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Abstract

Background: Plasmodium knowlesi is the fifth Plasmodium species that can infect humans. The Plasmodium
merozoite surface protein-142 (MSP-142) is a potential candidate for malaria vaccine. However, limited studies have
focused on P. knowlesi MSP-142.

Methods: A ~42 kDa recombinant P. knowlesi MSP-142 (pkMSP-142) was expressed using an Escherichia coli system.
The purified pkMSP-142 was evaluated with malaria and non-malaria human patient sera (n = 189) using Western
blots and ELISA. The immunogenicity of pkMSP-142 was evaluated in mouse model.

Results: The purified pkMSP-142 had a sensitivity of 91.0% for detection of human malaria in both assays. Specificity was
97.5 and 92.6% in Western blots and ELISA, respectively. Levels of cytokine interferon-gamma, interleukin-2, interleukin-4,
and interleukin-10 significantly increased in pkMSP-142-immunized mice as compared to the negative control mice.
pkMSP-142-raised antibody had high endpoint titres, and the IgG isotype distribution was IgG1 > IgG2b > IgG3 > IgG2a.

Conclusions: pkMSP-142 was highly immunogenic and able to detect human malaria. Hence, pkMSP-142 would be
a useful candidate for malaria vaccine development and seroprevalence studies.
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Background
Malaria is one of the important infectious diseases that
causes high global mortality and morbidity. Plasmodium
knowlesi has recently been recognized as the fifth
Plasmodium species that can cause malaria in humans
[1,2]. Plasmodium knowlesi replicates every 24 hours,
which is the most rapid replication rate among all human
Plasmodium species. Quoditian fever, hyperparasitaemia,
life-threatening complications and death may occur if the
patient remains untreated [3].
Proteins expressed on the surface of Plasmodium

merozoites are promising targets for malaria vaccine
development. Merozoite surface protein 1 (MSP-1) is a high
molecular mass protein which undergoes two proteolytic
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steps to produce several fragments. Primary processing oc-
curs during maturation of merozoites, and the secondary
processing occurs during the invasion of merozoites into
erythrocytes [4-6]. Proteolytic processing of MSP-1 has
been intensively studied in Plasmodium falciparum.
During the first processing, the P. falciparum MSP-1
precursor polypeptide is cleaved into four major frag-
ments of ~83 kDa (MSP-183), 30 kDa (MSP-130), 38 kDa
(MSP-138), and 42 kDa (MSP-142) in size. The secondary
processing further cleaves the MSP-142 into two frag-
ments, MSP-133 and MSP-119. The soluble MSP-133 sheds
from the merozoite surface [7-9], whereas the membrane-
bound MSP-119 remains associated with merozoites and is
carried into the new erythrocyte during invasion [10,11].
MSP-142 is one of the leading candidates for blood-stage

malaria vaccines as it is able to induce protective immune
responses [12-14]. Antibodies directed against MSP-142 and
MSP-119 can interrupt merozoite invasion in vitro [15-17].
Children with naturally acquired immune response to
Plasmodium MSP-119 are significantly associated with
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resistance towards malarial infection and clinical man-
ifestations [18], while pregnant women with anti-MSP-119
antibodies are protected against placental infection and
infection in infants [19]. Immunization studies using
MSP-142 and MSP-119 in animal models such as rodents,
mice and primates [20-24] found that protective immune
response is elicited during challenge with life Plasmodium
parasites.
MSP-119-mediated protective responses are mainly

responsible for humoral immunity. Low prevalence of T
cell responses to MSP-119 is due to limited T cell epitopes
on this fragment. Protective T cell responses, on the other
hand, are induced by epitopes on MSP-133 [25-27].
MSP-133 regulates cell mediated responses inducing
effector T cells which help in protective B cells response,
cytokines production and antiparasitic activity regulation
against Plasmodium in an antibody-independent manner
[28,29]. It is thus more appropriate to include both
MSP-119 and MSP-133 fragments in the malaria vaccine
design in order to elicit both humoral and cell mediated
responses. Therefore, MSP-142 which has both immunodo-
minant B and T cell epitopes, is considered an important
and potential vaccine candidate [30,31].
To date, most of the efforts for development of malaria

