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Abstract

Background: Anopheles darlingi is the major malaria vector in countries located in the Amazon region. Anopheles
aquasalis and Anopheles albitarsis s.l. are also proven vectors in this region. Anopheles nuneztovari s.l. and Anopheles
triannulatus s.l. were found infected with Plasmodium vivax; however, their status as vectors is not yet well defined.
Knowledge of susceptibility of Amazon anopheline populations to Plasmodium infection is necessary to better
understand their vector capacity. Laboratory colonization of An. darlingi, the main Amazon vector, has proven to be
difficult and presently An. aquasalis is the only available autonomous colony.

Methods: Larvae of An. darlingi, An. albitarsis s.l., An. nuneztovari s.l. and An. triannulatus s.l. were collected in the
field and reared until adult stage. Adults of An. aquasalis were obtained from a well-established colony. Mosquitoes
were blood-fed using a membrane-feeding device containing infected blood from malarial patients.
The infection of the distinct Anopheles species was evaluated by the impact variance of the following parameters:
(a) parasitaemia density; (b) blood serum inactivation of the infective bloodmeal; (c) influence of gametocyte
number on infection rates and number of oocysts. The goal of this work was to compare the susceptibility to P.
vivax of four field-collected Anopheles species with colonized An. aquasalis.

Results: All Anopheles species tested were susceptible to P. vivax infection, nevertheless the proportion of infected
mosquitoes and the infection intensity measured by oocyst number varied significantly among species. Inactivation
of the blood serum prior to mosquito feeding increased infection rates in An. darlingi and An. triannulatus s.l., but
was diminished in An. albitarsis s.l. and An. aquasalis. There was a positive correlation between gametocyte density
and the infection rate in all tests (Z = −8.37; p < 0.001) but varied among the mosquito species. Anopheles albitarsis
s.l., An. aquasalis and An. nuneztovari s.l. had higher infection rates than An. darlingi.

Conclusion: All field-collected Anopheles species, as well as colonized An. aquasalis are susceptible to experimental
P. vivax infections by membrane feeding assays. Anopheles darlingi, An. albitarsis s.l. and An. aquasalis are very
susceptible to P. vivax infection. However, colonized An. aquasalis mosquitoes showed the higher infection intensity
represented by infection rate and oocyst numbers. This study is the first to characterize experimental development
of Plasmodium infections in Amazon Anopheles vectors and also to endorse that P. vivax infection of colonized An.
aquasalis is a feasible laboratory model.
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Background
Malaria is an infectious disease with major impact on
global public health and economy. Currently, malaria
threatens almost one third of the world population in
103 tropical countries, resulting in 207 million of clinical
cases and 627,000 deaths in 2012 [1]. In the Americas,
21 countries are affected by malaria, with approximately
1.1 million cases in 2010, most of which occurred in the
Amazon basin, which covers 40% of South American
territory. In Brazil, the Federal Health System Surveil-
lance registered 267,000 cases in 2011, most of them
(99.8%) in the Amazon region [2].
Human malaria parasites in the genus Plasmodium are

transmitted by anopheline mosquitoes. Plasmodium fal-
ciparum and Plasmodium vivax are the main species-
affecting humans. Actually, since the mid-1990s, P. vivax
has become the predominant New World malaria spe-
cies, as it has expanded its range throughout South
America [1]. In Brazil, 84% of registered malaria cases
are caused by P. vivax [2]. The consequences of this in-
crease in distribution are higher exposure and increased
infection, adding to difficulties in controlling the disease.
Although P. vivax malaria is generally considered to be
relatively benign, there are numerous reports of complex
cases with severe clinical complications and deaths
[3-10].
One keystone stage in the Plasmodium life cycle is the

infection of mosquito vectors. Among the 33 Anopheles
mosquito species described from the Brazilian Amazon
region, Anopheles darlingi is considered to be the main
malaria vector. Other anopheline species can be consid-
ered secondary or occasional malaria vectors because of
their population density, anthropophilic behavior and
natural infectivity across their geographic distributions
[11-14]. Anopheles albitarsis s.l., An. nuneztovari s.l. and
An. triannulatus s.l. are commonly collected in the
Amazon, and they have been observed infected with P.
vivax and P. falciparum, but their role as malaria vectors
has not yet been elucidated [15-25]. Anopheles aquasalis
is distributed predominantly along the Atlantic coast be-
cause of its tolerance to saltwater environment and has
been found naturally infected by P. vivax [20,26-28] in
the Eastern Amazon region.
Outside the Brazilian Amazon, An. darlingi has been

