
Taylor et al. Malaria Journal 2014, 13:102
http://www.malariajournal.com/content/13/1/102
METHODOLOGY Open Access
Estimation of malaria haplotype and genotype
frequencies: a statistical approach to overcome
the challenge associated with multiclonal
infections
Aimee R Taylor1,2,3*, Jennifer A Flegg1,2, Samuel L Nsobya4, Adoke Yeka5, Moses R Kamya4, Philip J Rosenthal6,
Grant Dorsey6, Carol H Sibley1,7, Philippe J Guerin1,2 and Chris C Holmes3
Abstract

Background: Reliable measures of anti-malarial resistance are crucial for malaria control. Resistance is typically a
complex trait: multiple mutations in a single parasite (a haplotype or genotype) are necessary for elaboration of the
resistant phenotype. The frequency of a genetic motif (proportion of parasite clones in the parasite population that
carry a given allele, haplotype or genotype) is a useful measure of resistance. In areas of high endemicity, malaria
patients generally harbour multiple parasite clones; they have multiplicities of infection (MOIs) greater than one.
However, most standard experimental procedures only allow measurement of marker prevalence (proportion of
patient blood samples that test positive for a given mutation or combination of mutations), not frequency. It is
misleading to compare marker prevalence between sites that have different mean MOIs; frequencies are required
instead.

Methods: A Bayesian statistical model was developed to estimate Plasmodium falciparum genetic motif frequencies
from prevalence data collected in the field. To assess model performance and computational speed, a detailed
simulation study was implemented. Application of the model was tested using datasets from five sites in Uganda.
The datasets included prevalence data on markers of resistance to sulphadoxine-pyrimethamine and an average
MOI estimate for each study site.

Results: The simulation study revealed that the genetic motif frequencies that were estimated using the model
were more accurate and precise than conventional estimates based on direct counting. Importantly, the model did
not require measurements of the MOI in each patient; it used the average MOI in the patient population.
Furthermore, if a dataset included partially genotyped patient blood samples, the model imputed the data that
were missing. Using the model and the Ugandan data, genotype frequencies were estimated and four biologically
relevant genotypes were identified.

Conclusions: The model allows fast, accurate, reliable estimation of the frequency of genetic motifs associated with
resistance to anti-malarials using prevalence data collected from malaria patients. The model does not require
per-patient MOI measurements and can easily analyse data from five markers. The model will be a valuable tool for
monitoring markers of anti-malarial drug resistance, including markers of resistance to artemisinin derivatives and
partner drugs.
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Background
The emergence and spread of resistance to anti-malarial
drugs, such as chloroquine (CQ) and sulphadoxine-
pyrimethamine (SP), have had a significant impact on
public health [1,2]. Artemisinin-based combination ther-
apy (ACT) is the first-line treatment for uncomplicated
Plasmodium falciparum malaria in nearly all areas [3],
however resistance to artemisinin derivatives, the key
components of ACT, has been reported in Southeast
Asia [4-8]. Since alternative treatments with equivalent
tolerability and efficacy are currently unavailable [9],
there is an urgent need to monitor emerging resistance
to artemisinin derivatives and their partner drugs, in-
cluding lumefantrine, amodiaquine, mefloquine, pipera-
quine, pyronaridine and sulphadoxine-pyrimethamine.
While in vivo studies are the “gold standard” for meas-

uring the clinical efficacy of an anti-malarial drug, clin-
ical treatment failure is a late marker of the spread of
drug resistance and is complicated by host factors [10].
Genetic studies (see Table 1) can provide a complemen-
tary approach for monitoring drug-resistant parasites
that is less complicated and expensive than in vivo stud-
ies [10]. In general, multiple genetic mutations in a sin-
gle parasite are required for the elaboration of the
resistant phenotype. The frequency of these genetic mo-
tifs (the proportion of parasites in the parasite popula-
tion that carry a resistant allele, haplotype or genotype)
is the metric needed to compare changes in resistance
between studies conducted at different times, or in dif-
ferent sites [11]. However, estimation of frequencies is
non-trivial because each patient may have multiple, gen-
etically distinct malaria clones within their infection. In
areas of high endemicity, it is common for the number
Table 1 Summary of terms

Genetic study In a genetic study, Plasmodium falciparu
for the presence of parasites that bear g

Genetic markers of resistance Markers of resistance are alleles in the p
either clinically or in the laboratory. The
(SNPs) found within genes that encode
resistance are non-synonymous mutatio