vaccines and human trials are still focus on P. falciparum.
Phase I human vaccine studies by using P. falciparum
MSP-142 in USA [32,33], western Kenya [34] and Mali [35]
showed high safety, tolerability and immunogenicity, which
protective cytokines and antibody responses were detected
in the volunteers. However, the raised anti-MSP-142
antibodies were insufficient to inhibit parasite growth
up to protection level [36,37] and in a Phase II human trial
with Kenyan children, the overall vaccine efficacy was con-
siderably low [38]. Nonetheless, the low level protection
elicited by this single antigen vaccine could be enhanced
and overcome by multi-antigens vaccine development or
addition of other immunostimulants.
Considerable amount of studies on MSP-142 have been

carried out on several Plasmodium sp. but not much is
known about P. knowlesi MSP-142, particularly about its
immunogenicity. In the present study, a recombinant
MSP-142 of P. knowlesi (pkMSP-142) was produced
and evaluated using ELISA and Western blot assays.
Immunogenicity was assessed using the mouse model.
Cytokine levels in pkMSP-142-immunized mice were
determined and antibody responses were characterized.

Methods
Ethics statement
Animal ethic and experiment procedures were approved
by University of Malaya Institutional Animal Care And
Use Committee (PAR/28/09/2011/CFW). Human ethic
was approved by University of Malaya Medical Centre
Medical Ethics Committee (MEC Ref. No: 817.18).
Construction of recombinant plasmid pkMSP-142
Plasmodium knowlesi genomic DNA was extracted from a
P. knowlesi-infected patient blood sample using blood
extraction kit (QIAGEN, Hilden, Germany). The MSP-142
gene was amplified by polymerase chain reaction (PCR)
using primer pair MSP142_F: 5′ - CGCGGATCCGA
GAATCACGTGGCTGCATTCA −3′ and MSP142_R: 5′ -
CGCGGATCCCTAGCTGGAGGAGCTACAGAA −3′
based on the sequence of P. knowlesi H strain (GenBank
accession number XM_002258546). The amplification
conditions were as follows: initial denaturing step at 95°C
for 4 minutes; 35 cycles at 95°C for 45 seconds, 55°C for
45 seconds, and 72°C for 1 minute; final elongation step at
72°C for 10 minutes. The PCR product was purified and
cloned into pCR 2.1-TOPO plasmid vector (Invitrogen,
USA), followed by verification using sequence analysis.
Restriction enzyme BamHI was used to digest the plasmid
at 37°C for three hours, and the digested fragment was
ligated with expression vector pRSET A (Invitrogen, USA)
at 4°C overnight. The recombinant plasmid was trans-
formed into expression host Escherichia coli strain BL21
(DE3) pLysS.

Expression of pkMSP-142
BL21 (DE3) pLysS cells containing recombinant plasmid
pkMSP-142 was propagated in Luria-Bertani (LB) broth
containing ampicillin (100 μg/ml) and chloramphenicol
(35 μg/ml) at 37°C with shaking until the optical density
at 600 nm (OD600) reached 0.4-0.6. The culture was
induced with 1 mM isopropyl β-D-1-thiogalactopyranoside
(IPTG) and allowed to grow for another two hours.
The cells were harvested by centrifugation at 5,000 × g for
10 minutes.

Purification of pkMSP-142
pkMSP-142 was purified by using nickel-NTA agarose
resin which has a high binding affinity towards the
N-terminal polyhistidine tag of the recombinant pkMSP-142.
ProBondTM purification system (Invitrogen, USA) with
hybrid condition was used. Cell pellet from a 50 ml
pkMSP-142 culture was dissolved and suspended in
denaturing buffer (6 M guanidinium lysis buffer, pH 7.8) by
using 16 ml guanidinium lysis buffer per gram of cell pellet.
Cell lysate was sonicated on ice with three five-second
pulses at high intensity for cell wall disruption. Purification
column containing agarose resin was prepared under
denaturing condition. The protein lysate was added to the
column, washed twice with denaturing binding buffer
(pH 7.8) containing 8 M urea and twice with denaturing
wash buffer (pH 6.0) containing 8 M urea. Renaturation
was carried out by washing four times using native wash
buffer (pH 8.0) which contains 20 mM imidazole. The
purified recombinant pkMSP-142 was finally eluted
with native elution buffer (pH 8.0) containing 250 mM
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imidazole. Concentration of purified pkMSP-142 was
determined by using Bradford Assay kit (Bio-Rad, USA).