associated with malaria transmission in Bolivia,
Colombia, French Guiana, Guyana, Peru, Suriname, and
Venezuela [12,29]; An. albitarsis s.l. in Venezuela [30];
An. nuneztovari s.l. in Venezuela [30], Peru [31] and
Colombia [32,33]; An. triannulatus s.l. in Venezuela [34]
and Peru [31]; and, An. aquasalis in Trinidad [35],
Guyana [28] and Venezuela, where it is considered to be
the primary coastal malaria vector of P. vivax [36].
The life cycle of Plasmodium spp. starts when mosqui-

toes ingest gametocytes, the parasite sexual stage, during
the blood meal taken through the skin of infected verte-
brate hosts. Inside the mosquito alimentary tract, fusion
between male and female gametocytes produces motile
ookinetes, which traverse the mosquito midgut epithe-
lium to form oocysts [37,38]. The presence of well-
developed oocysts outside mosquito midgut indicates
Plasmodium establishment in a susceptible vector and
this parameter is used to determine the infection rate of
a mosquito population [39,40].
In the field studies, the infection rate, i.e., the amount

of individuals in a mosquito population that carry well-
developed Plasmodium oocysts, is an important param-
eter for defining vector competence and thus, a key indi-
cator in the description of malaria dynamics and
transmission biology in a given geographic region. In-
deed, infection rates in mosquito vectors are related to
gametocyte survival, viability and success of fertilization,
and finally, midgut invasion by the resulting ookinetes.
However, not all gametocytes that are ingested by sus-
ceptible mosquito vectors reach the ookinete stage
[41-43]. Factors such as gametocyte density, gender ratio
and maturity, presence of anti-malarial drugs, human
and mosquito immune factors, and intrinsic parasite fac-
tors influence gametocyte viability, fusion and infectivity
and consequently oocyst formation [44-48]. To complete
the sexual development of Plasmodium in the mosquito,
sporozoites are released from the oocyst and go on to
invade the salivary glands. Once the salivary glands be-
come infected with sporozoites, the mosquito is infec-
tious to humans during the next blood meal [49-51].
It is well known that among the over 400 species of

mosquitoes in the genus Anopheles only about 10% are
important as vectors of human malaria. There is a multi-
tude of both ecological and genetic determinants that in-
fluence vector competence, both among species and
even at the level of geographic populations within a sin-
gle species [41-45,47]. Differences in susceptibility to
Plasmodium infection among the putative vectors of
malaria in the Amazon have never been fully and care-
fully considered until this study.
Mosquito vectors of malaria from Africa and Asia have

been well established in colonies and are feasible to
maintain in laboratory. For example the Anopheles gam-
biae, the major vector in several African countries, is the
most well studied mosquito, including its interaction
with human and murine Plasmodium species causative
agents of malaria [52,53]. Distinctly, the colonization of
An. darlingi, the major Amazon vector, has proven to be
difficult as well as other anopheline species from the re-
gion, and presently there is only An. aquasalis as an
available autonomous colony. Anopheles aquasalis has
been reared in laboratory as free mating since 1995
[54-56] and recently adapted as a well-established colony
in Amazon institutions for experimental studies [57-59].
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The goal of this work was to compare the susceptibil-
ity to P. vivax of colonized An. aquasalis with four
groups of field-collected Anopheles species. This study
was focused on vector infection rates as defined by the
presence, quantification of oocysts and proportion (per-
centage) of infected individuals in these mosquito popu-
lations, following exposure to blood obtained from
infected human patients. In addition, P. vivax infection
in the vector was correlated with gametocyte numbers
present in the circulating blood of infective human
hosts. In laboratory studies, the infection rate is a critical
part of the determination of vector competence. It is im-
portant to study P. vivax infection of New World vectors
due to the huge gap regarding the knowledge comparing
other vector-parasite pairs from the Old World.

