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Abstract

Background: Recently research has shown that larviciding can be an effective tool for integrated malaria vector
control. Nevertheless, the uptake of this intervention has been hampered by the need to re-apply larvicides
frequently. There is a need to explore persistent, environmentally friendly larvicides for malaria vector control to
reduce intervention efforts and costs by reducing the frequency of application. In this study, the efficacy of a 0.5%
pyriproxyfen granule (Surmilarv®0.5G, Sumitomo Chemicals) was assessed for the control of Anopheles gambiae
sensu stricto and Anopheles arabiensis, the major malaria vectors in sub-Saharan Africa.

Methods: Dose—response and standardized field tests were implemented following standard procedures of the
World Health Organization's Pesticide Evaluation Scheme to determine: (i) the susceptibility of vectors to this
formulation; (ii) the residual activity and appropriate retreatment schedule for field application; and, (jii) sub-lethal
impacts on the number and viability of eggs laid by adults after exposure to Sumilarv®0.5G during larval
development.

Results: Anopheles gambiae s.s. and An. arabiensis were highly susceptible to Sumilarv®0.5G. Estimated emergence
inhibition (El) values were very low and similar for both species. The minimum dosage that completely inhibited
adult emergence was between 0.01-0.03 parts per million (ppm) active ingredient (ai). Compared to the untreated
control, an application of 0.018 ppm ai prevented 85% (95% confidence interval (Cl) 82%-88%) of adult emergence
over six weeks under standardized field conditions. A fivefold increase in dosage of 0.09 ppm ai prevented 97%
(95% ClI 94%-98%) emergence. Significant sub-lethal effects were observed in the standardized field tests. Female
An. gambiae s.s. that were exposed to 0.018 ppm ai as larvae laid 47% less eggs, and females exposed to 0.09 ppm
ai laid 74% less eggs than females that were unexposed to the treatment. Furthermore, 77% of eggs laid by
females exposed to 0.018 ppm ai failed to hatch, whilst 98% of eggs laid by females exposed to 0.09 ppm ai did
not hatch.
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inclusion in malaria vector control programmes.

arabiensis

Conclusion: Anopheles gambiae s.s. and An. arabiensis are highly susceptible to Sumilarv®0.5G at very low dosages.
The persistence of this granule formulation in treated habitats under standardized field conditions and its sub-lethal
impact, reducing the number of viable eggs from adults emerging from treated ponds, enhances its potential as
malaria vector control tool. These unique properties warrant further field testing to determine its suitability for
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Background

Malaria control interventions with long-lasting insecticidal
nets (LLINs) and indoor residual spraying (IRS) have
resulted in substantial reductions of malaria cases in sub-
Saharan Africa [1,2]. Since both LLINs and IRS target the
fraction of the vector population that enter houses [3,4]
their efficacy is threatened by vectors developing resist-
ance to insecticides used indoors [5-7] and behavioural
adaptations where vectors shift their biting patterns to bite
in early evening and in the morning when people are out
of the nets [8,9]. There has also been a shift in the vector
species’ composition in parts of East Africa with LLINs
dramatically reducing the numbers of largely endophilic
Anopheles gambiae s.s. but having little or no impact on
Anopheles arabiensis that tends to bite and rest outdoors
[10-13] resulting in An. arabiensis becoming the dominant
vector. Since IRS and LLINs cannot totally suppress mal-
aria transmission there is a growing interest in the use of
additional tools in an integrated vector management ap-
proach [14-18].

Larval source management has been re-evaluated for
malaria control [19-24], with results indicating the added
benefit larval control could have when used together with
interventions that target adult mosquitoes [14,15,25]. One
of the advantages of larval source management is that it tar-
gets the aquatic stages of the vectors thus controlling both
indoor and outdoor biting and resting and insecticide re-
sistant mosquitoes [26]. Commercially available chemical
larvicides and microbials are highly effective in the control
of the major malaria vectors of sub-Saharan Africa
[20,24,27-33]. However, relatively few studies evaluated
them under operational conditions [15,23,34-37] and a
major limitation is their short activity under most environ-
mental conditions, frequently requiring weekly re-
application [20,21,34,38]. Larvicide and labour are the
major costs in large-scale larval control programmes and
these could be substantially reduced if re-application inter-
vals could be reduced without jeopardizing the impact of
the intervention [39]. In addition, the toxic effects of
chemical-based larvicides to non-target aquatic insects
limits their use for regular larviciding programmes [40,41].

Sumilarv®0.5G (Sumitomo Chemicals) is a granule in-
secticide developed for mosquito control. The active in-
gredient is pyriproxyfen (4-phenoxyphenyl (RS)-2-(2-
pyridyloxy) propyl ether), a juvenile hormone analogue
that acts as an insect growth regulator [42]. Pyriproxyfen
generally inhibits adult emergence of target insects
[43-45]. However it also has delayed effects on female
reproduction of adult mosquitoes exposed to sub-lethal
doses at the larval [46,47] or adult stage [48,49].
Sumilarv®0.5 has exceptional residual activity of up to six
months for the control of Aedes, Culex and Anopheles
mosquitoes in their natural breeding habitats [44,45,49,50].
Furthermore, pyriproxyfen has been evaluated as a
safe insecticide for application in drinking water [51]
with minimal impacts on non-target aquatic insects
and the environment [52-56]. Nevertheless, Sumilarv®0.5G
has never been evaluated for the control of immature
stages of An. gambiae s.l., the major malaria vector in
sub-Saharan Africa.

The objectives of the present study were to evaluate the
efficacy of this granular formulation of pyriproxyfen
for the control of An. arabiensis and An. gambiae s.s.
by determining: (i) the minimum effective dose in
dose—response tests; (ii) the optimum application dose
to be applied under field conditions; (iii) the residual period
of the optimum dose; and, (iv) the effects of sub-lethal
doses on egg production and larval hatching. All tests
were based on the World Health Organization Pesticide
Evaluation Scheme (WHOPES) guidelines for laboratory
and field testing of mosquito larvicides [57].

Methods

Study area

The study was conducted at the International Centre of
Insect Physiology and Ecology-Thomas Odhiambo Campus
(icipe-TOC) in Mbita (0° 26" 06.19” S; 34° 12" 53.13” E)
close to Lake Victoria, Western Kenya (altitude 1,137 m).
Here, the major malaria vectors are An. arabiensis with a
small number of An. gambiae s.s. and Anopheles funestus
[58]. The area is characterized by a tropical climate
with an average annual minimum temperature of
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16°C and an average maximum temperature of 28°C
(icipe-TOC meteorological station data for 2010 to
2012). The area experiences two major rainy seasons,
the long rains between March and June and the short
rains between October and December. The average
annual rainfall for 2010 to 2012 was 1,150 mm (icipe-TOC
meteorological station).

Mosquitoes

Both laboratory and standardized field tests used insectary-
reared third instar larvae of An. arabiensis and An. gambiae
s.s. (Mbita strains). Larvae were reared in round plastic tubs
(diameter 60 cm) filled with water (5 I, 5 cm high) from
Lake Victoria filtered through a charcoal-sand filter.
Mosquito larvae were fed with fish food (Tetramin©Baby)
twice daily. Third instar mosquito larvae were selected
from different tubs so that the larvae were of a simi-
lar range in size in each tub tested [59]. Mosquito
larvae were reared at ambient climate and light con-
ditions in a netting-screened greenhouse with an
average daily temperature of 27°C, an average 76%
relative humidity and a natural 12 hours of dark and
12 hours of light cycle.

