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Abstract

mutation in sub-Saharan Africa.

Background: Plasmodium falciparum has repeatedly evolved resistance to first-line anti-malarial drugs, thwarting
efforts to control and eliminate the disease and in some period of time this contributed largely to an increase in
mortality. Here a mathematical model was developed to map the spatiotemporal trends in the distribution of
mutations in the P. falciparum dihydropteroate synthetase (dhps) gene that confer resistance to the anti-malarial
sulphadoxine, and are a useful marker for the combination of alleles in dhfr and dhps that is highly correlated with
resistance to sulphadoxine-pyrimethamine (SP). The aim of this study was to present a proof of concept for
spatiotemporal modelling of trends in anti-malarial drug resistance that can be applied to monitor trends in resistance
to components of artemisinin combination therapy (ACT) or other anti-malarials, as they emerge or spread.

Methods: Prevalence measurements of single nucleotide polymorphisms in three codon positions of the
dihydropteroate synthetase (dhps) gene from published studies of dhps mutations across Africa were used. A
model-based geostatistics approach was adopted to create predictive surfaces of the dhps540E mutation over the
spatial domain of sub-Saharan Africa from 1990-2010. The statistical model was implemented within a Bayesian
framework and hence quantified the associated uncertainty of the prediction of the prevalence of the dhps540E

Conclusions: The maps presented visualize the changing prevalence of the dhps540E mutation in sub-Saharan
Africa. These allow prediction of space-time trends in the parasite resistance to SP, and provide probability
distributions of resistance prevalence in places where no data are available as well as insight on the spread of
resistance in a way that the data alone do not allow. The results of this work will be extended to design optimal
sampling strategies for the future molecular surveillance of resistance, providing a proof of concept for similar
techniques to design optimal strategies to monitor resistance to ACT.

Background

Despite increased global efforts to control malaria, Plas-
modium falciparum malaria remains a major public health
issue [1], and a priority of the Millennium Development
Goals. Attempts to eliminate malaria in Africa have been
hampered by resistance of P. falciparum, first to chloro-
quine and later to sulphadoxine-pyrimethamine (SP). The

* Correspondence: jennifer.flegg@wwarn.org

"WorldWide Antimalarial Resistance Network (WWARN), University of Oxford,
Oxford, UK

“Centre for Tropical Medicine, Nuffield Department of Clinical Medicine,
University of Oxford, Oxford, UK

Full list of author information is available at the end of the article

( BioMVed Central

recent emergence in Southeast Asia of resistance to arte-
misinin, a key component of current first-line therapy, is a
major worldwide public health concern [2,3], and a signifi-
cant impediment to future malaria eradication [4].

Chloroquine was the most common first-line therapy
until the late 1990s. Resistance to chloroquine was first
detected in Asia in the 1950s [5,6] and spread to Africa in
the late 1970s [7]. As chloroquine failure became wide-
spread throughout sub-Saharan Africa in the following de-
cades, it was replaced with SP in some countries as the
first-line therapy. Resistance to SP rapidly followed its
introduction [8] and has been extensively documented in
many regions of Africa [9].
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The emergence and spread of parasite resistance is a
two-staged process: de novo appearance of a parasite
genotype that confers better survival in the presence of
the drug, followed by the preferential transmission of or-
ganisms with the acquired resistance [10]. Molecular
markers alone cannot be used to predict treatment out-
comes in individual patients, because other factors such as
immunity, nutritional status, haemoglobinopathies and
variation in drug absorption and metabolism can also
affect clinical outcomes [11-14]. However, validated mo-
lecular markers are useful tools for mapping and monitor-
ing anti-malarial resistance at a population level and as a
surveillance tool, to indicate an aggregated measure of in-
creased risk for clinical failure [15].

Point mutations occur de novo, independently within in-
dividual parasites, but resistance to SP is a complex trait,
requiring a specific constellation of changes in two un-
linked genes. Molecular studies have shown that the com-
bination of the three mutations in dhfr (S108N, C59R,
Nb51I) defines a key highly pyrimethamine-resistant com-
bination or haplotype. A parasite that also carries a
‘double’ mutant allele of dhps (A437G, K540E) is strongly
associated with increased risk of SP treatment failure in
Africa [16-19].