SDS-PAGE, Coomassie brilliant blue staining and Western
blot
Non-purified and purified pkMSP-142 were resolved by
12% SDS-PAGE under reducing and non-reducing
conditions, and stained with Coomassie brilliant blue
(Bio-Rad, USA). The separated proteins were also elec-
trophorectically transferred onto polyvinylidene difluoride
(PVDF) membranes (Bio-Rad, USA) and blocked overnight
in tris buffered saline (TBS) containing 5% skimmed milk
at 4°C. The membranes were probed with anti-XpressTM

antibody (1:5000 dilution) with TBS containing 2.5%
skimmed milk for one hour. The membranes were washed
three times with TBS-T (TBS containing 0.2% Tween-20)
and treated with biotin-labelled goat anti-mouse IgG
(1:2,500 dilution) for one hour, followed by streptavidin-AP
(1:2500 dilution) for one hour. Finally, the membranes
were developed by chromogenic substrate NBT/BCIP.
The colour was allowed to develop at room temperature
in dark.

Evaluation of purified pkMSP-142 using serum samples in
Western blot assay
The purified pkMSP-142 was evaluated by Western blot
assay using 189 sera of patients infected with P. knowlesi
(n = 38), non-P. knowlesi malaria parasites (n = 29), non-
malarial parasites (n = 47) and healthy donor (n = 75).
PVDF membrane strips containing 60 ng of blotted
pkMSP-142 were incubated with the different serum
samples, followed by biotin-labelled goat anti-human
IgM + IgG + IgA (1:2500 dilution), streptavidin-AP, and
finally NBT/BCIP.

Evaluation of purified pkMSP-142 by using serum samples
in ELISA
The same 189 sera used in the Western blot assay were
used in ELISA. Purified pkMSP-142, 10 μg/ml, was coated
on 96-well microtiter plates using 0.05 M sodium carbonate
buffer, pH 9.6 at 4°C overnight. The wells were blocked
with phosphate buffered saline (PBS) containing 1% bovine
serum albumin for two hours at 37°C. The wells were
washed three times with 0.1% PBS-T. Patient serum
(1:80 dilution) was separately added into each well
and incubated for one hour at 37°C. The wells were
washed five times and peroxidase-labelled goat anti-human
IgM + IgG + IgA (1:2,500 dilution) was added followed
by one hour incubation at 37°C. The wells were
washed five times with PBS-T and incubated with 3, 3′, 5,
5′-Tetramethyl Benzidine, TMB (Amresco, USA) for
30 minutes in dark. Stop solution 2 N H2SO4 was added to
stop the reaction and absorbance at OD450 was measured.
Samples were run in duplicates. The cut-off value was set
at MN + 2σ of the healthy donor serum group, where MN

is the mean absorbance (OD450) and σ is the standard
deviation. Samples with absorbance values higher than
MN + 2σ were considered positive.

Mice immunization
Six to eight-week old female BALB/c mice were used for
immunization (pkMSP-142-immunized group and negative
control group, n = 5 per group). Purified pkMSP-142, 30 μg,
was mixed with adjuvant in a volume of 1:1 ratio and the
mixture was injected into mice. Complete Freund’s
Adjuvant (CFA) (Sigma, USA) was used in the prime boost
and Incomplete Freund’s Adjuvant (IFA) (Sigma, USA) was
used in the subsequent boosters. Booster was given on days
14 and 21 post-immunization. All injections were given
subcutaneously. Serum of each mouse was collected at day
0, 7, 14, 21 and 31 post-immunization. Mice in the negative
control group were injected with purified non-recombinant
protein pRSETA.

Measurement of cytokine levels in mice
Mice were sacrificed ten days after the second booster
and their spleen cells were harvested and purified.
The cells were grown in tissue culture grade, flat-bottom,
96-well microtitre plates (TPP, Switzerland), with total
cells of 2 × 105 per well. Stimulator purified pkMSP-142
(30 μg/ml) was added. The plates were placed in 5%
carbon dioxide (CO2) incubator at 37°C and the cells were
allowed to grow for 65 hours. The plates were then centri-
fuged at 2,000 rpm for 20 minutes. Cell supernatants were
collected and the levels of cytokine interleukin-2 (IL-2),
interleukin-4 (IL-4), interleukin-10 (IL-10) and interferon-
gamma (IFN-γ) in the supernatants were determined
using ELISA kits (Thermo Scientific, USA) following the
manufacturer’s instruction. Mann–Whitney statistical test
was performed to determine whether increase of cytokine
levels was significant.