Insecticide

Sumilarv®0.5G was provided by the manufacturer
Sumitomo Chemicals Company, Japan, for all tests. It is
a granular formulation containing 0.5% active ingredient
(weight: weight).

Dose-response tests

Tests were done in the shade, under ambient climate
and light conditions in a netting-screened greenhouse.
Prior to the dose-response tests, range-finding tests
were implemented by exposing test larvae to a wide
range of test concentrations and a control. This served
to find the activity range of the insecticide for each test
species. Concentrations between 10 parts per million
(ppm) active ingredient (ai) and 0.0000001 ppm ai were
tested. After determining the emergence inhibition (EI)
of the larvae in the wider range, nine concentrations
were chosen, yielding between 10% and 95% EI in
the range-finding tests in order to determine the
Elso, Elgp and Elgy in dose response bioassays. The
following concentrations were tested: 0.005 ppm ai,
0.001 ppm ai, 0.0005 ppm ai, 0.0001 ppm ai, 0.00007 ppm
ai, 0.00004 ppm ai and 0.00001 ppm ai, 0.000005 ppm ai,
0.000001 ppm ai.

A stock solution was prepared by grinding the granu-
lar formulation into a very fine powder following the
procedure of Sihuincha and others [49]. Using a pestle
and mortar, 5 g of Sumilarv®0.5G (25 mg ai) was ground
and added to 500 ml of non-chlorinated tap water. This
gave a stock solution of 10,000 ppm Sumilarv®0.5G
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(50 ppm ai). The mouth of the vial was covered with
aluminium foil and the solution left to agitate for one
hour on a shaker. Since Sumilarv®0.5G is a slow release
formulation the mixture was left overnight to allow the
active ingredient to be released into solution. In the
morning the mixture was again agitated on a shaker for
30 minutes to prepare a homogenous mixture since
some of the inert ingredients of the formulation (poten-
tially still containing some active ingredient) had settled
overnight. Serial dilutions were made immediately after
shaking in non-chlorinated tap water to produce the test
concentrations.

Anopheles arabiensis and An. gambiae s.s. were evalu-
ated in parallel. Each test concentration and a control
were replicated four times per round per mosquito spe-
cies. Two hundred ml of each test solution was set up in
300 ml plastic cups. Three rounds of tests were
implemented. Separate batches of 25 insectary-reared
third instar larvae of both test species were introduced
into each test concentration and the control (non-chlori-
nated tap water). Thus in total 300 larvae of each species
were tested per test concentration and control (total of
3000 larvae). Larvae were fed with Tetramin© Baby fish
food every 24 hours and cups covered with netting to
prevent any emerging adults from escaping. The number
of live and dead larvae, pupae and adults was recorded
every 24 hours for 10 days. Live pupae from each cup
were transferred into a separate cup with approximately
20 ml of water from the respective cup of collection.
These cups were covered with netting and pupae
monitored for emergence. Separate pipettes were used
to collect pupae from treated and control cups to
avoid cross-contamination.

Standardized field tests

Standardized field tests [57] were carried out in an open
field with grass approximately 3 c¢cm in height between
October 2011 and March 2012. Thirty artificial ponds were
set up in an open field by sinking enamel-coated bowls
(diameter 42 cm, depth 10 cm) into the ground (Figure 1A).
Ponds were arranged 2 m apart in six rows. Each bowl was
filled with 8 1 of non-chlorinated tap water. Into each pond
2 1 of soil collected from the surrounding field was added
and mixed well to resemble a natural habitat. Batches of 50
insectary-reared third instar larvae were introduced into
each pond. Sumilarv®0.5G treatment was applied after
introduction of larvae. Treatment of the ponds was allo-
cated randomly using a lottery system. In each treatment
round, 10 of the ponds served as untreated controls; in five
of them An. arabiensis were introduced and in the
other five An. gambiae ss. Two application rates of
Sumilarv®0.5G were tested per mosquito species. The ap-
plication rate was based on the surface area of the water,
which was 0.14 m? per pond. Sumilarv®0.5G was spread



Mbare et al. Malaria Journal 2013, 12:94
http://www.malariajournal.com/content/12/1/94

Page 4 of 12

Figure 1 Set-up of standardized field test. (A) Enamel-coated bow! sunk into the ground and filled with water and soil to simulate a natural
pond. (B) Netting-covered emergence trap on top of a pond to prevent escape of emerged adults.
AN

evenly over the entire water surface by hand. Five ponds
were treated with 1 mg ai per m* (equalling 0.018 ppm ai
considering the volume of 8 I of water) while five other
ponds were treated with 5 mg ai per m* (or 0.09 ppm ai)
per mosquito species. A netting-covered emergence trap
was placed on top of each pond to prevent wild mosqui-
toes from laying eggs in the sites and to prevent the escape
of any emerging adult mosquitoes (Figure 1B). The residual
activity of Sumilarv®0.5G was evaluated by introducing
new batches of 50 insectary-reared third instar larvae into
each pond at weekly intervals. After one week all the larvae
had either emerged as adults or died. The efficacy of
Sumilarv®0.5G was evaluated for six weeks. This experi-
ment was implemented three times (referred to as rounds
in the analyses).

To assess larval mortality, the number of larvae
present in each habitat was counted daily. First, the
emergence trap over each pond was assessed for the
presence of any newly emerged adults and any adults
collected with an aspirator and placed into a disposable
cup covered with netting. Any pupae in the ponds were
transferred into plastic cups holding 50 ml of the water
from the respective pond. Pupae collections were done
in the morning and evening so that any emergence or
emergence inhibition could be recorded daily in the
laboratory.

To monitor environmental parameters that may influ-
ence the efficacy of the insecticide, daily data on turbid-
ity and pH of water in each pond was collected. Ponds
were visually categorized into clear (ground visible) or
turbid ponds. The water pH was measured using a pH
meter (Phywe International, Germany).

Sub-lethal effects

Tests to assess the impact of sub-lethal doses of
Sumilarv®0.5G were carried out under ambient condi-
tions in a netting-screened greenhouse. The number of

eggs laid and the number of eggs hatched (number of
offspring produced) per adult mosquito that emerged
from treated ponds were compared to that of the adults
that emerged from the untreated ponds in standardized
field tests. All pupae used in these tests were collected
from the ponds in week six of each test round. Emerged
adults were maintained with 6% glucose solution ad
libitum. When the adults were two to four days old they
were blood-fed twice on a human arm on two successive
days. A single gravid mosquito was introduced into each
cage with an oviposition cup (diameter = 7 c¢cm) con-
taining 100 ml of non-chlorinated tap water. The num-
ber of eggs laid by each mosquito overnight and the
number of eggs hatched over one week were counted.
Sub-lethal effects of the treatment dosage of 1 mg ai
per m? were tested with 20 individual females per round
of semi-field test for An. arabiensis and An. gambiae s.s.,
respectively (total 3 x 20 = 60 females per species). Due
to the persistent high immature mortality of the 5 mg ai
per m” treatment only 10 females per species and round
could be tested (total 3 x 10 = 30 females per species).