Sulphadoxine-pyrimethamine Sulphadoxine-pyrimethamine (SP) is an an
components act on the folate biosynthes
pyrimethamine inhibits dihydrofolate redu
Century, and resistance to the drug is now
(see [18] for a comprehensive review of a
preventative treatment of malaria during
malaria chemoprevention (SMC) in comb
in South Asia and the Horn of Africa [19,2

Haplotypes, genotypes and
linkage phase

Linkage phase describes the alignment o
set of multiple markers is called a haplot
genotype defines the combination of ha
throughout the human stage of its life c
these genetic motifs can be clearly defin
more than one clone. If these parasites d
molecular assay will show more than on
to define unambiguously the linkage ph
of parasite clones in a blood sample from a single pa-
tient, the multiplicity of infection (MOI), to be more
than one [12]. Based on the standard output of most
current experimental methods, the prevalence of the
markers considered (the proportion of individual patient
blood samples that test positive for a given mutation or
combination of mutations) is measured and is, therefore,
commonly reported instead of frequency.
In order to monitor trends in resistance across time

and space, the metric of resistance must be defined on a
common scale. Frequency provides such a metric,
whereas prevalence does not. To illustrate this point,
consider a hypothetical comparison between data col-
lected from a village before and after the introduction of
insecticide-treated bed nets (ITNs). Before the interven-
tion, the average MOI was high. Since each patient was
infected with several parasite clones, the resistant
marker prevalence (the proportion of patient blood sam-
ples that tested positive for the resistant marker in pure
form or mixed with the sensitive marker) was high, even
though the resistant marker frequency (the proportion
of parasite clones in the parasite population that carried
the resistant marker) was low. Due to a drop in the aver-
age MOI, after the intervention most infections were
monoclonal. Since each patient was now infected with a
single clone, the prevalence of the resistant marker was
equivalent to its frequency, which remained low. In
other words, based on prevalence, the intervention ap-
peared to be associated with a drop in resistance; how-
ever, the drop in prevalence was merely due to a drop in
the average MOI (there had been no change in the fre-
quency of the resistant marker in the parasite popula-
tion). For this reason, it is not appropriate to compare
m DNA is extracted from infected human blood and genotyped to test
enetic markers of resistance (for a recent example see [13]).

arasite’s genome that have been associated with anti-malarial resistance
markers considered here are located at single nucleotide polymorphisms
anti-malarial drug targets. In the case of Pfdhfr and Pfdhps, markers of
ns, while sensitive markers are wild type alleles [14-16].

ti-malarial drug comprising sulphadoxine and pyrimethamine. Both
is pathway: sulphadoxine inhibits dihydropteroate synthase, whereas
ctase (reviewed in [17]). SP was widely used in the latter half of the 20th
extensive, particularly in Southeast Asia, and Eastern and Southern Africa

ntifolate resistance). Nonetheless, SP is still recommended for intermittent
infancy and pregnancy in many parts of sub-Saharan Africa, seasonal
ination with amodiaquine and as a partner drug of artemisinin derivatives
0].

f consecutive genetic markers on a chromosome. The resulting aligned
ype. When markers are located in different genes and/or chromosomes,
plotypes within a single parasite. Plasmodium falciparum is haploid
ycle [21], so if a sample from a single patient is monoclonal, each of
ed. However, it is often the case that a patient’s blood sample contains
iffer with respect to two or more of the markers being examined, the
e marker at two or more positions (see Table 2). Then, it is not possible
ase, haplotype or genotype in a particular parasite.
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prevalence estimates based on data collected under dif-
ferent average MOIs (such as two different sites, or one
site at two different times); frequency estimates are re-
quired instead.
The previous example illustrates why prevalence

should not be used to monitor spatial and/or temporal
changes in resistance. However, prevalence estimates can
also be misleading if they are used to approximate fre-
quency at a single point in space and time because
prevalence is liable to overestimate the frequency of
common genetic motifs.
In practice, prevalence estimates are generated by

scoring mixed SNPs (single nucleotide polymorphisms
where both the sensitive and resistance markers were
simultaneously detected) as either pure sensitive or pure
resistant, depending on whether the prevalence of the
sensitive or resistant marker is required. Additional
counting methods to estimate gene frequency also exist
[22,23]. These include discarding all discernibly multi-
clonal blood samples, which can lead to large losses of
data; or discounting minority alleles at mixed SNPs. Due
to the loss of valuable information regarding rare muta-
tions, all of the conventional counting methods result in
biased frequency estimates. For the reasons described
below, they are also liable to lead to spurious haplotype
and genotype reconstruction.
Since malaria parasites are haploid throughout the hu-

man stage of their life cycle [21], the haplotype (se-
quence of alleles within a gene) or genotype (if the
alleles span multiple genes) of a single parasite clone in
a monoclonal infection is clearly defined. When the
MOI exceeds one, and the constituent clones differ at
two or more examined SNPs, standard genotyping
Table 2 The analytical challenge presented by multiclonal inf
sample