Methods
Blood collection and ethic statements
Adult volunteers (ages >18 years) residents from the re-
gion of Manaus (State of Amazonas, Brazil) with P.
vivax malaria infection diagnosed by blood smears were
invited to participate in the study. Volunteers signed in-
formed consent documents as blood sample donors.
About 3 ml of blood samples were collected by
venipuncture from volunteers and placed into a sterile
lithium heparinate vacutainer tube. After blood collec-
tion, all patients were treated at the Fundação de
Medicina Tropical Dr Heitor Vieira Dourado (located in
the city of Manaus) or in the health posts from the re-
gion of Manaus where they were diagnosed, following
ethical procedures determined by the Brazilian Health
Ministry. This study was approved by the Brazilian
National Ethics Committee Board (CONEP, 3726).

Plasmodium vivax peripheral parasitaemia and
gametocyte counts
Thick and thin blood smears from malarial patients were
prepared by Giemsa staining method and examined
under light microscope x100 oil immersion lens to con-
firm the presence of P. vivax parasites. Sexual (gameto-
cyte) and asexual stages counting per 500 leukocytes
were performed.

Anopheles collections
Mosquito larvae were collected during one year at differ-
ent breeding sites near the city of Manaus, capital of Ama-
zonas State, Brazil: Puraquequara Road (Portela 03°03′
16.4″S 59°53′44.0″W; Km 9 Vicinal 03°03′09.1″S 59°52′
12.6″W; Carlão 03° 02′ 46.33000″ 59° 52′ 53.90000″);
Brasileirinho Road (Raifram 03°02′09.5″S 59°52′15.5″W;
Cristo Vive 03°01′33.1″S 59°51′07.7″W). Larvae were
reared in the insectary as described elsewhere [17].
Emerged adult mosquitoes were identified as the fol-
lowing species: An. darlingi, An. albitarsis s.l., An.
nuneztovari s.l. and An. triannulatus s.l., as described
elsewhere [60,61]. Field mosquitoes from each species
were separated and housed in the rearing containers.
Anopheles aquasalis mosquitoes originated from a col-
ony established in 1995 [54] were reared from eggs to
adult. All mosquitoes were ad libitum fed 10% sugar
solution and kept in laboratory conditions at 26-28°C
and 70-80% RH (relative humidity). Three- to five-days
old adult females were used in all experiments. Pinned
voucher specimens were deposited at the Biological
Collection at the Instituto Leônidas e Maria Deane
(Fiocruz, Amazonas).

Plasmodium vivax infection of mosquitoes via membrane
feeding assay
Adult mosquitoes were sugar starved overnight prior to
infection via membrane feeding assay. Individuals from
each of the five species were separated in two experi-
mental groups. One group was offered whole blood
(WB) from P. vivax patients for a period of 45 to 90 mi-
nutes via membrane feeding assay (glass device covered
with Parafilm®). Blood was held at 37-39°C through a
hose system connected to a thermal bath. The second
group was treated in similar way but with inactivated-
blood serum (IBS). The P. vivax infective blood samples
were centrifuged for 15 minutes at 2,000 g and the
serum removed and heated for 1 hour at 56°C. Then, the
inactivated serum was added back to the red blood cells
containing parasites, suspended and offered to the mos-
quitoes. After the infective blood meals only fully
engorged mosquitoes were transferred to rearing con-
tainers and maintained in the insectary as described
above for the development of infection.

Evidence of infected mosquitoes
Five to eight days after infective blood meal, midguts
from the experimentally infected mosquitoes were dis-
sected in phosphate buffered saline, stained with 2%
commercial Mercurochrome (Merbromin), placed under
a coverglass and examined for the presence of oocysts.
The number of oocysts on the mosquito midgut was
recorded.

Data analysis
In this study, the blood-feeding rate was calculated as
the proportion of female mosquitoes that were fully
engorged after a blood meal. The susceptibility of the
Anopheles species to P. vivax was evaluated by the pres-
ence and the number of oocysts in the midguts. The
population infection rates were calculated by dividing
the number of infected mosquitoes (those with one or
more oocysts) by the number of dissected mosquitoes. G
tests were used to compare the frequency of infection
among all the studied mosquito species conjointly, as
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well as pairwise comparisons between each pair of spe-
cies. The Kruskal-Wallis test evaluates differences in the
number of oocysts between the infected mosquito spe-
cies. Only positively infected mosquitoes were used for
this last analysis. Conover-Inman test, a posteriori, was
used for comparison of the number of oocysts among all
studied mosquito species [62,63]. For each mosquito
species, logistic regressions were used in order to evalu-
ate if the probability of the mosquito to be infected was
related to the number of gametocytes in the blood meal.
Spearman’s Rank correlations were used in infected
mosquitoes to correlate blood-circulating gametocyte
numbers with oocyst numbers. G tests were used to
compare the number of oocysts per infected midgut with
the gametocytes present in the infective blood. G test
was also used to evaluate if blood factors affect the mos-
quito infection probability, comparing the mosquito in-
fection rate of the species fed on WB or ISB blood
samples. All statistical analysis used α = 0,05 and the R-
Project software version 2.13.1 (R Core Team).