Statistical analyses

Data analyses were done with SPSS statistical software
version 19. All data from the replicates of the dose-
response tests were pooled by doses for each mosquito
species for the estimation of the Elso, Elgy and Elgg values
using the log dosage-probit regression analysis with the
test dosages as covariates and species as factors in the
model. Relative median potency estimates were used to
compare the susceptibility of the two species. Generalized
estimating equations (GEE) were used to estimate the
overall emergence inhibition of the two Sumilarv®0.5G
dosages for the six weeks treatment period in stan-
dardized field tests. The number of successful emerged
adults was the dependent variable and was fitted to a
negative binomial distribution with a log-link function
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and an exchangeable correlation matrix. The treatments,
test rounds, mosquito species, water turbidity (clear, tur-
bid), water pH (grouped in two categories: pH < 8, pH =8)
and the occurrence of rain during the test week (no rain,
rain) were added to the model as fixed factors. Since the
same pond was evaluated repeatedly for larval mortality
over the six-week period, the unique pond ID was in-
cluded as the repeated measures variable. Interaction
terms were included in the model between treatments and
turbidity, treatments and pH, and treatments and rain.
GEE models were also used to estimate the impact of
sub-lethal concentrations on the number of eggs laid
and the number of eggs that hatched from emerged
An. gambiae s.s. adults. The parameter estimates of
the GEE models were used to calculate the weekly
mean adult emergence, mean number of eggs laid per
female and mean number of laid eggs that hatched
into larvae and the associated 95% confidence inter-
vals (Cls) by removing the intercept from the models.
For the calculation of percent reduction the weekly
emergence inhibition in the treated ponds was corrected
using Abbott's formula based on emergence in the
untreated ponds as denominator [60]. Percent reduction
was therefore calculated as follows:

(% untreated EI — % treated EI| x 100%

Ptreatrment El = % untreated EI
0

Results

Dose-response tests

The dose—response tests showed that Sumilarv®0.5G af-
fected adult mosquito emergence in An. arabiensis and
An. gambiae s.s. at very low and over a very wide range
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of concentrations (0.000001-0.005 ppm ai). Data from
the three rounds of dose-response tests showed similar
trends in emergence inhibition for each species and
were, therefore, pooled per dose (Figure 2) to estimate
emergence inhibition (EI) rates; EI 59, Elgy and Elgg
(Table 1). The minimum dosage that completely inhi-
bited adult emergence was estimated to be between
0.01-0.03 ppm ai (Table 1). Anopheles arabiensis and An.
gambiae s.s. were equally susceptible to Sumilarv®0.5G.

Standardized field tests

There was no difference in adult emergence from treated
ponds between An. arabiensis and An. gambiae s.s.
(p=0.3) and data for both species were pooled for ana-
lysis. The weekly adult emergence per round from the
treated and untreated ponds is shown in Figure 3 and
emergence inhibition calculated in Table 2. Complete
emergence inhibition was observed for two weeks in
rounds one and three of the high treatment dose of 5 mg
ai per m* (0.09 ppm ai). However at the lower dosage of
1 mg ai per m* (0.018 ppm ai) which corresponded
with the minimum effective dosage established in the
dose—response tests complete emergence inhibition was
only observed in week one in round one and three. Ponds
treated at 5 mg ai per m” provided better residual impact
than the lower treatment dosage of 1 mg ai per m?
(Figure 3 and Table 2). Adjusting for other factors the
GEE model estimated that Sumilarv®0.5G inhibited 85%
of adult emergence over a period of six weeks at an appli-
cation dose of 1 mg ai per m* and 97% at a dose of 5 mg
ai per m* compared to emergence from untreated ponds
(Table 3). The overall impact of 5 mg ai per m? on
inhibiting emergence was significantly higher than the
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Table 1 Estimated doses (ppm ai) of Sumilarv®0.5G for
50%, 90% and 99% emergence inhibition (El) in
Anopheles gambiae s.s. and Anopheles arabiensis

Anopheles arabiensis

ppm ai
0.00012 (0.00009-0.00016)

0.00248 (0.00154-0.00450)
0.02860 (0.01379-0.07296)

Anopheles gambiae s.s.

ppm ai
0.00013 (0.00010-0.00017)

0.00139 (0.00092-0.00232)
0.00973 (0.00526-0.02159)

Elso (95%Cl)
Elgo (95%Cl)
Elgs (95%Cl)

impact of 1 mg ai per m* (p<0.001). Despite consistent
rainfall during the first round of the standardized field
tests and occasional rainfall during the following two
rounds (Figure 4), rain did neither affect the emergence of
adults from control and treatment ponds nor the impact
of the treatments (Table 3). There were also no main
effects of water turbidity or pH on adult emergence but
interactions were identified between the treatments and
water turbidity, and the treatments and water pH. Turbid
water and high pH reduced the impact of the treatments
leading to slightly higher adult emergence from treatment
ponds under these conditions (Table 3). The impact of the
interactions can be calculated by multiplication of the
odds ratios [61]. This means for example emergence
inhibition was 85% at 1 mg ai per m* when ponds were
clear and had a pH <8, emergence inhibition was reduced
to 79% when the same treatment pond was turbid with a
pH <8 and to 74% when the same treatment pond was
turbid and had a pH >8. Similarly for the 5 mg ai per m*
ponds in round one, overall emergence inhibition is 97%
when treatment ponds are clear with pH <8, emergence
inhibition is reduced to 95% when the treatment ponds
are turbid with pH <8 and further reduced to 90% when
the treatment ponds are turbid and with pH >8.
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Sub-lethal effects

The impact of sub-lethal effects could not be evaluated for
An. arabiensis that emerged from pupae since neither fe-
males from untreated ponds nor females from treated
ponds laid eggs, possibly due to unsuitable mating condi-
tions provided for this species [62]. Exposure of An.
gambiae s.s. to both Sumilarv®0.5G dosages during the lar-
val stage resulted in: (i) a reduced probability of the adult
female laying eggs; (ii) reduced mean number of eggs laid
per female; and, (iii) reduced mean number of eggs that
hatched into larvae (Table 4). Treatment rounds were not
significantly different (p=0.687), and data for all rounds for
An. gambiae s.s. were pooled for analysis. Mosquitoes that
emerged from treated ponds were 65-68% less likely to lay
eggs compared to mosquitoes that emerged from untreated
ponds. The mean number of eggs laid per female An.
gambiae s.s. was reduced by 47% from females emerging
from ponds treated at 1 mg ai per m” and by 74% from fe-
males emerged from ponds treated at 5 mg ai per m* com-
pared to that in the untreated controls (Table 4). The
impact of the higher dosage was twice the impact measured
from the lower dosage (odds ratio (OR) 2.1, 95% CI 1.2-3.7,
p=0.02). Furthermore, it was 90% less likely for an egg to
hatch that was laid by a female exposed to the higher
Sumilarv®0.5G dosage compared to eggs laid by females
that emerged from low dosage ponds (OR=0.10, 95% CI
0.04-0.23, p<0.0001). The probability of an egg hatching
was reduced by 77% for eggs laid by a female exposed to
the lower treatment dosage and 98% for eggs laid by a fe-
male exposed to the higher dosage as compared to eggs in
females that emerged from the untreated control ponds.