Hypothetical multiclonal infection

Unobserved
true genotypes

Clone 1

Clone 2

Clone 3

Clone 4

Clone 5

Observed data

Example of an incorrect interpretation of the
observed data

Genotype of clone infer

Genotype of clone infer

Suppose a P. falciparum multiclonal blood sample was genotyped at single nucleot
and 540 in Pfdhps. Markers are summarized by the amino acid residues they encod
encoded by codons containing mutations are highlighted bold. The observed data
sensitivity is assumed (all alleles are detected). Mutations were detected for all five
quintuple mutant is incorrect, since the linkage phase of the unobserved genotype
methods cannot determine which markers belong to
which clone. This means that defining the linkage phase
(see Table 1 for a definition), and therefore the haplotype
or genotype, of each constituent clone is non-trivial.
When haplotype or genotype reconstruction is per-
formed using either prevalence estimates or frequency
estimated based on conventional counting methods, the
results can be misleading. For instance, discounting sen-
sitive markers or minority markers at mixed SNPs can
lead to spurious haplotype or genotype reconstruction
(see Table 2).
To address the problems associated with conventional

counting methods and, therefore, harness the full poten-
tial of molecular methods for the surveillance of anti-
malarial resistance, various statistical solutions have been
proposed [11,24-27]. Statistical methods for genotype
frequency estimation are desirable, since they take ad-
vantage of all the information in the data. For example,
the freely available online program MalHaploFreq uses a
multinomial distribution to model the unobserved geno-
types in patient blood samples [11]. Maximum likelihood
estimates of the genotype frequencies, which feature as
probabilities in the multinomial distribution, are found
using a hill-climbing algorithm. In fact, the majority of
statistical methods use maximum likelihood estimation
to generate point estimates of frequencies and accom-
panying confidence intervals [11,24,25,27]. Alternatively,
a Bayesian framework, such as that developed by Wigger
et al. [26], can be used to impute the unobserved vari-
ables, allow the propagation of uncertainty and enable
the incorporation of specialist knowledge [28,29]. Since
the aforementioned Bayesian model is reliant upon
patient-level measurements of the MOI, an alternative
ections: a hypothetical example of a multiclonal blood

SNPs

Pfdhfr Pfdhps

51 59 108 437 540

N C S A K

N C S A K

I C N A K

N R N A K

I C N G E

N/I C/R S/N A/G K/E

red by discounting wild type markers I R N G E

red by discounting minority markers N C N A K

ide polymorphisms (SNPs) in codons 51, 59 and 108 in Pfdhfr and codons 437
e, which are denoted using the single letter amino acid code. Residues
are a direct consequence of the unobserved genotypes. Optimal genotyping
codons genotyped; however, the interpretation that the infection contains the
s and the MOI are not captured in the observed data.
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Bayesian model, which is not reliant upon patient-level
MOI measurements, was developed. The newly devel-
oped model, which uses prevalence data and a single es-
timate of the average MOI in the patient population to
estimate genotype frequencies, is presented here.

Methods
A statistical model was developed to estimate the fre-
quency of Plasmodium falciparum genetic motifs (the
proportion of parasite clones in the parasite population
that carry a given allele, haplotype or genotype) using
prevalence data. Henceforth, genotypes are referred to
instead of genetic motifs; however, the same methods
apply for alleles and haplotypes. In this section the
model details are given; the methods of a simulation
study, conducted to verify that the model provides ac-
curate and precise frequency estimates, are summarized;
and the application of the model to data collected from
five sites in Uganda is described.
Given a dataset with N patients and s markers geno-

typed, the random variables of interest in the model
were

1) the MOI for each of the i = 1 to N patient’s: m =mi,
…, mN

2) the genotypes of the clones within the ith patient:
Gij, j = 1, … , mi , since the ith patient had mi clones

3) for s binary (sensitive or resistant) markers, the
genotype frequencies for the r=2s possible
genotypes: π = [π1, π2,…, πr]