These molecular markers have been productively used
in population analysis of the molecular changes under-
lying the development of SP resistance in Africa. The
correct set of point mutations in the dhps and dhfr
genes occur together relatively infrequently but once as-
sembled, parasites that carry these combinations then
spread over large-scale geographic regions. In fact, the
emergence of parasites with mutations in the dhps gene,
is almost always observed in populations that already
carry the triple mutant allele of dhfr [8]. Most commonly
in Africa, mutant alleles of dhps are selected in a step-
wise fashion; an intermediate allele that carries A437G
alone, followed by selection of the A437G + K540E asso-
ciated with clinical SP resistance. Maps of the distribu-
tions of observed dhps mutant haplotypes show that the
437G single mutant haplotype is commonly found in
West Africa while the 437G +540E double mutant
haplotype is prevalent throughout East Africa [20]. The
study further analysed the number of independent ori-
gins of these alleles and showed that the dispersal of five
major mutant lineages (three different 437G alleles and
two 437G + 540E double mutants) accounted for the ma-
jority of the observed haplotypes in African populations.
It is worth noting again that mutations in the dhps gene
only arise in populations that carry a high prevalence of
the triple dhfr mutation [8]. The addition of A581G and/
or A613T/S confers even higher levels of resistance in vitro
[21]. Although comparatively rare, the 581G in combin-
ation with 437G and 540E in the form of a triple mutant
allele is responsible for a measureable deterioration in SP
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efficacy [22,23]. Currently the WHO recommends SP for
intermittent prophylactic treatment of pregnant women
and infants, but in populations where 50% or more of the
parasites carry a dhps540E allele, this is no longer
recommended [24,25].

Lessons learned from the spread of these markers of SP
resistance in Africa can be used as a model of anti-
malarial spread in the continent. This work was motivated,
not solely to investigate the spatiotemporal spread of mo-
lecular markers that confer resistance to SP, but also to
predict the likely spread of resistance to artemisinin com-
bination therapy (ACT) when and where it arises.

Methods
For each of the A437G, K540E and A581G mutations, the
literature was searched and data extracted on the time and
location of the survey, the number of people who were
tested and the number of people who were positive for
that mutation: that information was recorded in a data-
base [9,25]. For visualizations of the molecular marker
data, see [26] and [27]. Additional file 1 contains a sum-
mary of the timing and location of the surveys captured.
In this paper the aim was to use the A437G, K540E and
A581G data to infer a continuous surface for the preva-
lence of K540E, in order to inform an understanding of
the emergence and dispersal of drug resistance in African
populations of of P. falciparum. A continuous surface was
inferred based upon the observations of prevalence, and a
statistical approach employed to estimate the prevalence
of dhps540E at locations between the observations.

Throughout this paper, the prevalence of dhps540E re-
fers to the proportion of infected individuals in a popula-
tion that are infected with one or more resistant clones.
The distinction between the prevalence and frequency of a
molecular marker is an important one. Briefly, the fre-
quency of a molecular marker is the proportion of para-
sites in the population that carry the marker in question
(taking into consideration that a single person can be
infected with multiple clones) while the prevalence is the
proportion of all individuals that are infected with one or
more resistant clones. Even if the frequency of the mo-
lecular marker is the same across space and/or time, indi-
viduals will tend to be infected with more clones in
regions of high malaria transmission. For this reason, fre-
quency is the measure upon which the genetics of allele
spread should ideally be modelled. However, genetic stud-
ies typically measure or report marker prevalence and
while it is possible to use a statistical model to infer
marker frequency from prevalence data, for the purposes
of this paper the primary, individual patient level data
were not available. Only a single aggregate prevalence
from each study site and location was available.

The purpose of the modelling approach used in this
paper was to generate a continuous surface, in both
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space and time, which approximates the prevalence of
the dhps540E marker. That is, the dhps data, available
only at discrete study locations and times, were used to
predict the changing prevalence of dhps540E across the
entire African continent from 1990-2010, thus providing
insight on the spread of resistance, in both space and time,
in a way that observations from the discrete data points
alone can not provide. The model included estimates of
the P. falciparum transmission intensity in 2010, as esti-
mated by the spatiotemporal models developed by the
Malaria Atlas Project [1]. Since multiplicity of infection
(MOI) is an indicator of, and positively correlated with,
transmission intensity, the inclusion of transmission com-
pensates, to some extent, for the omission of MOL Full
details of the model are provided in Additional file 2.