Discussion
Anopheles arabiensis and An. gambiae s.s. were equally
and highly susceptible to Sumilarv®0.5G under laboratory
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Table 2 Weekly percent emergence inhibition (95% Cl) of Anopheles gambiae s.l. from treated ponds
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
1 mg ai per m?
Round 1 100 98 (94-99) 65 (55-72) 95 (90-98) 93 (85-97) 66 (59-71)
Round 2 88 (83-92) 86 (76-90) 83 (76-88) 78 (69-85) 79 (73-84) 72 (62-80)
Round 3 100 92 (80-97) 94 (86-98) 71 (62-78) 62 (54-69) 57 (47-64)
5 mg ai per m?
Round 1 100 100 94 (80-98) 98 (96-99) 91 (82-95) 84 (73-90)
Round 2 99 (95-100) 95 (81-99) 97 (96-98) 96 (90-99) 97 (94-99) 95 (90-98)
Round 3 100 100 98 (95-99) 85 (79-89) 74 (69-78) 90 (83-94)

and standardized field conditions. Sumilarv®0.5G inhi-
bited over 80% of the total adult emergence over a period
of six weeks at both application dosages. However, weekly
emergence rates increased steadily over the six-week test
period at the lower dosage that corresponded with the
Elgg in the laboratory and weekly emergence inhibition
was frequently lower than the 80% that is recommended
by WHOPES for successful immature control [57]. La-
boratory tests were conducted under standardized condi-
tions without major abiotic and biotic influences and
therefore EI values represent only minimum dosages. Ap-
plication rates frequently have to be increased up to sev-
eral times the minimum dose to obtain sufficient
immature control under field conditions [57,63]. The
higher dosage of 5 mg ai per m? or 0.09 ppm ai inhibited
well over 80% of adult emergence in all but one test week.
This dosage was 4.5 times the average Elgo in the labora-
tory. Further field tests to establish the optimum dose for
operational control in a variety of different habitats are ne-
cessary but based on the results presented here it is likely
that the optimum dosage lies between the two tested here
and therefore coincides with the maximum dosage
recommended by the manufacturer (0.05 ppm ai) for op-
erational control of other mosquito species [64].

The estimated emergence inhibition rates from the
dose—response tests were four times higher than those
previously reported by Kawada and his colleagues [65] for
An. gambiae, but within the range of rates estimated for
Culex and Aedes species [66-70]. These differences may
arise from the different pyriproxyfen formulations used in
separate studies [71], but also from the material of the test
containers [44]. Kawada and colleagues used a 5% emulsi-
fiable concentrate formulation while in the present study
a granular formulation was used and had to be crushed in
a mortar for the laboratory tests, which might have not
led to an equal amount of active ingredients being re-
leased into the stock solution. Also, in the present study
plastic cups were used for bioassays while Kawada and his
colleagues used aluminium cups. There is a concern that
the active ingredient pyriproxyfen adheres to plastic [72]
leading to a longer residual effect from such treated

containers due to a continuous slow release from the plas-
tic [54]. In the short term however, plastic might reduce
the amount of active ingredient in the water, which could
be responsible for the higher estimates of EI concentra-
tions found in this study. The extremely low concentra-
tions of active ingredient needed for the control of
mosquitoes with Sumilarv®0.5G is worth noting, The esti-
mated effective dose of pyriproxyfen is approximately 10
times lower than those reported for microbial larvicides
[20,21]. This is not surprising since pyriproxyfen is a ju-
venile hormone analogue, and insect hormones, like all
hormones, operate at extremely low concentrations as
chemical messengers [70,73]. Thus, far smaller quantities
of Sumilarv®0.5G would be required for larviciding
programmes compared to microbial larvicides, thereby
helping to lower costs associated with transporting and
storing larvicides [39].

The residual impact of Sumilarv®0.5G on An. gambiae
s.l. emergence observed here corresponds well with re-
ports from previous studies on other mosquito species
[44,67,74] but application dosages required to achieve the
same effect seem slightly higher for An. gambiae s.l.
Sumilarv®0.5G at 0.02 ppm ai and 0.05 ppm ai pro-
vided almost complete emergence inhibition of Aedes
aegypti, Aedes albopictus and Aedes taeniorhynchus,
Culex nigripalpus and Anopheles quadrimaculatus for
six weeks under standardized field conditions [74]. This
slow-release formulation has even been shown to exhibit
prolonged residual activity for control of Aedes larvae even
when the treatments were diluted by using replacement of
treated water with untreated water in the treated containers
[44,75]. Similarly, here it was observed that rainfall did not
negatively affect the impact of the treatments. Exceptional
performance of Sumilarv®0.5G was reported for the
control of Anopheles culicifacies in confined gem pits in Sri
Lanka [45] where a single application of pyriproxyfen at
0.01 ppm ai was sufficient to inhibit adult emergence for
approximately six months. Similarly, Sihuincha and
colleagues [49] reported complete emergence inhibition of
Ae. aegypti for five months from water tanks in Peru at an
application rate of Sumilarv®0.5G of 0.05 ppm ai. Overall
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Table 3 Multivariable analyses (GEE) of factors affecting
the emergence of adult malaria vectors over a six week
period from artificial ponds treated with Sumilarv®0.5G

Explanatory variable OR 95% Cl p
Treatment

1 mg ai per m? 0.03 0.02-0.05 <0.0001
5 mg ai per m? 0.15 0.12-0.18 <0.0001
control 1

Round

round 3 1.19 1.00-1.41 0.050
round 2 1.03 0.78-1.34 0.859
round 1 1

Vector species

An. arabiensis 0.95 0.86-1.05 0.278
An. gambiae ss. 1

Water turbidity

turbid 1.01 0.95-1.07 0.765
clear 1

Water pH

238 0.99 091-1.08 0.820
<8 1

Rain during test week

rain 1.05 0.92-1.20 0.449
no rain 1

Interaction between treatment and turbidity

5 mg ai per m**turbid 193 112-3.26 0017
5 mg ai per m**clear 1

1 mg ai per m**turbid 140 1.08-1.79 0011
1. mg ai per m**clear 1

Interaction between treatment and pH

5 mg ai per m>*pH>=8 1.90 1.13-2.85 0.002
5 mg ai per m**pH<8 1

1 mg ai per m**pH=8 125 1.06-147 0.008
1 mg ai per m**pH<8 1

Interaction between treatment and rain

5 mg ai per m>*rain 1.23 0.89-1.69 0.211
5 mg ai per m?*no rain 1

1. mg ai per m**rain 0.87 0.70-1.07 0.870

1. mg ai per m**no rain 1

it can be concluded from previous work that the efficacy
and residual activity of different pyriproxyfen-containing
products depends on the formulation, dose, habitat types
treated, prevailing weather conditions and target mosquito
species [53,67,74].

The current study showed that the efficacy of
Sumilarv®0.5G is reduced in turbid water and water with
a pH =8. Water is turbid because it carries a suspension of
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fine particles of both organic and inorganic matter in the
water column. Some of the turbidity observed here might
have been due to algae and bacteria growth in the
established habitats, which in turn might have increased
the water pH. It is possible that the active ingredient,
pyriproxyfen, is adsorbed onto particles in the water col-
umn and was less accessible to larvae. Turbidity and pH
of aquatic habitats are important parameters that are asso-
ciated with the abundance, development and survival of
Anopheles larvae [76]. Anopheles larvae are known to ex-
ploit aquatic habitats with varying degrees of water turbid-
ity and pH [76,77]. Suspended particles including algae in
the water column in turbid ponds provide mosquitoes
with food that enhances their development and survival
thus increase emergence from turbid ponds [78,79]. Mulli-
gan and Schaefer [80] found pyriproxyfen to adsorb onto
organic matter which might have been responsible for lar-
vae to be exposed to reduced doses. This needs to be con-
sidered and monitored in field operations where it might
be necessary to increase the application dose or reduce
retreatment intervals to ensure a consistent emergence in-
hibition above 80% as recommended by WHOPES [57].