Results
A total of 2,449 adult female mosquitoes and 62 P. vivax
isolates from malarial patients were used for the differ-
ent experimental feeding assays and only the fully
engorged mosquitoes after blood feeding were analyzed
in this study (Table 1). The five mosquito species dif-
fered in regard to feeding time until engorgement.
Anopheles aquasalis, An. darlingi and An. triannulatus
s.l. fed the most rapidly with 64% of individuals fed to
repletion in 40 minutes. Anopheles albitarsis s.l. and An.
nuneztovari s.l. fed more slowly, with 72% and 64%, re-
spectively, fully engorged over a period of approximately
60 to 80 minutes. The proportion of infected mosquitoes
Table 1 Infection rate and mean number of oocysts produced
with whole blood (WB-infected mosquitoes) or inactivated bl

Anopheles
species

Number of gametocytaemic
samples

Number of
gut

WB-

An. albitarsis s.l. 29 861

An. aquasalis 12 76

A. darlingi 17 530

An. nuneztovari s.l. 17 106

An. triannulatus s.l. 20 260

IBS-

An. albitarsis s.l. 10 201

A. aquasalis 9 40

An. darlingi 9 217

An. nuneztovari s.l. 9 43

An. triannulatus s.l. 10 115

Ooc = oocysts, Min =minimal number of oocysts, Max =maximal number of oocysts
following engorgement on an infected blood meal was
significantly different among species (G = 199.1, GL = 4,
p <0.001) (Figure 1). Anopheles aquasalis and An. albi-
tarsis s.l. showed very similar infection rates (G < 0.01,
GL = 1, p = 0.98). Actually, An. aquasalis showed the
highest infection rate (44.8%, remaining comparisons, G
> 18, GL. = 1, p < 0.001) followed by An. albitarsis s.l.
(44.7%), which were significantly different to all other
mosquito species (G > 8.14, GL = 1, p < 0.01). Anopheles
nuneztovari s.l. held the third highest infection rate
(24.5%), and it was not statistically different to An. dar-
lingi, which had an infection rate of 18.3% (G = 2.1, GL
= 1, p = 0.148), but was different to An. triannulatus s.l.,
with only 8.8% of the individuals infected (G = 14.6, GL
= 1, p < 0.001). Anopheles darlingi also had a significantly
higher infection rate compared with An. triannulatus s.l.
(G = 13.1, GL = 1, p = 0.001) (Figure 1).
The intensity of infection, measured by the numbers

of oocysts per infected mosquitoes, fed on WB and IBS
varied significantly among species (K = 48.9, GL = 4, p <
0.001) (Figure 2). The highest number of oocysts was
observed in An. aquasalis (mean =28.6 ±41.7 S.D, me-
dian = 12) and showed statistical difference when com-
pared with all the other species. Anopheles darlingi
(mean = 15.9 ± 24.3 SD, median = 7) was followed by An.
albitarsis s.l. (mean = 13.3 ± 14.8 SD, median = 6) and
An. nuneztovari s.l. (mean = 7.3 ± 8 SD, median = 5).
There was no significant difference in the number of oo-
cysts between An. darlingi, An. albitarsis s.l. and An.
nuneztovari s.l. However, An. triannulatus s.l. had sig-
nificantly less oocysts than all other studied species
(mean = 3.4 ± 4.7 S.D., median = 1).
To outline the distribution of infection intensities,

among WB-infected mosquitoes, we organize the oocyst
in Anopheles species from the Brazilian Amazon infected
ood serum (IBS-infected mosquitoes)

dissected Infection rate
(%)

Mean number of oocysts (Min –
Max)

infected mosquitoes

44,8 29,4 (1–260)

44,7 12,8 (1–50)

18,3 15,9 (1–150)

24,5 7,3 (1–34)

8,8 3,3 (1–22)

infected mosquitoes

40,8 22,5 (1–200)

20 5,5 (1–17)

28,1 11,9 (1–124)

30,2 11,5 (1–80)

16,5 5,4 (1–29)

.