Antibody characterization and IgG subclass distribution
pkMSP-142-immunized mice sera were analysed by
Western blot assay for detection of antibody against
pkMSP-142. Purified pkMSP-142, 350 ng, was blotted on
PVDF membrane strips and incubated with mice sera
collected at different time points. Level of IgM and IgG,
IgG isotype distribution and endpoint titre of mice sera
were determined by ELISA using purified pkMSP-142 as
coating antigen. Biotin-labelled anti-mouse IgM and
IgG were used to determine the IgM and IgG level,
respectively. Peroxidase-labelled anti-mouse IgG1, IgG2a,
IgG2b and IgG3 were used for determination of IgG
subclass distribution. For antibody endpoint titre de-
termination, serial dilution was performed on the
mice sera (1:400 – 1:819200 dilution) and detected by
peroxidase-labelled anti-mouse IgM + IgG + IgA with
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TMB as substrate. Mice sera from the negative control
group were used to determine the cut-off value as
described before.

Results
Cloning, expression and purification of recombinant
pkMSP-142
The P. knowlesi MSP-142 gene (969 bp) was amplified
from genomic DNA by PCR. The amplified fragment
was confirmed as P. knowlesi MSP-142 gene through
nucleotide sequencing and the deduced amino acid
sequence. The recombinant plasmid pkMSP-142 showed
protein expression with molecular mass of ~42 kDa
(Figure 1A, lanes 6 and 7). pkMSP-142 was expressed as
inclusion bodies which were solubilized under denaturing
conditions by using denaturing guanidinium lysis buffer.
Purified pkMSP-142 showed a distinct band of ~42 kDa
(Figure 1A, lanes 8 and 9 and Figure 1B, lane 3) which
was absent in the purified plasmid control (Figure 1A, lanes
3 and 4 and Figure 1B, lane 1). The purified pkMSP-142
was observed to have a molecular mass of ~42 kDa under
reducing (Figure 1C, lanes 2 and 3) and ~39 kDa
under non-reducing conditions (Figure 1C, lanes 4 and 5).
The concentration of the purified pkMSP-142 obtained
was 1.0 mg/ml.

Evaluation of purified pkMSP-142 by using Western blot
assay and ELISA
In the Western blot assay (Additional file 1), pkMSP-142
reacted with 33/38 (86.8%) of knowlesi malaria serum
samples and 28/29 (96.6%) of non-knowlesi malaria
serum samples. Therefore, the overall sensitivity of
pkMSP-142 for malaria detection was 61/67 (91.0%).
Three of the 122 non-Plasmodium parasitic infection
and healthy donor sera reacted with pkMSP-142, giving a
specificity of 119/122 (97.5%). In ELISA, pkMSP-142
Figure 1 Recombinant pkMSP-142 produced in Escherichia coli expressio
pkMSP-142 with a size of ~42 kDa (arrows) was detected in (A) Coomassie brilli
antibody. (A) Lanes 1 and 2, pRSET A at 0 and 2 hour respectively; lanes 3 and
respectively; lane 8 and 9, purified pkMSP-142. (B) Lane 1, purified pRSET A; lane
reducing condition with sample boiling and without boiling respectively; lane
boiling and without boiling respectively. Lane 5 in (A), lane 2 in (B) and lane
reacted with 34/38 knowlesi malaria serum samples,
thus giving sensitivity of 89.5% for knowlesi malaria
detection. Twenty-seven of the 29 (93.1%) non-knowlesi
malaria serum samples reacted with pkMSP-142. Therefore,
the overall sensitivity for detection of malarial infection
was 61/67 (91.0%). The specificity of ELISA was 113/122
(92.6%). Evaluation of pkMSP-142 with patient sera by using
Western blot assay and ELISA is summarized in Table 1.
Cytokine profiles in mouse
Cytokine secretion profiles of mice immunized with
pkMSP-142 were determined by ELISA. From the results,
IFN-γ, IL-2, IL-4 and IL-10 levels of pkMSP-142-immunized
mice group were all significantly higher than those of the
negative control group (P < 0.05) (Table 2).
Antibody characterization and IgG isotype distribution
Antibody responses in mice towards pkMSP-142 at different
time points were analysed. Western blot strips showed that
antibody against pkMSP-142 was detected one week after
prime boost. pkMSP-142 reacted with pkMSP-142-immu-
nized mice sera at day 7, 14, 21 and 31 post-immunization.
No reactivity was observed in the negative control mice
sera (Figure 2). ELISA results indicated that both IgM and
IgG were detected in pkMSP-142-immunized mice sera one
week after prime boost. IgM level slightly decreased
from day 14 until day 31 post-immunization. IgG
level was relatively lower than IgM at first week after
prime boost, yet high response was detected at day
14 post-immunization and continued to rise until day
31 post-immunization (Figure 3A). The predominant
IgG isotype was IgG1, followed by IgG2b, IgG3, and
IgG2a (Figure 3B). pkMSP-142 induced high antibody
response with the endpoint titre ranging between
1:204,800 and 1:819,200.
n system and purified with ProBondTM purification system. The
ant blue stained SDS gel, and (B) Western blot probed with anti-XpressTM