An added benefit to the direct effect of Sumilarv®0.5G
on immature stages were the sub-lethal effects that af-
fected the offspring of adult females that successfully
emerged from treated ponds. At 5 mg ai per m” the
reproduction of females was reduced by well over 90%.
Similar effects of insect growth regulators have been
shown for Aedes and Culex [46,47,81]. The laying of non-
viable eggs by female An. gambiae s.s. emerging from
treated ponds might further extend the efficacy and re-
sidual effect of pyriproxyfen, and may help further reduce
intervention costs by extending the retreatment intervals.
It would be particularly helpful in the context of an auto-
dissemination strategy [82] of Sumilarv®0.5G where po-
tentially only sub-lethal doses are transferred to a habitat
by female gravid mosquitoes. The delayed sub-lethal ef-
fects of insect growth regulators were also shown to affect
the sex ratio and to reduce blood-feeding rates in exposed
mosquitoes [47,83]. Similar effects were shown for adults
exposed to pyriproxifen [48,49,84]. Ohashi and colleagues
[84] demonstrated that An. gambiae s.s. was completely
sterilized, with no female laying eggs after exposure to
pyriproxyfen-treated nets. Insect growth regulators have
been shown to suppress ovarian development and egg de-
velopment in mosquitoes [85,86]. Judson and de Lumen
[85] showed that exposure of Ae. aegypti females to juven-
ile hormone analogues suppressed egg development by
inhibiting development of ovarian follicles. Fournet and
colleagues [86] similarly showed that the ovarian develop-
ment of Ae. aegypti females that emerged from larvae ex-
posed to insect growth regulators was affected.

As with every insecticide it is important to be cautious
about using pyriproxyfen formulations as a stand-alone
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intervention since tolerance to pyriproxyfen has been
found in Diptera [87,88]. It is also of concern to know
whether the progeny of gravid females that are exposed
to sub-lethal level doses of pyriproxyfen and survive
have greater tolerance to pyriproxyfen than other mos-
quitoes. If this is the case, resistance may spread.
Pyriproxyfen exhibits favourable characteristics for
utilization as a larvicide for mosquito control. The
recommended application rate in drinking water limit of
300 ppb (0.3 ppm) [51] is several folds higher than the
recommended dose of 0.01-0.05 ppm [64] for mosquito
control and also has minimal environmental impacts at
recommended rates for mosquitoes [52,53].

Conclusion

Anopheles arabiensis and An. gambiae s.s. are highly sus-
ceptible to Sumilarv®0.5G at very low dosages. The per-
sistence of Sumilarv®0.5G in treated habitats under
standardized field conditions and its sub-lethal impact, re-
ducing the number of viable eggs from adults emerging
from treated ponds, enhances its potential as a malaria
vector control tool in integrated vector management strat-
egies. These unique properties of Sumilarv®0.5G warrant
further field testing in a range of natural An. gambiae s.l.
larval habitats and under operational conditions to recom-
mend if and how this insect growth regulator could be

included in vector control programmes for malaria control
in sub-Saharan Africa.

Based on the results of this study the maximum dos-
age recommended by the manufacturer for other mos-
quito species of 0.05 ppm ai is recommended as the
minimum dosage for further field testing for Amn
gambiae sl control. Although the residual effect ob-
served for the test concentrations lasted for a six-week
period, initially a shorter retreatment interval should be
evaluated under natural conditions where habitat types
and water quality are highly heterogeneous and might
affect the residual activity. Furthermore, the estimation
of retreatment intervals should also consider the prob-
ability of new habitats emerging during treatment cycles
that could then harbour mosquito larvae that might suc-
cessfully emerge before the target area receives another
round of Sumilarv®0.5G application. Initial application
cycles should be determined for the predominant habitat
type in the target area, the season of application and the
development time of immature vectors. In areas where
temporary habitats dominate or areas with high rainfall
an initial application cycle of two to three weeks should
be tested whilst in areas of more semi-permanent to
permanent habitats or during dry seasons a three to
four-weekly application cycle might be appropriate for
an initial field operation informed by a monitoring and
evaluation programme.

Table 4 Sub-lethal effects of Sumilarv® 0.5G on egg laying and hatching of Anopheles gambiae s.s.

Control 1 mg ai per m* 5 mg ai per m?
Number of females exposed 60 60 30
Number of females that laid eggs 43 27 14
Mean number of eggs/female (95% Cl) 438 (35.6-53.8) 23.1 (16.5-32.3) 112 (69-18.2)
Mean number eggs/female hatched (95% Cl) 374 (30.5-45.8) 8.7 (6.0-124) 0.8 (04-1.8)




Mbare et al. Malaria Journal 2013, 12:94
http://www.malariajournal.com/content/12/1/94

Competing interests

Sumitomno Chemicals, Japan, the commercial manufacturer of Sumilarv®0.5G,
provided the insecticide for this study free of charge. Nevertheless, neither
the manufacturer nor any of the funders of this work had any role in the
design, analysis or interpretation of the results, nor in the drafting of the
manuscript.

Authors’ contributions

UF and SWL conceived the idea for this research. OM, SWL and UF
developed the experimental design and protocols. OM implemented the
experiments. OM and UF analysed the data and drafted the manuscript. All
authors contributed to the final draft, read and approved the manuscript.

Acknowledgements

We would like to thank David Alila, Peter Ongele and Jackton Arija from the
insectary at icipe-TOC, Mbita for providing mosquitoes for experiments and
Paul Ouma, Gregory Masinde, Arthur Sune, Benard Oyembe for technical
assistance. We thank Bryson Ndenga for his review of the study protocols
and John Lucas for the provision of the insecticide and publications on
Sumilarv®0.5G. A research permit for testing Sumilarv®0.5G was granted by
the Kenyan Pest Control Products Board in Nairobi. The research leading to
these results has received funding from the National Institute of Health (NIH)
grant no. ROTAI082537, from the European Union Seventh Framework
Programme FP7/2007-2013 under grant agreement no 265660 (AvecNet
project) and from Sumitomo Chemicals, Japan. SWL is supported by the
Research and Policy for Infectious Disease Dynamics (RAPIDD) Program of
the Science and Technology Directory, Department of Homeland Security,
and Fogarty International Center, National Institutes of Health.

Author details

licipe-Thomas Odhiambo Campus, Mbita, Kenya. Disease Control
Department, London School of Hygiene & Tropical Medicine, London, UK.
3School of Biological and Biomedical Sciences, Durham University, Durham,
UK.

Received: 30 January 2013 Accepted: 9 March 2013
Published: 14 March 2013

References

1. Steketee RW, Campbell CC: Impact of national malaria control scale-up
programmes in Africa: magnitude and attribution of effects. Malar J 2010,
9:299.

2. Okumu FO, Moore SJ: Combining indoor residual spraying and insecticide-
treated nets for malaria control in Africa: a review of possible outcomes
and an outline of suggestions for the future. Malar J 2011, 10:208.