The observed data for the ith patient were considered
a direct consequence of the unobserved mi genotypes
(Gij, j = 1, … , mi) in each patient blood sample, assum-
ing optimal detectability of minority alleles and negli-
gible experimental error. See Table 2 for an example of
how unobserved genotypes gave rise to the observed
data.
Due to the Bayesian nature of the model, priors

were specified for m and π. For the analyses of simu-
lated data the prior for m was a Poisson distribution,
left-truncated at one and right-truncated at eight,
with parameter equal to a mean MOI of three, unless
stated otherwise. The frequency π was assigned a uni-
form prior distribution, formally a Dirichlet prior with
parameters set to one. Given π and the MOI for the
ith patient (mi), the genotypes were assumed to be a
realization from a multinomial distribution. The full
mathematical details for the model are given in
Additional file 1.
A Metropolis-Hastings Markov chain Monte Carlo

(MCMC) sampling algorithm [28,29] was used to draw
samples of genotype frequencies from the posterior dis-
tribution of the genotype frequencies conditional on the
observed data, using recursive resampling to approxi-
mate the summation over the unknown MOIs and geno-
types. Each time a new genotype was sampled within the
recursive resampling scheme, the incomplete marker
data, which sometimes arise due to unsuccessful geno-
typing outcomes or study design, were assigned a value
and, therefore, imputed. The genotype frequency sam-
ples drawn using the MCMC algorithm were then used
to infer the relevant frequencies. The median of the fre-
quency sample set was used as a point estimate of the
frequencies, and standard deviation as a measure of pre-
cision (low standard deviation corresponded to precise
estimates). Accuracy was defined (for simulated datasets
only) as the absolute difference between the known
(simulated) frequency and the point estimated from the
sample set generated by the model, averaged over the
point estimates for the different genotypes compatible
with a given dataset (low values indicated accurate esti-
mates). The model was written and implemented in R
[30], on a 64-bit computer with 16.0 Gb of random ac-
cess memory and an Intel(R) Core(TM) i7-2600 central
processing unit (CPU) @ 3.40GHz processor.
Model performance was assessed using a series of sim-

ulated datasets (see Additional file 2 for details). To as-
sess MCMC convergence, the within and between
sequence variance of parallel chains were compared. The
speed, precision and accuracy were reported for datasets,
as the size of the dataset (50, 100 and 1,000 blood sam-
ples) and the number of markers (one to five) varied.
The sensitivity of the frequency estimates to key model
assumptions, including optimal detectability, the prior
MOI distribution and its parameter, and the effect of
discarding blood samples with incomplete data, were
also assessed.
To demonstrate the ability of the model to estimate

genotype frequencies for real patient data, the model
was applied to data from a multisite drug efficacy
trial. From five study sites in Uganda (Figure 1),
prevalence data for markers at codons 51, 59, 108 in
the Plasmodium falciparum gene encoding dihydrofo-
late reductase (Pfdhfr) and 437 and 540 in the Plas-
modium falciparum gene encoding dihydropteroate
synthase (Pfdhps), which are associated with SP resist-
ance [18], were collected between December 2002
and May 2004 (see [31] for further details). All pa-
tient blood samples were genotyped at codons Pfdhfr
59, Pfdhps 437 and Pfdhps 540, while 80 blood sam-
ples from each site were randomly selected for geno-
typing at codons Pfdhfr 51 and Pfdhfr 108. The
structure of the missing data is apparent in the visu-
alisation of the raw data (Figure 2).
Due to interactions between mutant sites, not all ge-

notypes are biologically viable [32]. Furthermore, due to
the spread of a limited number of Pfdhfr mutant