4, purified pRSET A; lanes 6 and 7, recombinant pkMSP-142 at 0 and 2 hour
3, purified pkMSP-142. (C) Lanes 2 and 3, purified pkMSP-142 under
s 4 and 5, purified pkMSP-142 under non-reducing condition with sample
1 in (C) were Prestained Broad Range Protein Marker.



Table 1 Evaluation of pkMSP-142 with patient sera in Western blot assay and ELISA

Human sera group Number of sera tested Western blot ELISA

Positive Negative Positive Negative

A. P. knowlesi 38 33 5 34 4

B. Non-P. knowlesi human malaria

i. P. vivax 15 14 1 14 1

ii. P. falciparum 13 13 0 12 1

iii. P. ovale 1 1 0 1 0

C. Non-malarial parasitic infection

i. Filariasis 4 1 3 0 4

ii. Amoebiasis 16 2 14 4 2

iii. Cysticercosis 13 0 13 2 11

iv. Toxoplasmosis 11 0 11 1 10

v. Toxocarasis 3 0 3 1 2

D. Healthy donor 75 0 75 1 74
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Discussion
MSP-142 of several Plasmodium sp. has been demonstrated
to be immunogenic and able to elicit protective immunity
[12,39]. MSP-142 is non-glycosylated and this is crucial for
its immunogenicity, as glycosylated form of milk-derived
MSP-142 secreted by transgenic mice does not confer
protection against malaria during Plasmodium challenge
[40]. The E. coli expression system was chosen in the
present study due to its simplicity of techniques,
cost-effectiveness and high efficiency of expression of
non-glycosylated protein [31,41]. Hybrid condition was
chosen for protein purification to preserve the protein
structure and activity. The pkMSP-142, which was expressed
as inclusion bodies, was solubilized under denaturing
buffer, then washed and eluted with native wash buffer
and native elution buffer respectively to refold the protein.
Purified pkMSP-142 appeared to have a smaller molecular
mass in non-reducing condition compared to redu-
cing condition. The shift in mobility upon reduction
in SDS-PAGE indicated the presence of disulfide linkages
in pkMSP-142 and hence pkMSP-142 was likely refolded
after purification.
In the present study, data showed high sensitivity

(> 90%) of pkMSP-142 to detect malarial infection in
both Western blot and ELISA. Hence, this suggests
that pkMSP-142 is suitable as antigen in both assays
for serodetection of malarial infection. The specificity of
Table 2 Cytokine profiles of mice immunized with pkMSP-142
Antigen IL-2 IL-4

pRSET A 75.8 (60.0-86.1) 3.4 (0.7-6.8)

pkMSP-142 280.0 (268.1-287.0)* P = 0.008 91.0 (56.6-146.2)* P = 0.008

Values shown are median (interquartile range). IL-2, interleukin-2; IL-4, interleukin-4
pg/ml. *P < 0.05.
ELISA was relatively lower than that of the Western
blot assay. This discrepancy might be due to the bor-
derline activity of some patients’ sera in the ELISA.
Suchankova et al. obtained positive results in ELISA
but yet negative in Western blot when comparing the two
assays for detection of human papillomavirus antibody.
They suggested that the borderline activity of the sera, in
which some of the serum sample OD absorbance values fall
just above the cut-off value, led to the discrepancies in
results [42]. Similarly, in the present study, some of
the non-Plasmodium and healthy donor sera had OD
absorbance values just slightly higher than the cut-off
value, thus giving false positive results. Nonetheless, ELISA
is useful as it can measure the titre of antibody compared
to the qualitative detection of Western blot assay.
A few of the malaria infected patient sera did not react