Figure 1 Comparison of the susceptibility of WB-infected
Anopheles from the Brazilian Amazon to Plasmodium vivax
(Bars with asterisk indicates significant pair comparisons
between the species, * = p <0.01, NS = not significant).
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numbers into four groups, as follows: 1–10, 11–50, 51–
100, and more than 100 oocysts. A comparison of the
distribution of these groups among individuals within
species is illustrated in Figure 3. Sixty-nine per cent of
the mosquito specimens did not develop oocysts: the
proportion of individuals with zero oocysts was higher
in An. triannulatus s.l., followed by An. darlingi, An.
nuneztovari s.l., An. aquasalis, and An. albitarsis s.l. Ap-
proximately 16% of individuals from all five species were
infected with 1 to 10 oocysts and only 10% were infected
with 11 to 50 oocysts, with the lower number of infected
individuals observed in An. triannulatus s.l. (0.4%) and
the higher in An. albitarsis s.l. (21.3%). Only An. darlingi
and An. aquasalis had more than 50 oocysts, with 1.3
and 7.6% of the individuals, respectively.
Considering all the studied Anopheles species as a whole

group, the inactivation of factors present in blood serum
was not of significant importance to change the infection
rate (G = 0.2899, GL = 1, p = 0.585). However, the pattern
of the infection rate differed among IBS-infected mosquito
species. While the serum inactivation did not cause
changes in infection rates on An. aquasalis (G = 1.08,
GL = 1, p = 0.298) and An. nuneztovari s.l. (G = 0.5, GL = 1,
p = 0.47), serum inactivation resulted in a 53% increase in
infection rates in An. darlingi (G = 8.55, GL = 1, p = 0.003),
and 87% increase in An. triannulatus s.l. (G = 4.4, GL = 1,
p = 0.035). Inversely, the infection rate for An. albitarsis s.l.
decreased by 55% (G = 7.32, GL = 1, p = 0.007) (Figure 4).
In general, the intensity of infection, represented by oo-
cyst numbers, varied among species when inactivated
serum was used to infect mosquitoes (IBS-infected mos-
quitoes). There was no difference in oocyst numbers
formed on An. aquasalis (U = 1.3, p = 2.44) and An.
nuneztovari s.l. (Mann–Whitney U = 0.466 p = 0.495). On
the other hand, the inactivation slightly increased the oo-
cyst formation on An. triannulatus s.l. (U = 7.7, p = 0.006)
and decreased in An. darlingi (U = 5.01, p = 0.024) and An.
albitarsis s.l. (U = 8.27; p = 0.004) (Figure 2).
A total of 17 P. vivax isolates from malarial patients

were used for An. darlingi feeding experiments, 13 for An.
albitarsis s.l., 17 for An. nuneztovari s.l., 20 for An. trian-
nulatus s.l. and 29 for An. aquasalis (Table 1). Infection
rates and range of oocyst numbers per gut varied widely
among the different species of WB-infected mosquitoes
and IBS-infected mosquitoes. In general, a relationship be-
tween the number of gametocytes/500 leukocytes and the
infection rate of the mosquitoes (Z = −8.37, p < 0.001) was
observed. However, that relationship varied among the
species. For An. darlingi (Z = −2.9, p < 0.01) and An. aqua-
salis (Z = −4.66, p < 0.001) infection rates increased with
an increase in the number of gametocytes. For An. nunez-
tovari s.l., An. triannulatus s.l. and An. albitarsis s.l. (Z <
1.02, p > 0.3 in all cases) there was no correlation between
those two variables. Also, among infected species, An.
aquasalis (Spearman rho = 0.255, n = 386, p < 0.01) and
An. darlingi (rho = 0.518; n = 54, p < 0.01) showed a posi-
tive correlation between the number of gametocytes and
the number of oocysts formed. The data for all other spe-
cies did not exhibit a correlation between the quantity of
gametocytes and the quantity of oocysts (p > 0.05).