Apac

Tororo

Kanungu

Mubende

Jinja

Figure 1 Study sites of the Ugandan field data. The numbers of patient blood samples analysed from each site were 358 (Kanungu), 354
(Mubende), 333 (Jinja), 334 (Tororo), and 359 (Apac). The blood samples were collected between December 2002 and May 2004 (see [31] for
more details). The mean MOI reported for each site was 2.64 (Kanungu), 3.01 (Mubende), 2.62 (Jinja), 4.46 (Tororo) and 4.16 (Apac).
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haplotype linages [33], preceding the emergence and
spread of a limited number of Pfdhps mutant haplotype
linages [34], Pfdhfr mutations almost always accompany
Pfdhps mutations, and SP resistant genotypes vary geo-
graphically [35]. In terms of the statistical model, it was
therefore important to allow for dependence within and
between Pfdhfr and Pfdhps by running the model on the
Pfdhfr and Pfdhps data combined. Due to the Bayesian
framework, a subjective Dirichlet prior could have been
used to incorporate information about the viability of
the different genotypes. However, an objective, uniform
prior was specified, meaning that all theoretically pos-
sible genotypes were regarded a priori as biologically
feasible and equally probable. Doing so provides an ob-
jective basis against which the validity of the results can
be compared. For the analyses of field data, the prior for
m was a geometric distribution, left-truncated at one
and right-truncated at eight. The parameter of the trun-
cated geometric distribution was set equal to the recip-
rocal of the mean MOI estimate at the relevant site
(MOI estimates were based on external information
provided by the investigators [31]; see the legend of
Figure 1, or Table 3 or 4 for mean MOI values. To test
the sensitivity of the frequency estimates to the prior
distribution parameter, the algorithm was rerun for
MOI estimates at the upper and lower confidence inter-
val limits (derived using a t-distribution and the re-
ported sample standard deviation) of the mean MOI
estimate. Since the true genotype frequencies were un-
known, to gain insight into the accuracy of the esti-
mates, a replicate analysis using simulated data based
on the field data was performed (see Section 3 of
Additional file 2 for details). This approach allows com-
parison between the true and estimated frequencies for
data that mimic the field data.

Results
Model performance based on simulated data
As outlined in Methods, the model was tested on both
simulated data and data collected from five sites in
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Missing data

Figure 2 Visualisation of raw data. Prevalence data are colour coded: pink, detection of the sensitive marker only; grey, detection of the
resistant marker only; black, detection of both sensitive and resistant markers (mixed SNP); white, missing datum. Rows differentiate the data
derived from different patient blood samples; columns differentiate the data for each of the markers genotyped in codons 51, 59, 108 (in Pfdhfr)
and 437 and 540 (in Pfdhps).

Table 3 Ugandan field data characteristics stratified by site

Characteristic
Study site

Jinja Kanungu Mubende Apac Tororo

No. of patient blood samples 333 358 354 359 334

No. completely missing data (%) 5 (2) 2 (1) 9 (3) 4 (1) 0 (0)

No. partially missing data (%) 249 (75) 276 (77) 266 (75) 275 (77) 254 (76)

No. discernably multiclonal† (%) 83 (25) 75 (21) 130 (37) 182 (51) 149 (45)

Reported mean MOI 2.62 2.64 3.01 4.16 4.46

†A blood sample was considered discernibly multiclonal if it had one or more mixed SNPs (SNPs where the sensitive and resistance markers were
simultaneously detected).
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Table 4 The prevalence of blood samples that test positive for all five mutant markers in pure or mixed form, and
frequency of the quintuple mutant genotype, stratified by site

Jinja Kanungu Mubende Apac Tororo

Reported Mean MOI 2.62 2.64 3.01 4.16 4.46

Marker prevalence 0.77 0.62 0.61 0.89 0.91

(I, R, N, G and E) (0.72-0.81) (0.57-0.67) (0.56-0.66) (0.85-0.92) (0.87-0.93)

Genotype frequency (IRNGE) 0.65 0.54 0.46 0.65 0.70

(0.60-0.70) (0.49-0.59) (0.40-0.51) (0.60-0.69) (0.66-0.74)

The reported mean MOI was extracted from the literature [31]. For each site, the prevalence of patient bloods samples that test positive for all five mutant
markers (I, R, N, G, and E) in pure or mixed form was calculated by scoring mixed SNPs as mutant, then calculating the proportion of patient samples with
mutant markers at each of the five SNPs (95% confidence intervals in parentheses). The frequency of the quintuple mutant genotype (IRNGE) was estimated by
the model (95% credible intervals in parentheses).
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Uganda. In this section, the results from the simulation
study, designed to test model performance, are summa-
rized (see Sections 1 and 2 of Additional file 2 for more
details). Convergence of the sampling algorithm was
rapid: 50,000 iterations were sufficient. The results of
the algorithm were robust: frequency estimates varied by
less than 0.02 when the algorithm was started from dif-
ferent initial genotype frequencies. The algorithm was
computationally fast, typically taking less than 10 min to
analyse a dataset comprising 100 blood samples and five
markers. Importantly, the precision and accuracy of the
statistical estimates increased with the number of blood
samples analysed by the model. Notably, the accuracy of
the estimates generated by the statistical model was super-
ior to those obtained when a commonly employed count-
ing method was applied to the same datasets. For datasets
with partial data, imputation of incomplete data afforded
favourable accuracy and precision (see Additional file 1
for details of the how imputation was implemented). The
sensitivity of the experimental methods to detect minority
markers in multiclonal patient blood samples was also an
important parameter to consider (the incorporation of this
parameter into future extensions of the model is of high
priority). The current model, however, appeared to be ro-
bust to 90% detectability (Section 2, Additional file 2). Not
surprisingly, when detectability dropped to 70%, accuracy
decreased. Running this model on datasets generated for
three or fewer SNPs given a clonal detectability less than
90% is therefore not advised. As expected, to a small
extent, the model was sensitive to MOI prior mis-
specification. The principal purpose of the model was to
estimate genetic motif frequencies (the proportion of
parasite clones in the parasite population that carry a
given allele, haplotype or genotype), it was not designed to
estimate patient-level MOIs. Providing the model is used
for its primary purpose, MOI prior mis-specification is
not problematic. However, if patient-level MOI estimates
are required, a thorough sensitivity check is possible. In
any case, selection of a prior distribution that best fits the
field data and repeat analysis within a reasonable range of
the reported MOI is recommended. If the average MOI is
unknown, a uniform MOI, which does not require MOI
specification, can be used.