with pkMSP-142 in Western blot and/or ELISA and this
could be explained by the genetic diversity of MSP-1.
Plasmodium MSP-1 exhibits extensive sequence diversity
among isolates and host immune selective pressure
could be one of the reasons that lead to the polymorphism
[43,44]. Plasmodium knowlesi MSP-1 comprises of five
conserved and four variable domains, which the conserved
domains subjected to nucleotide substitutions and
exhibited allelic dimorphism, while three of four variable
domains contained complex repetitive sequence motifs
which lead to extensive sequence and size variation. Besides,
IL-10 IFN-γ

89.9 (82.9-131.8) 165.7 (0.0-411.9)

156.7 (136.8-250.8)* P = 0.016 2262.0 (1,515.0-2,437.0)* P = 0.008

; IL-10, interleukin-10; IFN-γ, interferon-gamma. Concentration of cytokines in



Figure 2 Anti-pkMSP-142 antibody detected in pkMSP-142-immunized mice. Lanes 2–6, sera of mice injected with non-recombinant protein pRSET
A at day 0, 7, 14, 21 and 31 post-immunization; lanes 7–11, sera of mice injected with purified pkMSP-142 at day 0, 7, 14, 21 and 31 post-immunization.
Lane 1 contained protein size standards.
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microheterogeneity comprising amino acid substitutions
causing different alleles was observed in P. knowlesi
MSP-133 epitopes [45]. Presence of sequence diversity
in these epitopes may alter the immunological recog-
nition of the epitopes and hence benefit the parasite
survival by evasion of host immune response. For
instance, Bergmann-Leitner et al. demonstrated that the
P. falciparum anti-MSP-119 antibodies were allele-specific
during inhibition of merozoite invasion and parasite
growth [46]. Therefore, antibodies in some of the malaria
infected patient sera in the present study could be unable
to detect the variant epitopes on pkMSP-142, which led to
negative reactivity.
Plasmodium knowlesi MSP-133 (pkMSP-133) was

evaluated with similar patient serum samples in the
previous study [47]. The sensitivity of pkMSP-142 for
detection of malarial infection was similar with
pkMSP-133 in Western blot (both >90%), but higher
Figure 3 Immune responses in pkMSP-142-immunized mice. (A) IgM a
detected at day 7 post-immunization and the levels increased throughout
levels. The IgG isotype distribution in pkMSP-142-immunized mice was IgG1
compared to pkMSP-133 in ELISA. pkMSP-142 consisted
of both MSP-133 and MSP-119 regionss. Previous studies
showed that human sera from malaria-endemic areas
demonstrated strong MSP-119 reactivity [48] and MSP-119
fragment consists of several immunodominant B cell
epitopes which are important to induce protective
anti-MSP-119 antibodies [49]. Therefore, these epitopes
could be recognized by specific anti-MSP-119 antibodies
in the sera of malaria-infected patients when pkMSP-142
was used as antigen, but not pkMSP-133.
pkMSP-142 reacted with most of the non-knowlesi

malaria sera and this could be due to serological
cross-reactivity. Previous studies demonstrated that
serum cross-reactivity could occur among malaria patients
[50-55]. Furthermore, almost similar level of protection
could be induced in immunized animals during challenge
with heterologous Plasmodium parasite due to their high
homology of antigens [56]. Sera from patients infected with
nd IgG levels in pkMSP-142-immunized mice. Both IgM and IgG were
the whole immunization period. (B) IgG isotype-specific antibody
> IgG2b > IgG3 > IgG2a.



Cheong et al. Malaria Journal 2013, 12:454 Page 7 of 9
http://www.malariajournal.com/content/12/1/454
P. falciparum and Plasmodium malariae cross-reacted
with recombinant Plasmodium vivax MSP-1 which has
42% sequence similarity with P. falciparum MSP-1 [57].
Plasmodium knowlesi MSP-142 shares high amino acid
similarity with MSP-142 of P. vivax (84%), P. falciparum
(59%) and Plasmodium ovale (70%). Hence, P. knowlesi
MSP-142 may share certain common B-cell epitopes with
human Plasmodium species, leading to cross-reactivity.
It has been reported that previous infection with