Discussion
The number of field mosquito specimens available for
experimental infection was limited by the seasonality of
the species and the malaria transmission peaks in the
Amazonas region near to Manaus city. A membrane-
feeding assay was used to infect Anopheles species.
Experimental infection of mosquito vectors can involve
direct feeding on the skin of patients or offering blood
meal through a membrane-feeding device. Ethical prefer-
ence tends to lean towards the use of membrane-feeding
experiments, in order to minimize the human factor
interaction. Most experimental results with Amazon out-
bred Anopheles species have used direct skin feeding on
gametocytaemic malarial patients [17,27,64]. These find-
ings are in agreement with other published data where
both direct and membrane feeding using blood from P.
vivax-gametocytaemic patients resulted in An. darlingi
infection rates between 22 and 23% with a mean oocyst
load per infected midgut of 11.5 with a range of 1–175
[65,66]. Anopheles aquasalis and An. albitarsis s.l. had a
significantly higher infection rate than An. darlingi,



Figure 2 Comparison of the median numbers of Plasmodium vivax oocysts of WB-infected and IBS-infected Anopheles species from the
Brazilian Amazon.
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considered the main malaria vector in the Brazilian
Amazon, and all three species showed high quantity of
oocysts, being that the highest one was found in An.
aquasalis. These results confirm that the membrane-
feeding assay is as efficient as direct feeding on human
skin when it comes to the study of Plasmodium infec-
tion on mosquito vectors.
Anopheles darlingi in Amazon area is more abundant

during the late wet season and early dry season, while the
other species are more abundant during the early dry sea-
son [44,67]. Similar situation occurs in Manaus region
(personal observation). During the time period when An.
darlingi was in high abundance, An. albitarsis s.l. and An.
nuneztovari s.l. were in low abundance. When the abun-
dance of An. darlingi was low, An. albitarsis s.l. and An.
nuneztovari s.l. abundance increased. This dynamics in
species succession is a very important factor for mainten-
ance of malaria transmission, and can present difficulties
for malaria control in this region due to susceptibility of
all studied species to P. vivax infection [68].
Here, it was demonstrated that An. darlingi, An. albitar-

sis s.l., An. nuneztovari s.l., and An. triannulatus s.l. field
populations, and the laboratory-colonized An. aquasalis
are susceptible to P. vivax under laboratory conditions. All
of the studied species might be sporadic competent vec-
tors in nature, although there was a generalized high pro-
portion of uninfected mosquitoes. However, infection
rates were much higher than those reported in nature for
the five species examined. As determined by the ELISA
technique, based on the use of species-specific anti-
sporozoite monoclonal antibodies, Amazonian mosquito
populations had different P. vivax infection rates: An. dar-
lingi ranged from 0.3 to 9.3%; An. albitarsis s.l. from 0.4 to
5.2%; An. nuneztovari s.l. from 0.3 to 1.1%; An. triannula-
tus s.l. 0.2% and An. aquasalis from 0.3 to 1.3%
[15,18,20-25,27,69-71]. Since this study used blood in-
fected with gametocytes that was offered to mosquitoes,
higher infection rates were expected, but variable infectiv-
ity in the same setting of gametocytaemia was observed.
Differences in infectivity of the different blood samples
could be due to a combination of variables, such as, gam-
etocyte maturity, gametocyte gender ratio, different P.
vivax genotypes, immune factors in patient sera, and host
response mechanisms, all of which could alter gametocyte
infectivity [27,48,72-74].
The number of oocysts has little importance in malaria

epidemiology since most infected mosquitoes found in
nature only possesses a few oocysts [75]. The degree of
anthropophily in nature is probably the most important
factor to determine vector capacity [76]. In sites around
Manaus, Brazil, An. darlingi is known to be strongly
anthropophilic and endophilic, and population of this
species occurs through the year. Anopheles albitarsis s.l.
was shown to be a very susceptible species to P. vivax,
and these results agree with results obtained in other
Brazilian Amazonian states of Roraima, Pará, Amapá
and Rondônia [15,16,19,70]. However, Klein and collabo-
rators considered An. albitarsis s.l. a dubious malaria
vector because of the low number of oocysts, zoophilic
behavior and seasonal distribution [44]. Like An. darlingi



Figure 4 Comparison of Plasmodium vivax infection rates of
WB-infected and IBS-infected Anopheles species from the
Brazilian Amazon (* = Significant, NS = No significant).