There were two main stages to the statistical method-
ology for the spatiotemporal prediction of the dhps540E
molecular marker prevalence, which are outlined briefly
here (see Additional file 2 for details). Firstly, based on
the observed data, the model parameters were estimated.
Secondly, given the model parameters in the first stage,
dhps540E prevalence was predicted on a 25 x 25 km
grid of sub-Saharan Africa in each year from 1990 to
2010. For each location, a distribution of prevalences
were drawn from the model and summarized using the
median statistic to create a single continuous surface.
The standard deviation surface is also presented along-
side the median maps as a summary of the associated
uncertainty in the predictions at each location.

The model validity was assessed to ensure that the inter-
pretation of the model output was valid. The dhps540E
dataset was divided into five groups, at random; each sub-
set was treated as a validation set to test the model’s pre-
dictive ability. For each of the five subsets of data, the
model was run with one dataset withheld and the ability
of the model to predict that subset was tested against the
actual withheld data. The predictive results for each of the
five subsets of data were pooled, so that each dhps540E
observation had an associated predictive validation value.
Further details about the validation procedures are given
in Additional file 3.

Results

dhps540E marker prevalence predictive maps

To generate predictive maps, all of the available data (from
all years) were used to inform a single spatiotemporal
model. From the results of this spatiotemporal model, pre-
dictive maps for the years 1990, 2000 and 2010 were
generated.

Spatial maps in 1990

The predicted median dhps540E prevalence in sub-
Saharan Africa in 1990 is presented in Figure 1(a), visu-
alized as a continuous surface. A predicted dhps540E
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prevalence of 0.2 at a certain location in space and time
means that of 100 individuals who carry P. falciparum at
that time and location, 20 are predicted to carry para-
sites positive for the dhps540E marker. In 1990, the
model predictions suggest that dhps540E prevalence was
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Figure 1 Spatial maps in 1990. The spatial distribution of median
dhps540E prevalence from the model output in 1990 (a) and the
associated model uncertainty (b). The median values of the
predictive prevalence are represented as a continuous surface,
with dark blue corresponding to low prevalences and dark red to
high prevalences. Studies that were conducted before or during
the year of 1990 are represented on the median surface maps by
circles — where the colour of the circle is proportional to the
observed dhps540E prevalence at that study location and the
radius of the circle is proportional to the sample size of the study.
All of the available data, from all years, were used to inform the

1990 map in the spatiotemporal model.
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low across most of the continent. However, there were
several regions in East Africa where the dhps540E
prevalence was relatively high (see the light blue areas
in Figure 1(a)). In 1990, only 7% of the sub-Saharan area
had a dhps540E prevalence of more than 0.2.

Uncertainty maps are presented alongside the median
maps as a summary of the associated uncertainty in the
model predictions. Figure 1(b) illustrates the associated
uncertainty in the model predictions for 1990. Uncer-
tainty in the model predictions was measured as the
standard deviation of the dhps540E predicted preva-
lences (see the Methods and Additional file 2 for more
details). The uncertainty map for 1990 (Figure 1(b)) indi-
cates high model confidence in predictions where the
prevalence was low, while there are regions of relatively
high uncertainty in East Africa (corresponding to the re-
gions where the dhps540E prevalence was higher). While
the uncertainty in 1990 may seem low, given the map
and data presented in Figure 1(a), it is important to re-
call that all of the available data (from all years) were
used to inform a single spatiotemporal model. The maps
for 1990 (and subsequent years) were generated based
on the results of this spatiotemporal model.