Results from the field data
Having established that the model works on simulated
data, its utility was assessed on field data from five sites
in Uganda that have variable levels of malaria transmis-
sion. Table 3 shows that at each of the five sites, at least
20% of the patient blood samples were multiclonal (the
detection of one or more mixed SNPs was indicative of
a multiclonal infection), while in Apac, where the en-
demicity was reportedly very high, more than half the
blood samples were multiclonal. Usually in this kind of
analysis some assays do not yield data and must be
treated as missing. In these field sites, it was known that
the resistance markers at codons 51 and 108 were virtu-
ally fixed in the parasite population [31], so those were
tested in only 80 blood samples. This allowed an excel-
lent demonstration of the capacity of the model to deal
with incomplete data using imputation.
The genotype frequencies (proportion of parasite clones

in the parasite population that carry a given genotype) es-
timated by the model using a geometric prior over the
MOI are reported in Table 5. The SNPs at three codon
positions in Pfdhfr (N51I, C59R and S108N) and two co-
dons in Pfdhps (A347G and K540E) were assessed. The
model estimated frequencies for each theoretically pos-
sible genotype; however, only those with frequency greater
than 0.03 at one or more of the sampling sites are re-
ported. The frequency of the sensitive, wild type (NCSAK)
genotype was negligible at each of the sites while the
highly resistant, quintuple mutant (IRNGE) had the high-
est estimated frequency. The frequencies of the quadruple
(ICNGE), triple (IRNAK), and double mutant (ICNAK)
exceeded 0.03 in at least one site.
At each site there appeared to be an inverse relation-

ship between the frequency of the quintuple mutant
(IRNGE) and that of the remaining genotypes. Given the
expected selective advantage of the quintuple mutant
under SP drug pressure, this relationship may reflect
the displacement of clones carrying the less resistant



Table 5 Estimated Plasmodium falciparum genotype frequencies, and their values at the extremes of their 95%
credible intervals (in parentheses), in the five Ugandan study sites

Site Genotype frequencies

ICNAK IRNAK ICNGE IRNGE

Tororo 0.02 (0.01-0.03) 0.02 (0.01-0.04) 0.13 (0.10-0.17) 0.70 (0.66-0.74)

Jinja 0.03 (0.01-0.05) 0.04 (0.02-0.06) 0.13 (0.10-0.17) 0.65 (0.60-0.70)

Apac 0.05 (0.03-0.08) 0.07 (0.05-0.10) 0.11 (0.08-0.14) 0.65 (0.60-0.69

Kanungu 0.06 (0.03-0.08) 0.05 (0.03-0.08) 0.17 (0.13-0.21) 0.54 (0.49-0.59)

Mubende 0.07 (0.05-0.10) 0.10 (0.07-0.13) 0.20 (0.16-0.24) 0.46 (0.40-0.51)

Frequencies were estimated using the model, the prevalence data and the mean MOI reported by Francis et al. at each site [31]. The genotypes are defined by
the amino acid residues they encode at codons 51, 59, 108 in Pfdhfr, and 437 and 540 in Pfdhps. The amino acid residues are given by their one letter amino acid
code. Residues encoded by resistance markers are underlined. All genotypes that are theoretically compatible with the data were considered by the model,
however, only those with a frequency greater than 0.03 at one or more sites are reported.
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genotypes by those carrying the highly resistant geno-
type. It is particularly important that the model enabled
precise estimation of the frequency of this highly resist-
ant genotype (IRNGE) across sites that differ in MOI,
since it has been shown to be highly predictive of clinical
failure of SP [36], and is, therefore, an important geno-
type for molecular surveillance of SP resistance.