3. Robert V, Carnevale P: Influence of deltamethrin treatment of bed nets
on malaria transmission in the Kou valley, Burkina Faso. Bull World Health
Organ 1991, 69:735-740.

4. Pinder M, Jawara M, Jarju LBS, Kandeh B, Jeffries D, Lluberas MF, Mueller J,
Parker D, Bojang K, Conway DJ, Lindsay SW: To assess whether indoor
residual spraying can provide additional protection against clinical
malaria over current best practice of long-lasting insecticidal mosquito
nets in The Gambia: study protocol for a two-armed cluster-randomized
trial. Trials 2011, 12:147.

5. WHO: Expert Committee on malaria, 892. Geneva: WHO Technical Report
Series; 2000:1-71.

6.  Kawada H, Futami K Komagata O, Kasai S, Tomita T, Sonye G, Mwatele C, Njenga
SM, Mwandawiro C, Minakawa N, Takagi M: Distribution of a knockdown
resistance mutation (L1014S) in Anopheles gambiae s.s. and Anopheles
arabiensis in Western and Southern Kenya. PLoS One 2011, 6:624323.

7. Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R,
Simard F: Dynamics of insecticide resistance in the malaria vector
Anopheles gambiae s.l. from an area of extensive cotton cultivation in
Northern Cameroon. Trop Med Int Health 2008, 13:476-486.

8. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE,
Slotman MA: Outdoor host seeking behaviour of Anopheles gambiae
mosquitoes following initiation of malaria vector control on Bioko Island,
Equatorial Guinea. Malar J 2011, 10:184.

9. Faye O, Konate L, Mouchet J, Fontenille D, Ngayo SY, Hebrard G, Herve JP:
Indoor resting by outdoor biting females of Anopheles gambiae complex

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 10 of 12

(Diptera: Culicidae) in the Sahel of Northern Senegal. J Med Entomol
1997, 34:285-289.

Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule
JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae: historical
population decline associated with regional distribution of insecticide-
treated bed nets in western Nyanza Province. Kenya. Malar J 2010, 9:62.
Russell TL, Lwetoijera DW, Maliti D, Chipwaza B, Kihonda J, Charlwood JD,
Smith TA, Lengeler C, Mwanyangala MA, Nathan R, Knols BGJ, Takken W,
Killeen GF: Impact of promoting longer-lasting insecticide treatment of
bed nets upon malaria transmission in a rural Tanzanian setting with
pre-existing high coverage of untreated nets. Malar J 2010, 9:187.

Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil
AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Boeckel TV, Godfray
HCJ, Harbach RE, Hay SI: The dominant Anopheles vectors of human
malaria in Africa, Europe and the Middle East: occurrence data,
distribution maps and bionomic precis. Parasit Vectors 2010, 3:117.

Kitau J, Oxborough RM, Tungu PK, Matowo J, Magesa SM, Bruce J, Mosha
FW, Rowland MW: Species shifts in the Anopheles gambiae complex: do
LLINs successfully control Anopheles arabiensis? PLoS One 2012, 7:231481.
Chanda E, Masaninga F, Coleman M, Sikaala C, Katebe C, Macdonald M,
Baboo KS, Govere J, Manga L: Integrated vector management: the
Zambian experience. Malar J 2008, 7:164.

Fillinger U, Ndenga B, Githeko A, Lindsay SW: Integrated malaria vector
control with microbial larvicides and insecticide-treated nets in western
Kenya: a controlled trial. Bull World Health Organ 2009, 87:655-665.

Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ: Integrated
vector management for malaria control. Malar J 2008, 7(Suppl 1):54.

WHQO: Global strategic framework for integrated vector management. 2004.
whglibdoc.who.int/hg/2004/WHO_CDS_CPE_PVC_2004_2010.pdf.

Clive S: Integrated approach to malaria control. Clin Microbiol Rev 2002,
15:278-293.

Bukhari T, Knols BG: Efficacy of Aquatain, a monomolecular surface film,
against the malaria vectors Anopheles stephensi and An. gambiae s.s. in
the laboratory. Am J Trop Med Hyg 2009, 80:758-763.

Fillinger U, Knols BG, Becker N: Efficacy and efficiency of new Bacillus
thuringiensis var israelensis and Bacillus sphaericus formulations against
Afrotropical anophelines in Western Kenya. Trop Med Int Health 2003, 8:37-47.
Majambere S, Lindsay SW, Green C, Kandeh B, Fillinger U: Microbial
larvicides for malaria control in the Gambia. Malar J 2007, 6:76.
Geissbuhler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, Kiama
M, Mtasiwa D, Mshinda H, Lindsay SW, Tanner M, Fillinger U, Castro MC,
Killeen GF: Microbial larvicide application by a large-scale, community-
based program reduces malaria infection prevalence in urban Dar es
Salaam. Tanzania. PLoS ONE 2009, 4:¢5107.

Fillinger U, Lindsay SW: Suppression of exposure to malaria vectors by an
order of magnitude using microbial larvicides in rural Kenya. Trop Med
Int Health 2006, 11:1629-1642.

Shililu JI, Tewolde GM, Brantly E, Githure JI, Mbogo CM, Beier JC, Fusco R,
Novak RJ: Efficacy of Bacillus thuringiensis israelensis, Bacillus sphaericus
and temephos for managing Anopheles in Eritrea. J Am Mosq Control
Assoc 2003, 19:251-258.

Shaukat AM, Breman JG, McKenzie FE: Using the entomological
inoculation rate to assess the impact of vector control on malaria
parasite transmission and elimination. Malar J 2010, 9:122.

Fillinger U, Lindsay SW: Larval source management for malaria control in
Africa: myths and reality. Malar J 2011, 10:353.

Seyoum A, Abate D: Larvicidal efficacy of Bacillus thuringiensis var.
israelensis and Bacillus sphaericus on Anopheles arabiensis in Ethiopia.
World J Microb Biot 1997, 13:21-24.

Karch S, Manzambi ZA, Salaun JJ: Field trials with Vectolex (Bacillus
sphaericus) and Vectobac (Bacillus thuringiensis (H-14)) against Anopheles
gambiae and Culex quinquefasciatus breeding in Zaire. / Am Mosq Control
Assoc 1991, 7:176-179.

Karch S, Asidi N, Manzambi ZM, Salaun JJ: Efficacy of Bacillus sphaericus
against the malaria vectors Anopheles gambiae and other mosquitoes in
swamps and rice fields in Zaire. J Am Mosq Control Assoc 1992, 8:376-380.
Majori G, Ali A, Sabatinelli G: Laboratory and field efficacy of Bacillus
thuringiensis var israelensis and Bacillus sphaericus against Anopheles
gambiae s.|. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J
Am Mosq Control Assoc 1987, 3:20-25.



Mbare et al. Malaria Journal 2013, 12:94
http://www.malariajournal.com/content/12/1/94

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51

Skovmand O, Bauduin S: Efficacy of a granular formulation of Bacillus
sphaericus against Culex quinquefasciatus and Anopheles gambiae in
West African countries. J Vector Ecol 1996, 22:43-51.