Spatial maps in 2000

Figure 2(a) and 2(b) illustrate the predictive median surface
and the associated uncertainty, respectively, in 2000. In the
interval between the 1990 and 2000 maps (see Figure 1(a)
and 2(a)) the prevalence of dhps540E was predicted to have
increased in East Africa, however the dhps540E prevalence
in West Africa and Madagascar remained very low. In
2000, 18% of the area in sub-Saharan Africa had a
dhps540E prevalence of more than 0.2, compared to only
7% in 1990. Figure 2(b) shows that the uncertainty in the
2000 model predictions has, overall, remained similar to
the uncertainty map in 1990. The uncertainty map illus-
trates the highest uncertainty in regions where the pre-
dicted prevalence was moderate, which is consistent with
the variance imposed under the binomial assumption in
the model.

Spatial maps in 2010
Figure 3(a) and 3(b) show the dhps540E predicted preva-
lence and uncertainty for 2010. Further spatial spread of
the dhps540E marker was predicted to have occurred since
the 2000 map (see Figure 2(a)). An increased proportion of
sub-Saharan land area, 38%, was predicted to have a
dhps540E prevalence above 0.2. East Africa was predicted
to have predominantly high levels of dhips540E prevalence,
while West Africa continues with relatively low prevalence.
The uncertainty map (Figure 3(b)) indicates an increase in
uncertainty in central and eastern Africa.

An animation of the predictive median surfaces over
the years 1990-2010 (https://www.wwarn.org/about-
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Figure 2 Spatial maps in 2000. The spatial distribution of median
dhps540E prevalence from the model output in 2000 (a) and the
associated model uncertainty (b). Studies that were conducted
before or during the year of 2000 are represented on the median
surface maps. All of the available data, from all years, were used to

inform the 2000 map in the spatiotemporal model.

us/news/spread-antimalarial-molecular-resistance-sul-
phadoxine-pyrimethamine) clearly captures the spatio-
temporal changes in the predicted dhps540E distributions,
showing the emergence of regions of high dhps540E
prevalence in East Africa and the predicted spread of the
dhps540E marker from these regions.

Interpretation of uncertainty
To help interpret the uncertainty maps, the individual
distributions for two locations in 1990, 2000 and 2010


https://www.wwarn.org/about-us/news/spread-antimalarial-molecular-resistance-sulphadoxine-pyrimethamine
https://www.wwarn.org/about-us/news/spread-antimalarial-molecular-resistance-sulphadoxine-pyrimethamine
https://www.wwarn.org/about-us/news/spread-antimalarial-molecular-resistance-sulphadoxine-pyrimethamine

Flegg et al. Malaria Journal 2013, 12:249
http://www.malariajournal.com/content/12/1/249

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.32

0.28

0.24

0.20

0.12

0.08

10.04

—0.00

Figure 3 Spatial maps in 2010. The spatial distribution of median
dhps540E prevalence from the model output in 2010 (a) and the
associated model uncertainty (b). Studies that were conducted
before or during the year of 2010 are represented on the median
surface maps. All of the available data, from all years, were used to
inform the 2010 map in the spatiotemporal model.

are visualized (see Figure 4). The two locations were
chosen to represent a location where both the preva-
lence of dhps540E and the uncertainty were low, in West
Africa (the Bamako region, Mali), and a location where
dhps540E prevalence increased from 1990-2010 and the
uncertainty was relatively high, in East Africa (the Kilifi
region, Kenya). It should be noted that using the meth-
odology outlined in this paper, it is not possible to dis-
cuss the “true” dhps540E prevalence in any location
(including the two example regions considered here).
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Instead, the prevalence can only be described in a distri-
butional sense or summarized using statistics.

The median predicted dhps540E prevalence in the
Bamako region did not change significantly over the
time period: the median (interquartile range (IQR)) preva-
lence in 1990, 2000 and 2010 was 3% (1-10)%, 1% (0-4)%
and 1% (0-4)%, respectively. The low predicted prevalence
in the Bamako region in 1990, 2000 and 2010 can be seen
in Figure 1(a), 2(a), and 3(a), in the dark blue colour of the
maps in West Africa. The uncertainty in the Bamako re-
gion remained low over time: the standard deviation of
the prevalence was 0.14, 0.06 and 0.08 in 1990, 2000 and
2010, respectively. The higher uncertainty in 1990 com-
pared to 2000 and 2010 can be seen in the probability dis-
tributions on the right hand side of Figure 4: the
distribution (blue curve) in 1990 is wider than the subse-
quent years and hence there is higher uncertainty in the
prevalence. Furthermore, the wider IQR of prevalence in
the Bamako region in 1990 (1-10%) compared to 2000
(0-4%) and 2010 (0-4%) is also representative of larger un-
certainty. However, the probability distributions in the
Bamako region are generally quite narrow (right hand side
of Figure 4), indicative of low uncertainty. The low uncer-
tainty in the Bamako region is visualized in Figure 1(b), 2
(b), and 3(b) by the lighter gray colour of the maps in
West Africa.

