. The computerized mapping
and management of location data assists the targeting
of interventions against malaria at the focal and household
levels, leading to improved efficacy and cost-effectiveness
of control.

As the distribution of malaria infection suggests, it is
important to understand the relationship between mal-
aria and poverty. This relationship is important to enable
the design of coherent and effective policies and tools to

tackle the problem [46,47]. As is already known, poverty
is related to socio-economic factors. Therefore, it is
important to identify those factors which are also related
to the risk of malaria. Based on these facts, the findings
from the current study show that the following socio-
economic factors are related to the risk of malaria: main
source of drinking water, time taken to collect water,
toilet facilities, availability of radio, total number of
rooms per person, main material of the room’s walls,
main material of the room's roof, main material of the
room's floor, spraying of anti- mosquito, use of mosquito
nets, total number of persons per net. Besides socio-
economic factors, there are demographic and geographic
factors which also have an effect on the risk of malaria.
These include gender, age and family size. In addition to
the main effects there were interactional effects between
the socio-economic, demographic and geographic factors
which also influenced the risk of malaria. Most notable
of these were the interaction between main source of
drinking water and main material of the room's roof,
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Spatially correlated data cannot be regarded as inde-
pendent observations. Therefore, ignoring the spatial
variability might lead to an inaccurate estimation of
parameters. Accordingly, unlike Ayele, et al. (2012), the
spatial correlation structure was considered and the

significance of the variables was checked and predictions of
the malaria risk levels for the sampled areas were produced.
A useful way of providing up to date information is in the
use of GIS-based management systems. This method
helps to address effective malaria vector control and
management. Therefore, the spatial distribution of malaria
incidence was one of the points which were important for
such GIS studies.

Spatial clustering of malaria is almost predictable as
human populations generally live in spatial clusters rather
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than in random distributions of space. Disease which is
highly correlated to socio-economic variables is likely to
be spatially clustered. Therefore, the model explains some
of the spatial patterns of malaria risk for Amhara,
Oromiya and SNNP regions of Ethiopia. Moran’s and
Geary's C tests were used to test for randomness [37-41].
The interest was to test if the spatial distribution of feature
values is the result of random spatial processes. However,
the test favors that the spatial distribution of feature values
is not the result of random spatial processes. Moreover,
the spatial distribution of high values and low values in
the dataset is more spatially dispersed than would be
expected. A dispersed spatial pattern often reflects some
type of competitive process, i.e. a feature with a high value
repels other features with high values; similarly, a feature
with a low value repels other features with low values.
Malaria distribution is mainly related to the rainy seasons
in Ethiopia. Therefore, understanding the nature of the
Ethiopian climate is important. According to the Ethiopian
National Meteorological Services Agency (NMSA), climates
in Ethiopia can be divided into four climatic zones
based on the pattern of rainfall. There are: the two-
season type (the western half of Ethiopia) which is
divided into district wet and dry seasons; bi-two season
type (the south and southern of Ethiopia) is characterized
by double wet seasons that occur between March to May
and September to November with two dry seasons in
between; the undefined season (dry northern part of the
Ethiopian Rift Valley) mostly has irregular rainfall between
July and February without any defined season; and the
three-season type (central and south western Ethiopia).
The average annual rainfall in the highlands of Ethiopia
is above 1000 mm a year and it rises to 2000 mm and
3000 mm in the wet south western parts of Ethiopia.
Therefore, the three regions have almost similar rainy
months. Including the climate information into the analysis
is important [48]. Since the climatic information is not
included in the baseline household cluster malaria survey,
this information will be included for future study.
Therefore, the results of this study provide evidence
on the spatial distribution of socio-economic, demo-
graphic and geographic risk factors in the occurrence of
malaria. This forms the basis for this research. There-
fore, the utilization of socio-economic, demographic and
geographic data on malaria rapid diagnosis test, includ-
ing the information on the spatial variability, clarifies the
effects of these factors. From the study it was observed
that residents living in the SNNP region were found to
be more at risk of malaria than those living in Amhara
and Oromiya regions. Similarly, houses which were treated
with anti- mosquito spray were less likely to be affected by
malaria. However, a major challenge in the control of
malarial infection was found to be in the type of toilet
facilities available in the household. From the results, it
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was observed that individuals living in households which
had no toilet facilities were more likely to be positive for
malaria diagnosis tests. Furthermore, positive malaria
diagnosis rates decreased with age and the risk of mal-
aria increased per unit increase in family size. Generally,
malaria parasite prevalence differed between age and
gender, with the highest prevalence occurring in children
and females.

From the findings of this study, it can be suggested that
having toilet facilities, access to clean drinking water and
the use of electricity offers a greater chance of knowing
whether or not an individual in the household is at risk of
malaria or not. In addition to this, using mosquito nets and
spraying anti- mosquito treatment on the walls of the house
were also found to be a way of reducing the risk of malaria.
Similarly, having a cement floor and corrugated iron roof
was found to be one means of reducing the risk of malaria.
Based on the findings, different types of housing materials
have an influence on the risk of malarial transmission with
those houses constructed of poor quality materials having
an increased risk. Moreover, the presence of particular
structural features, such as bricks, that may limit contact
with the mosquito vector, also helps to reduce infection.
The risk of malaria therefore, is higher for households in a
lower socio-economic bracket than for others who may
enjoy a higher status and who are able to afford to take
measures to reduce the risk of transmission. Therefore,
with the correct use of mosquito nets, anti- mosquito
spraying and other preventative measures, like having more
rooms in a house, the incidence of malaria could be
decreased. In addition to this, the study also suggests that
the poor are less likely to use these preventative measures
to effectively counteract the spread of malaria. To provide
clean drinking water, proper hygiene and maintaining the
good condition of a house is essential in controlling the
transmission of malaria. With other control measures,
including creating awareness about the use of mosquito
nets, anti- mosquito sprays and malaria transmission, the
number of malaria cases can be reduced. Furthermore,
spatial statistics studies significantly contribute to the
understanding of the distribution of malarial infections.
The use of spatial statistics analysis is effective in monitor-
ing and identifying high-rate malaria affected regions and
helpful when implementing preventative measures. Finally,
studies incorporating spatial variability are necessary for
devising the most appropriate methodology for remedial
action to reduce the risk of malaria.
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