Ravoahangimalala O, Thiery |, Sinegre G: Rice field efficacy of deltamethrin
and Bacillus thuringiensis israelensis formulations on Anopheles gambiae s.s.
in the Anjiro Region of Madagascar. Bull Soc Vector Ecol 1994, 19:169-174.
Ragoonanansingh RN, Njunwa KJ, Curtis CF, Becker N: A field study of
Bacillus sphaericus for the control of culicine and anopheline mosquito
larvae in Tanzania. Bull Soc Vector Ecol 1992, 17:45-50.

Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, Nyika D, Geissbuhler
Y, Chaki PP, Govella NJ, Mathenge EM, Singer BH, Mshinda H, Lindsay SW,
Tanner M, Mtasiwa D, de Castro MC, Killeen GF: A tool box for operational
mosquito larval control: preliminary results and early lessons from the
urban malaria control programme in Dar es Salaam, Tanzania. Malar J
2008, 7:20.

Majambere S, Pinder M, Fillinger U, Ameh D, Conway DJ, Green C, Jeffries D,
Jawara M, Milligan PJ, Hutchinson R, Lindsay SW: Is mosquito larval source
management appropriate for reducing malaria in areas of extensive
flooding in the Gambia? A cross-over intervention trial. Am J Trop Med
Hyg 2010, 82:176-184.

Shililu J, Mbogo C, Ghebremeskel T, Githure J, Novak R: Mosquito larval
habitats in a semiarid ecosystem in Eritrea: impact of larval habitat
management on Anopheles arabiensis population. Am J Trop Med Hyg
2007, 76:103-110.

Barbazan P, Baldet T, Darriet F, Escaffre H, Djoda DH, Hougard JM: Impact of
treatments with Bacillus sphaericus on Anopheles populations and the
transmission of malaria in Maroua, a large city in a savannah region of
Cameroon. J Am Mosq Control Assoc 1998, 14:33-39.

Skovmand O, Sanogo E: Experimental formulations of Bacillus sphaericus
and B. thuringiensis israelensis against Culex quinquefasciatus and
Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J Med Entomol
1999, 36:62-67.

Worrall E, Fillinger U: Large-scale use of mosquito larval source
management for malaria control in Africa: a cost analysis. Malar J 2011,
10:338.

Fortin C, Maire A, Leclair R: The residual effect of temephos (Abate 4-E) on
nontarget communities. J Am Mosq Control Assoc 1987, 3:282-288.

Fales JH, Spangler PJ, Bodenstein OF, Mills GD Jr, Durbin CG: Laboratory
and field evaluation of Abate against a backswimmer (Notonecta
undulata Say) (Hemiptera: Notonectidae). Mosq News 1968, 28:77-81.
Sumilarv product information. http://www.olyset.net/vectorcontrol/
sumilarv/.

Kamimura K, Arakawa A: Field evaluation of an insect growth regulator,
pyriproxyfen, against Culex pipiens Pallens and Culex tritaeniorhynchus.
Jap J Sanit Zool 1991, 42:249-252.

Vythilingam |, Luz BM, Hanni R, Beng TS, Huat TC: Laboratory and field
evaluation of the insect growth regulator pyriproxyfen (Sumilarv 0.5G)
against dengue vectors. J Am Mosq Control Assoc 2005, 21:296-300.
Yapabandara AM, Curtis CF: Laboratory and field comparisons of
pyriproxyfen, polystyrene beads and other larvicidal methods against
malaria vectors in Sri Lanka. Acta Trop 2002, 81:211-223.

Kamal HA, Khater EIM: The biological effects of the insect growth
regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes
aegypti. J Egypt Soc Parasitol 2010, 40:565-574.

Loh PY, Yap HH: Laboratory studies on the efficacy and sublethal effects
of an insect growth regulator, pyriproxyfen (5-31183) against Aedes
aegypti (Linnaeus). Trop Biomed 1989, 6:7-12.

[toh T, Kawada H, Abe A, Eshita Y, Rongsriyam Y, Igarashi A: Utilization of
bloodfed females of Aedes aegypti as a vehicle for the transfer of the
insect growth regulator pyriproxyfen to larval habitats. J Am Mosq
Control Assoc 1994, 10:344-347.

Sihuincha M, Zamora-Perea E, Orellana-Rios W, Stancil JD, Lopez-Sifuentes V,
Vidal-Ore C, Devine GJ: Potential use of pyriproxyfen for control of Aedes
aegypti (Diptera: Culicidae) in Iquitos, Peru. J Med Entomol 2005, 42:620-630.
Chavasse DG, Lines JD, Ichimori K, Majala AR, Minjas JN, Marijani J: Mosquito
control in Dar es Salaam. Il. Impact of expanded polystyrene beads and
pyriproxyfen treatment of breeding sites on Culex quinquefasciatus
densities. Med Vet Entomol 1995, 9:147-154.

WHO: Pyriproxyfen in drinking-water: Use for vector control in drinking-water
sources and containers. Geneva: Background document for development of
WHO guidelines for drinking-water quality; 2008.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

Page 11 of 12

Mulla MS, Darwazeh HA, Kennedy B, Dawson DM: Evaluation of new insect
growth regulators against mosquitoes with notes on nontarget
organisms. J Am Mosq Control Assoc 1986, 2:314-320.

Schaefer CH, Miura T, Dupras EF, Mulligan FS, Wilder WH: Efficacy,
nontarget effects, and chemical persistence of S-31183, a promising
mosquito (Diptera: Culicidae) control agent. J Econ Entomol 1988,
81:1648-1655.

Schaefer CH, Dupras EF Jr, Mulligan FS lll: Studies on the environmental
persistence of S-31183 (Pyriproxyfen): adsorption onto organic matter
and potential for leaching through soil. Ecotoxicol Environ Saf 1991,
21:207-214.

Sullivan J: Environmental fate of pyriproxyfen. [http://www.cdpr.ca.gov/docs/
emon/pubs/fatememo/pyrprxfn.pdf]

Schaefer CH, Miura T: Chemical persistence and effects of S-31183, 2-(1-
Methy-2(4- phenoxyphenoxy)ethoxy) pyridine on aquatic organisms in
field tests. J Econ Entomol 1990, 83:1766-1776.

WHO: Guidelines for laboratory and field testing of mosquito larvicides.
Geneva: World Health Organization Communicable Disease Control,
Prevention and Eradication. WHO Pesticide Evaluation Scheme. WHO/CDS/
WHOPES/GCDPP/2005.2013; 2005.

Kawada HD, Dida GO, Ohashi K, Komagata O, Kasai S, Tomita T, Sonye G,
Maekawa Y, Mwatele C, Njenga SM, Mwandawiro C, Minakawa N, Takagi M:
Multimodial pyrethroid resistance in malaria vectors, Anopheles
gambiae s.s.,, Anopheles arabiensis, and Anopheles funestus s.s. in
Western Kenya. PLoS One 2011, 6:e22574.

Araujo MS, Gil LHS, e-Silva AA: Larval food quantity affects development
time, survival and adult biological traits that influence the vectorial
capacity of Anopheles darlingi under laboratory conditions. Malar J 2012,
11:261.

Abbott WS: A method of computing the effectiveness of an insecticide.
J Am Mosq Control Assoc 1987, 3:302-303.

Katz MH: Multivariable analysis: A practical guide for clinicians. 2nd edition.
Cambridge: Cambridge University Press; 2006.

Marchand RP: A new cage for observing mating behaviour of wild
Anopheles gambiae in the laboratory. / Am Mosq Control Assoc 1985,
1:234-236.