In the Kilifi region, the predicted median dhps540E
prevalence increased significantly over time: 15%, 33%
and 82% in 1990, 2010 and 2010, respectively. The in-
crease in prevalence during this period in the Kilifi re-
gion can be seen in Figure 1(a), 2(a), and 3(a) by the
rising prevalence in East Africa. The associated uncer-
tainty in the Kilifi region was much higher than the
Bamako region: in 1990, 2000 and 2010 the standard de-
viation was 0.24, 0.24 and 0.27, respectively. The prob-
ability distributions for the Kilifi region (left hand side of
Figure 4) were therefore considerably wider than for the
Bamako region, as are the IQR for prevalence (1990: 6-
39%, 2000: 16-55%, 2010: 54-95%). In Figure 1(b), 2(b),
and 3(b), the higher level of uncertainty in the predic-
tions in the Kilifi region is indicated by the darker gray
colour in regions of East Africa. Locations in 2010 with
large amounts of uncertainty in the predicted dhps540E
prevalence (see Figure 3(b)) may benefit from further
molecular surveillance within the area since the uncer-
tainty might be reduced.

Temporal trends

Figure 5 shows the proportion of sub-Saharan Africa
under consideration within the model with a predictive
dhps540E median exceeding 0.2 (blue), 0.5 (red) and 0.8
(green) over the years 1990 to 2010. There is a clear
trend of an increasing area with a dhps540E prevalence
exceeding 0.2 (blue dots) from 1990 to 2005. After 2005,
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Figure 4 Predictive distributions of dhps540E prevalence at two locations. The dhps540E prevalence distribution near Kilifi, Kenya in East
Africa (left hand side panels) and near Bamako, Mali in West Africa (right hand side panels). The rows relate to the predictive distribution in 1990,
2000 and 2010, respectively. The vertical red lines represent the median dhps540E prevalence of the distributions.

the proportion of area with a prevalence of more than
0.2 stabilized at just below 40%. The period of time from
1998 to 2005 shows the fastest increase in the propor-
tion of area with a prevalence of more than 0.2 and 0.5
(red dots), while high prevalence locations (exceeding
0.8 — green dots) were predicted to have started around
2002 and increased rapidly until 2005.

Validation statistics

The validity of the model was assessed by rerunning the
model five times, each time with a subset of 80% of the
complete dhps540E dataset. The results were then
pooled, so that each dhps540E observation had an asso-
ciated predictive validation value, from a model where
this observation was not included. The mean error in
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Figure 5 Temporal trends in proportion of sub-Saharan Africa with dhps540E prevalence exceeding threshold. The proportion of
sub-Saharan Africa with a predictive median dhps540E prevalence exceeding 0.2 (blue), 0.5 (red) and 0.8 (green) over the period 1990-2010.
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the generation of dhps540E prevalence estimates at the
238 data locations was 1.83%, indicating that overall bias
was small. The mean absolute error was found to be
12.9%, while the correlation co-efficient between the ob-
served dhps540E prevalences and their associated valid-
ation values was 0.86, demonstrating a very strong linear
agreement between the observed and predicted preva-
lences. Full results of the validation procedure can be
found in Additional file 3.

Discussion

In this paper a spatiotemporal model was developed for
the prevalence of the dhps540E marker in sub-Saharan
Africa. Continuous maps in space and time were
presented for the median predicted dhps540E preva-
lence, along with the associated uncertainty in these
predictions. Based on the data available, the emergence
and spread of the dhps540E mutation has been visual-
ized at all space-time points within a 25 x 25 km grid-
ded sub-Saharan Africa domain for each year between
1990 and 2010. In modelling the spatiotemporal emer-
gence and spread of drug resistance in Africa, the results
of this work have significance for public health and the fu-
ture management of artemisinin resistance in Africa.