Comparison of estimates from the statistical model and
conventional counting methods
Most conventional counting methods can only measure
the prevalence of markers (how many of the patient blood
samples test positive for each marker type of interest, ei-
ther alone or mixed with the alternative type), not their
frequency. Using prevalence data, various counting strat-
egies have been used to estimate the frequency of the
marker in the parasite population [22,23]. To assess these
approaches, the frequency estimates from the statistical
model were compared with those from commonly used
counting methods using the data from Uganda (see
Section 3, Additional file 2 for full details).
Counting methods are all based on a simple idea:

using a set of assumptions, construct a subsample of the
dataset that contains no multiclonal patient blood sam-
ples or samples with missing data, such that frequencies
can be directly calculated using proportions. Three dif-
ferent approaches are compared: discarding any blood
samples with missing data and/or evidence of multiclon-
ality; assuming all of the markers at codons 51 and 108
were mutant, and then discarding any remaining blood
samples with missing data and/or evidence of multiclon-
ality; assuming all mixed SNPs were purely resistant (this
approach generates prevalence estimates for the propor-
tion blood samples that show evidence of all five mutant
type markers, I, R, N, G and E in either pure or mixed
form), and then discarding any remaining blood samples
with missing data. Confidence intervals surrounding
counting method estimates were based on the Wilson
score interval. Genotypes that were not represented in
the subsample were assumed to have zero frequency.
Each approach was applied to a field sample set, and the
frequency estimates compared with the statistical model
estimation.
Point estimates from the three different counting

methods differed greatly compared with the point esti-
mates generated by the model using different MOI dis-
tributions (see Section 3, Additional file 2). Moreover,
the credible intervals (Bayesian equivalent of confidence
intervals) surrounding the estimates generated by the
model were far smaller than the confidence intervals
resulting from the counting methods. This outcome is
not surprising, since the various counting methods pro-
duced subsets of the data that necessarily varied in size.
This demonstrated the increased precision of the model
output, another important asset of the model approach.
Overall, each of the counting methods excluded infor-
mation from a considerable portion of each dataset, and
these smaller subsets of the data produced the outputs
that were far less consistent with each other and with
the output from the model.
The accuracy of the estimates generated by the model

using the field data could not be compared with those
generated using counting methods, since the true geno-
type frequencies of the data from the field are, of course,
unknown. However, it was possible to compare the accur-
acy of the statistical estimates of the simulated data, which
were simulated under the model using the genotype fre-
quencies from these field data. When that was done, the
accuracy of the model output was superior to that of the
counting estimates (see Section 3 Additional file 2).
For comparison, the prevalence of patient blood sam-

ples that show evidence of all five mutant type markers,
I, R, N, G and E in either pure or mixed form at each of
the five sites is reported in Table 4. It is important to
note that an infection that tests positive for all five mu-
tant markers does not necessarily contain the quintuple
mutant genotype (consider Table 2 for example). The
prevalence of blood samples that text positive for all five
mutant markers is liable to overestimate the frequency
of the quintuple mutant genotype. The degree of
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overestimation depends on the mean MOI: given a fixed
frequency, prevalence is expected to increase as the
mean MOI increases. Based on the estimates generated
by the model, it is difficult to comment on the expected
relationship between the mean MOI and prevalence
across all five sites because the estimated frequency of
the quintuple mutant genotype and the mean MOI var-
ied from site to site. Jinja and Apac, however, do have
equivalent frequency estimates, and as expected, the lar-
gest discrepancy between prevalence and frequency be-
tween these two sites is in Apac, the site with the
greater mean MOI (Table 4).

Discussion
The frequency of a genetic motif (the proportion of
parasite clones in the parasite population that carry a
given marker, haplotype or genotype) of anti-malarial re-
sistance in a parasite population is an extremely useful
measure of anti-malarial resistance. Unfortunately, what
can be measured is the prevalence of markers, the pro-
portion of patient blood samples that test positive for a
single marker or combination of markers. This param-
eter depends strongly on the number of different clones
in the sample, the MOI, and does not capture the link-
age phase of the haplotypes or genotypes, which are the
key determinants of the resistance phenotype. In the re-
cent decade, there has been considerable progress in
malaria control in many regions, manifest in lower mal-
aria transmission and the concomitant reduction in the
mean MOI. Comparisons of the changes in frequency
over time or from different sampling sites are now more
important than ever. Various estimates of the frequency
based on direct counting of the prevalence data have
been used, but most approaches require discarding valu-
able information, and may also lead to biased estimates.
In contrast, the model uses all available information to