Figure 3 Percentage of WB-infected Anopheles mosquitoes
from the Brazilian Amazon with different Plasmodium vivax
oocyst densities (Ooc = oocyst numbers).
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and An. albitarsis s.l., An. aquasalis showed a high sus-
ceptibility to P. vivax. The high level of susceptibility of
An. aquasalis to P. vivax indicates the value of using this
species in studying New World malarial parasite vector-
interaction. Unlike An. darlingi, An. aquasalis is well
adapted to colonization in the laboratory.
Anopheles nuneztovari s.l. also showed a high infection

rate, although not statistically different to An. darlingi, it
was significantly different to An. albitarsis s.l.. Oocyst
numbers in An. nuneztovari s.l. were lower than in An.
darlingi and An. albitarsis s.l., although the mean num-
ber of oocysts was not significantly different between
these species. Anopheles nuneztovari s.l. is considered an
important malaria vector in some South American coun-
tries [30,31]; however, for others, this species is not con-
sidered a malaria vector because natural infections are
rarely observed and when they are, infection rates are
very low [18,23,24]. The results presented here clearly
suggest the high potential of An. nuneztovari s.l. as a
vector of malaria, which could be considered a risk de-
pending on its density in a given area. In the Manaus
area for example, An. nuneztovari s.l. is probably an im-
portant species for malaria transmission, because of its
high feeding and infection rates observed in laboratory.
The population of this species was found in high dens-
ities in localities around Manaus where An. darlingi is
also abundant [18]. On the other hand, although An. tri-
annulatus s.l. became infected with P. vivax in the ex-
periments described here, this species had significantly
the lowest infection rates and mean number of oocysts
compared with the other species studied. These observa-
tions reinforce the conclusion that An. triannulatus s.l.
is not an important malaria vector in the Amazon region
[15,16,44,68].
Except for An. albitarsis s.l. and An. aquasalis, mos-

quito infection rates were increased after blood serum
inactivation. Blood serum factors have been shown to in-
fluence the ability of P. vivax gametocytes to infect mos-
quitoes in experiments in which patient plasma was
replaced with P. vivax-naïve sera or plasma [46,66]. In-
fection in these two mosquito species does not appear to
be strongly related to host immune factors. Resistance to
Plasmodium infection in An. albitarsis s.l. and An. aqua-
salis may be more strongly associated with intrinsic fac-
tors related to the mosquito’s own immune system,
which could respond more effectively to destroy Plasmo-
dium infections. Future studies should include evaluation
of P. vivax strain variability on mosquito susceptibility and
both intra- and interspecific variation in mosquito im-
mune responses to Plasmodium infection.
The results also indicate that the quantity of gameto-

cytes are positively correlated with the infection rate and
the number of oocysts formed, but when results were ana-
lyzed by individual species only An. darlingi and An.
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aquasalis had a positive correlation between the quantity
of gametocytes and the other two variables. However,
according to Klein and collaborators there was no correl-
ation between the number of P. falciparum gametocytes
and the mean number of oocysts formed in An. darlingi,
although, in general, low numbers of circulating gameto-
cytes resulted in few infected mosquitoes [17]. Distinct re-
sults could be related to observational methods for
verifying the quantity of gametocytes, as determined by
light microscopy, which does not predict P. vivax trans-
mission to mosquitoes [77].

Conclusion
Development of novel malaria control strategies includes
methods aimed at disrupting parasite development in the
mosquito vector. Studying natural vector-parasite interac-
tions, as opposed to model systems, is critical to the develop-
ment of strategies that can ultimately be used in the field.
These studies are made difficult in cases where mosquito
vectors cannot be colonized in the laboratory. Such is the
case with many of the vectors in South America, including
the main vector An. darlingi, which has not been colonized
after several efforts by distinct research groups (personal ob-
servation). Only An. aquasalis, the main vector in coastal
Brazil, has been established and maintained in the laboratory.
This study established baseline data for key transmission pa-
rameters showing that in laboratory, P. vivax infection of col-
onized An. aquasalis had an infection rate of 44.8% with a
mean oocyst count of 29 per infected individual. It is possible
now to begin using this system to explore mosquito immune
response to P. vivax infection [57-59].
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