Becker N, Rettich F: Protocol for the introduction of new Bacillus
thuringiensis israelensis products into the routine mosquito control
program in Germany. J Am Mosq Control Assoc 1994, 10:527-533.
Sumilarv, manufacturer’s product information. [http//www.olyset.net/
vectorcontrol/sumilarv/]

Kawada Y, Shono Y, Ito T, Abe Y: Laboratory evaluation of insect growth
regulators against several species of anopheline mosquitoes. Jap J Sanit
Zool 1993, 44:349-353.

El-Shazly MM, Refaie BM: Larvicidal effect of the juvenile hormone mimic
pyriproxyfen on Culex pipiens. J Am Mosq Control Assoc 2002, 18:321-328.
Andrighetti MTM, Cerone F, Rigueti M, Galvani KC, Macoris MLG: Effect of
pyriproxyfen in Aedes aegypti populations with different levels of
susceptibility to the organophosphate temephos. Dengue Bulletin 2008,
32:186-198.

Hatakoshi M, Kawada H, Nishida S, Kisida H, Nakayama I: Laboratory
evaluation of 2-[1-methyl-2-(4-phenoxyphenoxy)-ethoxy] pyridine
against larvae of mosquitoes and housefly. Jon J Sanit Zool 1987,
38:271-274.

Ali A, Chowdhury MA, Hossain MI, Mahmud Ul A, Habiba DB, Aslam AF:
Laboratory evaluation of selected larvicides and insect growth regulators
against field-collected Culex quinquefasciatus larvae from urban Dhaka,
Bangladesh. J Am Mosq Control Assoc 1999, 15:43-47.

Al-Sarar AS, Al-Shahrani D, Bayoumi AE, Abobakr Y, Hussein HI: Laboratory
and field evaluation of some chemical and biological larvicides against
Culex spp. (Diptera: Culicidae) immature stages. Int J Agr Biol 2011,
13:115-119.

Kawada H, Dohara K, Shinjo G: Laboratory and field evaluation of an
insect growth regulator, 4-phenoxyphenyl (RS)-2-(2-pyridyloxy) propyl
ether, as a mosquito larvicide. Jap J Sanit Zool 1988, 39:339-346.

Caputo B, lenco A, Cianci D, Pombi M, Petrarca V, Baseggio A, Devine GJ,
della Torre A: The “auto-dissemination” approach: a novel concept to
fight Aedes albopictus in urban areas. PLoS One 2012, 6:21793.

Ali A, Nayar JK, Xue RD: Comparative toxicity of selected larvicides and
insect growth regulators to a Florida laboratory population of Aedes
albopictus. ] Am Mosq Control Assoc 1995, 11:72-76.


http://www.olyset.net/vectorcontrol/sumilarv/
http://www.olyset.net/vectorcontrol/sumilarv/
http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/pyrprxfn.pdf
http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/pyrprxfn.pdf
http://www.olyset.net/vectorcontrol/sumilarv/
http://www.olyset.net/vectorcontrol/sumilarv/

Mbare et al. Malaria Journal 2013, 12:94 Page 12 of 12
http://www.malariajournal.com/content/12/1/94

74.  Nayar JK Ali A, Zaim M: Effectiveness and residual activity comparison of
granular formulations of insect growth regulators pyriproxyfen and s-
methoprene against Florida mosquitoes in laboratory and outdoor
conditions. J Am Mosq Control Assoc 2002, 18:196-201.

75.  Itoh K: Control of DF/DHF vector, Aedes mosquito, with insecticides.
Trop Med 1993, 35:259-267.

76. Ye-Ebiyo Y, Pollack RJ, Kiszewski A, Spielman A: Enhancement of
development of larval Anopheles arabiensis by proximity to flowering
maize (Zea mays) in turbid water and when crowded. Am J Trop Med Hyg
2003, 68:748-752.

77. Gimnig JE, Ombok M, Kamau L, Hawley WA: Characteristics of larval
anopheline (Diptera: Culicidae) habitats in western Kenya. J Med Entomol
2001, 38:282-288.

78. Gimnig JE, Ombok M, Otieno S, Kaufman MG, Vulule JM, Walker ED:
Density-dependent development of Anopheles gambiae (Diptera:
Culicidae) larvae in artificial habitats. J Med Entomol 2002, 39:162-172.

79.  Kaufman MG, Wanja E, Maknojia S, Bayoh NM, Vulule JM, Walker ED:
Importance of algal biomass to growth and development of Anopheles
gambiae larvae. J Med Entomol 2006, 43:669-676.

80.  Mulligan FS lll, Schaefer CH: Efficacy of a juvenile hormone mimic,
pyriproxyfen (5-31183) for mosquito control in dairy waste water
lagoons. J Am Mosq Control Assoc 1990, 6:89-92.

81. Mohsen ZH, Zayia HH: Long-term sublethal effects of fenoxycarb against
Culex mosquitoes (Diptera: Culicidae). Jpn J Sanit Zool 1995, 46:151-154.

82. Gaugler R, Suman D, Wang Y: An autodissemination station for the
transfer of an insect growth regulator to mosquito oviposition sites. Med
Vet Entomol 2012, 26:37-45.

83. Vasuki V: Influence of IGR treatment on oviposition of three species of
vector mosquitoes at sublethal concentrations. Southeast Asian J Trop
Med Public Health 1999, 30:200-203.

84. Ohashi K, Nakada K, Miyaguchi J, Shono Y, Lucas JR, Mito N: Efficacy of
pyriproxyfen-treated nets in sterilizing and shortening the longevity of
Anopheles gambiae (Diptera: Culicidae). J Med Entomol 2012, 49:1052-1058.

85. Judson CL, de Lumen HZ: Some effects of juvenile hormone and
analogues on the ovarian follicles of the mosquito Aedes aegypti
(Diptera: Culicidae). / Med Entomol 1976, 13:197-201.

86. Fournet F, Sannier C, Monteny N: Effects of the insect growth regulators
OMS 2017 and diflubenzuron on the reproductive potential of Aedes
aegypti. J Am Mosq Control Assoc 1993, 9:426-430.

87.  Crowder DW, Ellers-Kirk C, Yafuso CM, Dennehy TJ, Degain BA, Harpold VS,
Tabashnik BE, Carriere Y: Inheritance of resistance to pyriproxyfen in
Bemisia tabaci (Hemiptera: Aleyrodidae) males and females (B Biotype).
J Econ Entomol 2008, 101:927-932.

88. Karatolos NK, Williamson MS, Denholm |, Gorman K, Richard H-C, Bass C:
Over-expression of a cytochrome P450 is associated with resistance to
pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum. PLoS
One 2012, 7:231077.

doi:10.1186/1475-2875-12-94

Cite this article as: Mbare et al: Dose-response tests and semi-field
evaluation of lethal and sub-lethal effects of slow release pyriproxyfen
granules (Sumilarv®0.5G) for the control of the malaria vectors
Anopheles gambiae sensu lato. Malaria Journal 2013 12:94.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

www.biomedcentral.com/submit

Submit your manuscript at ( BiolMled Central




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study area
	Mosquitoes
	Insecticide
	Dose–response tests
	Standardized field tests
	Sub-lethal effects
	Statistical analyses

	Results
	Dose–response tests
	Standardized field tests
	Sub-lethal effects

	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