infer genotypes for the clones within each individual infec-
tion. It therefore reconstructs haplotypes and genotypes,
provides a consistent method of frequency estimation, and
avoids the loss of information that results from the adjust-
ments made for multiclonal patient blood samples and
unsuccessful genotyping outcomes. Application of the
model to field data will allow the changes in genetic motif
frequencies to be tracked, yielding important information
on the dynamics of resistance.
Like any model, however, it is important to note that a

number of assumptions have been made to construct
the model. To assess the impact of various assumptions,
a simple sensitivity analysis was performed using simu-
lated data. The model was robust to changes in the ini-
tial frequency estimates and to the assumption that
minority alleles are detected, providing the limit of de-
tectability is 90% or more, but sensitive to deviations in
the mean MOI and the distribution used to model the
mean MOI. In light of these results, the use of this
model for data generated using an assay that has a limit
of detectability less than 90% is not recommended. An
investigation to find the MOI distribution that provides
the best fit to the data is recommended, followed by re-
peat analyses of the data, each time varying the mean
MOI value within a reasonable range (such as the limits
of the 95% confidence interval of the mean MOI), to es-
tablish the sensitivity of the results to its value.
Several key differences set this model apart from exist-

ing methods of malaria haplotype and genotype frequency
estimation [11,24-27]. First, in contrast to all previously
published methods, the model makes use of all available
data, including those that are incomplete due to unsuc-
cessful genotyping outcomes or study design. Second, in
contrast to the recently published Bayesian method [26]
and the model underpinning the freely available online
software MalHaploFreq [11], this model is not reliant
upon per-patient measurements of the MOI. Third, in
contrast to some existing approaches [11,24,27], it enables
rapid analysis of data from three or more markers. Super-
ior assumptions regarding detectability and experimental
error are incorporated into alternative models [11,26]. It is
especially important to take into account the suboptimal
detectability of minority clones, which was addressed by
Hastings and colleagues using an indicator function
[11,22], when the data are derived from polymerase chain
reaction (PCR) methods and individual per-patient MOI
measurements are regarded as fixed. However, the latter is
not the case in the current model (patient-level MOIs are
treated as unobserved random variables).
Model development was primarily motivated by a de-

sire to make use of all available prevalence data to esti-
mate frequencies, including prevalence data for which
patient-level MOI measurements did not exist. It was
not designed to estimate patient-level MOIs, and so does
not obviate the need for MOI measurements in general.
Adaptation of the model, to allow the incorporation of
patient-level MOI estimates, is an important consider-
ation for the future. However, in contrast to existing
methods that regard the MOI as a fixed quantity [11,26],
any extensions of the current model would preserve the
current treatment of MOIs as random variables, perhaps
using patient-level MOI measurements to inform patient
level MOI distributions, allowing patient-level variation
in the MOI.

Conclusion
Genetic monitoring of Plasmodium falciparum plays an
important role in the timely surveillance of anti-malarial
drug resistance. The utility of a Bayesian model, de-
signed to estimate Plasmodium falciparum genetic motif
frequencies (proportions of parasite clones in the para-
site population that carry given alleles, haplotypes or
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genotypes) has been demonstrated using data on markers
of SP resistance. Its applicability, however, extends beyond
SP to markers of resistance to lumefantrine, amodiaquine,
mefloquine, piperaquine, pyronaridine. Moreover, the re-
cent identification of molecular markers of artemisinin re-
sistance in Cambodia [37], opens the possibility for using
this model to compare the frequency of these markers in
isolates from different sites or times. This is the first
model that combines rapid analysis of three or more
SNPs, using all available data (including those that are in-
complete due to unsuccessful genotyping outcomes),
without reliance on measurements of the MOI in individ-
ual patient blood samples. In the past, large amounts of
valuable data have either been discarded or not used to
their full capacity. It is imperative that a similar scenario is
averted before widespread surveillance of resistance to
artemisinins. The development of an accurate, consistent
method for deriving comparable estimates of Plasmodium
falciparum genotype frequencies, using known markers of
multigenic resistance, provides a means to harness the full
potential of current and prospective markers of anti-
malarial resistance.

Additional files

Additional file 1: Mathematical description of the model, including
a graphical visualisation of the model quantities and their
conditional dependencies.

Additional file 2: Full details of the simulation studies and analyses
of the field data.
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