The maps presented here (see Figures 1, 2 and 3)
visualize the changing prevalence of the dhps540E muta-
tion in sub-Saharan Africa and are a useful tool to in-
form public health policy on the continuing use of SP. It
could be used to advise on regions where SP should not
be used as a partner drug, as a seasonal malarial chemo-
prevention or as an intermittent preventative treatment.
For example, currently the WHO recommends SP for
intermittent prophylactic treatment of pregnant women
and infants, but in populations where 50% or more of
the parasites carry a dhps540E allele, this approach is no
longer recommended [24,25]. These regions could easily
be predicted using the model developed here.

Previous attempts to spatially map the molecular
markers associated with SP have been made [28], however
the model presented here extends this work since it is spa-
tiotemporal and also because it is embedded in a Bayesian
framework, allowing the uncertainty to be quantified. The
predicted surface generated as part of this previous work
differs considerably from the maps of dhps540E preva-
lence presented here because the previous study considers
all the prevalence data to influence a single continuous
map equally, regardless of the year in which the data were
collected. Whereas here a space-time model framework
was considered that ensured that studies conducted in a
particular year influence the map for that year more than
a study conducted many years before.

The limited number of spatial and/or temporal data
points available in certain regions of Africa, greatly affect
the predictive value of the model, and as a result, the
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level of uncertainty of the median dhps540E prevalence
estimates can be relatively high (see Figure 3). This obser-
vation in itself is important. While SP has been the most
studied anti-malarial, in terms of molecular markers over
the last three decades, major gaps of information remain.
These gaps reflect the absence of research activities in par-
ticular regions, a lack of systematic reporting of available
data, and/or a limited access to unpublished data.

There are several ways that this work could be extended:
in addition to transmission intensity, which was incorpo-
rated into the current model, other, informative covariates,
such as human population estimates within Africa and
spatial environmental variables could be included within
the model framework. The temporal trends of dhps540E
at certain locations (see Figure 4 for the predictive distri-
butions of dhps540E prevalence in the Kilifi region, Kenya
and the Bamako region, Mali in 1990, 2000 and 2010) are
likely to be dependent both on the national anti-malarial
policy and actual drug use. Likewise, the temporal trends
shown in Figure 5 (illustrating the proportion of sub-
Saharan Africa with a predictive median dhps540E preva-
lence exceeding various thresholds) will be related to both
factors. For instance, the period of rapid increase in the
temporal trends shown in Figure 5 corresponds to
the years when the highest number of African countries
were recommending SP as a first-line therapy [29]. An ex-
tension of this work will add SP drug pressure and na-
tional anti-malarial drug policy to inform more accurately
the spatiotemporal spread of SP resistance.

Many malaria endemic countries are working to elimin-
ate malaria and up-to-date intelligence on the various pa-
rameters that are likely to impede such progress is
critically important. The gaps in data reflect not only tech-
nical, human, political and financial constraints but also
difficulties in establishing the optimal sites to survey, in
terms of predictive value and representativeness. The work
presented here will be extended to investigate the design
of future surveillance, informed by the level of uncertainty,
the level of dhps540E prevalence, malaria transmission [1]
and human population density [30]. The aim would be to
define the minimum spatiotemporal set of data necessary
to design comprehensive surveillance matrices, allowing
resistance mapping with acceptable level of uncertainties.
This concept, called “smart surveillance”, has the potential
to inform a guided surveillance plan, less based on current
research capacities and more on where informative data
are most needed. By adopting such an approach, mathem-
atical modelling can facilitate the information systems
needed to optimize the current efforts in malaria elimin-
ation and eradication.

The methodology outlined in this paper serves as a
proof of concept for the application of geospatial model-
ling techniques to other anti-malarial drugs, as well as
forms of data other than molecular markers, and will
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allow anti-malarial resistance to ACT or novel drugs to
be monitored in space and time.

Additional files

Additional file 1: A database of resistant dhps in African
P. falciparum malaria.

Additional file 2: Model based geostatistical framework for
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