P. vivax could be one of the reasons for reactivity of
recombinant P. vivax AMA-1 with P. falciparum-infected
patient sera [58]. In the present study, pkMSP-142
reacted with some non-knowlesi human malaria and
non-Plasmodium parasitic infection sera. This could prob-
ably due to the patients’ previous exposure to P. knowlesi.
It is known that antibodies generated against knowlesi
infection can persist up to five years or longer [59].
In the present study, high IFN-γ and IL-2 levels in

pkMSP-142-immunized mice group indicated that
Th1-driven immune response has been stimulated. IFN-γ
is a key molecule in human anti-malarial host defense. It
activates macrophages to kill malarial blood stage
parasites by reactive oxygen and nitrogen intermediates,
and induces macrophages to secrete monokines such as
IL-1, IL-6 and TNF [60,61]. IFN-γ, which regulates the
pro-inflammatory and Th1 responses, was detected
during primary P. knowlesi infection in rhesus macaques
[62]. IL-2 functions as T cell growth factor and promotes
the functional properties of natural killer cells, B cells and
macrophages.
The high level of IL-4, IL-10 and predominant IgG1

production in the pkMSP-142-immunized mice group
showed that Th2 response has also been stimulated.
IL-10 is an anti-inflammatory cytokine which is secreted
by activated Th2 cells. It down-regulates the production of
pro-inflammatory IFN-γ and limits the potentially
harmful inflammatory responses during malarial blood
stage parasites infection in mouse [63,64]. A study on
P. knowelsi-inoculated olive baboons reported association
between increased levels of IL-4, IL-10, IgM and IgG
with increased protection against knowlesi-infection
[65]. In natural human infection, Cox-Singh et al. reported
increase in the IL-10 level in knowlesi malaria patients
with considerable parasitaemia. Therefore, they postulated
that this anti-inflammatory cytokine plays a role in
modulating the expected immune surge during merozoite
reinvasion [66].
Cytokines produced by each subset promote the

polarization process, which Th1 cells-produced cytokines
that will down-regulate Th2 response, and vice versa [67].
The concentrations of IFN-γ and IL-10 have been noted
to increase in P. vivax-infected individuals during natural
infection [68]. Therefore, stimulation of Th1 and Th2
subsets upon pkMSP-142 immunization is important
as homeostasis between Th1/Th2 cells could achieve
a balance regulation between pro-inflammatory and
anti-inflammatory actions in the immune response.
The high titre of anti-pkMSP-142 antibodies suggests

that pkMSP-142 was highly immunogenic. Four isotypes
of IgG were detected in the pkMSP-142-immunized mice.
These IgG isotypes help to activate effector responses in
different manners. Murine IgG1 binds to mast cell, sub-
types IgG2a and IgG2b play a role in complement binding
and antibody opsonization, while IgG3 is responsible
for carbohydrate epitope recognition [69]. IgG2a is the
dominant IgG isotype for modulating murine malaria para-
sitaemia [70]. Both cell-mediated and humoral immunity
were elicited by pkMSP-142, and these findings support
P. knowlesi MSP-142 as a potential blood stage vaccine
candidate. Similar results were reported in studies involv-
ing mice immunized with recombinant P. falciparum and
P. vivax MSP-142 [71,72].
Conclusion
Results from the present study suggest that E. coli-expressed
pkMSP-142 can be useful in general seroprevalence
and seroepidemiological screening. Moreover, pkMSP-142
was highly immunogenic and both T cell and B cell
responses were elicited in mice. Therefore, pkMSP-142
can serve as a candidate for malaria vaccine design,
although further evaluation needs be carried out to
validate its potential and limitations.
Additional files

Additional file 1: Purified pkMSP-142 was detected by patient sera
infected with knowlesi malaria and non-knowlesi malaria. Western
Blot strips containing 60 ng of the purified recombinant pkMSP-142 were
tested with selected sera from different categories. Lanes 2–5, sera from
patients infected with malaria: P. knowlesi (lanes 2 and 3), P. falciparum
(lane 4), P. vivax (lane 5). Lanes 6–10, sera of patients infected with
non-malarial parasites: filariasis (lane 6), amoebiasis (lane 7), toxoplasmosis
(lane 8), cysticercosis (lane 9), toxocarasis (lane 10). Lane 11, healthy
donor serum which served as negative control. Lane 1 contained protein
size standards.
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