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Abstract

Background: Malaria is a leading cause of mortality worldwide. There is currently conflicting data and
interpretation on how variability in climate factors affects the incidence of malaria. This study presents a hierarchical
Bayesian modelling framework for the analysis of malaria versus climate factors in West Africa.

Methods: The hierarchical Bayesian framework takes into account spatiotemporal dependencies, and in this paper
is applied to annual malaria and climate data from ten West African countries (Benin, Burkina Faso, Côte d'Ivoire,
Gambia, Ghana, Liberia, Mali, Senegal, Sierra Leone, and Togo) during the period 1996-2006.

Results: Results show a statistically significant correspondence between malaria rates and the climate variables
considered. The two most important climate factors are found to be average annual temperature and total annual
precipitation, and they show negative association with malaria incidence.

Conclusions: This modelling framework provides a useful approach for studying the impact of climate variability
on the spread of malaria and may help to resolve some conflicting interpretations in the literature.
Background
Malaria is a leading cause of infectious disease and death
worldwide with 3.3 billion people at risk for contracting
the disease. In 2010, an estimated 219 million (range 154
million to 289 million) became infected with malaria, of
which an estimated 660,000 people died [1]. Malaria is
caused by a single-celled parasite of the genus Plasmo-
dium, which is transmitted among humans by female
mosquitoes of the genus Anopheles. The successful devel-
opment of the malaria parasite in the mosquito depends
on several factors, most importantly on temperature and
humidity (higher temperatures accelerate the parasite
growth in the mosquito) and whether Anopheles survives
long enough to allow the parasite to complete its cycle in
the mosquito host [2].
The ecology of malaria is complex, with multiple bio-

physical and socio-economic factors impacting the disease.
Studies of the various environmental factors impacting
epidemics of malaria in Africa, where the disease is most
prevalent, have helped to shed light on how climate vari-
ables may affect the vector mosquito population and the
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parasite it carries. Recent research has focused primarily
on temperature and rainfall with somewhat conflicting
results.
The role of temperature on malarial epidemics was

demonstrated by a retrospective study of malarial cases
in the highland region of East Africa from 1970 to 2003
[3]. This study found an association between malaria
epidemics and warmer temperatures, although the
predicted size of the epidemics was smaller than what
actually took place. These results led to the conclusion
that factors other than temperature must have also
affected the outcome. Chua [4] also found that increased
temperature favours the survival of malaria-carrying mos-
quitoes, but the degree to which a rise in temperature in-
creases the spread of malaria is dependent on the baseline
temperature, with cooler regions experiencing the largest
change. As such, climate change is most likely to increase
the spread of malaria in high altitude areas, particularly
those with an altitude over 2,000 m because lower regions
are already sufficiently warm for the breeding of the mos-
quito vector [5]. Parham and Michael [6] found that the
endemic transmission of malaria, and the rate at which it
spreads in a disease-free region, are optimized at 32-33°C.
On either side of this range, fewer mosquitoes survive long
enough for the parasite to complete its life cycle within
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the host. Gillioli and Mariani [7] came to the same conclu-
sion, although they found that the bell-shaped distribution
of mosquito population peaked at 24-25°C and fell off with
any deviation to either side of that ideal temperature.
Mordecai et al. [8] did a comprehensive study on the role
of temperature on malaria spread using a semi-empirical
model and analysing observational data dating back one
century. They found that the optimal temperature for mal-
aria transmission peaks at 25°C, much lower than previ-
ously thought, i.e. 32-33°C. This study also found that
malaria spread decreases dramatically for temperatures
above 28°C. The authors note that previous studies that
established much higher optimal temperatures are at odds
with long-term observational data dating back one cen-
tury. Recently, Siraj et al. [9] analysed spatiotemporal mal-
aria and climate data at a regional scale in highlands of
Colombia and Ethiopia to examine how the spatial distri-
bution of the disease changes with the interannual vari-
ability of temperature. They found an increase in malaria
incidence in warmer years. Also, a recent analysis [10] of
future projections of global malaria distributions based on
bias-corrected temperature and rainfall simulations from
climate models showed (although with large uncertainties)
an overall global net increase in the population at risk.
The amount of rainfall is another factor found to impact

mosquito populations and the spread of malaria. Using a
mathematical model of malaria transmission and perform-
ing a sensitivity analysis, Gillioli and Mariani [7] found
that mosquito populations display a positive quasi-linear
response pattern to rainfall variation, but with less sensi-
tivity to rainfall than to temperatures. Chaves et al. [11]
also found a positive association between malaria out-
breaks and rainfall, probably because it creates many stag-
nant pools of water, which are fertile breeding grounds for
mosquitoes.
The goal of the current study is to present a hierarch-

ical Bayesian statistical modelling framework that can be
used to analyse the effect of multiple climate factors on
the distribution of malaria while taking into account spa-
tiotemporal dependencies. Several studies [12-15] have
used Bayesian spatiotemporal models demonstrating
their utility in modelling malaria distribution and its as-
sociated environmental and socio-economic factors at
local scales. Here, the focus is on the regional-scale
modelling of malaria incidence in several West African
countries with annual climate factors as covariates. A
large-scale analysis of this endemic region is preferred
for establishing potential malaria links to inter-annual
climate variability.

Methods
Data
This study examines reported malaria cases and deaths
from ten countries (Benin, Burkina Faso, Côte d'Ivoire,
Gambia, Ghana, Liberia, Mali, Senegal, Sierra Leone,
and Togo) in West Africa linked with climate data
obtained from the National Oceanic and Atmospheric
Administration's (NOAA) National Climate Data Center
(NCDC) [16] and published in [17].
The reported malaria cases and deaths for an 11-year

period (1996-2006) were obtained from [18]. Annual
malaria rates were computed as malaria cases divided by
the associated population size in each country. Climate
data were measured at weather stations available for
each country. When more than one weather station was
available, the most central location for the geographic
index is used, which was also used to measure distances
in the spatial analysis. Missing values were imputed
using the average values of the available years.
Figure 1 displays a map of mean malaria rates for the

ten countries selected, whereas Figure 2 displays time
series plots of annual malaria rates. It is shown that Côte
d’Ivoire had the lowest and most stable malaria rate with
a mean of 0.06%. Interestingly, Mali had a low rate that
increased by two orders of magnitude, from a low value
of 0.003% in 1996 to 0.06% in 2007, and that peaked in
2004 at a rate of 0.18%. On the other hand, Liberia had
the highest mean rates (0.23%) and largest inter-annual
variation fluctuating between a maximum value of 0.38%
in 1997 and a minimum value of 0.04% in 2005. Overall,
most countries had a drop in malaria rates in 2005 and a
rise in 1997.
Monthly climate data were obtained for several vari-

ables and averaged to obtain annual values to link with
the malaria data. The variables used are mean station
pressure (mb) denoted by “mstpr”, mean sea level pres-
sure (mb) denoted by “msper”, mean temperature (°C)
denoted by “mtmp”, departure of temperature from long
term station average (°C) denoted by “dtpav”, mean
vapour pressure (mb) denoted by “mvp”, number of days
with precipitation at least 1 mm denoted by “dp”, total
precipitation (mm) denoted by “totp”, and departure of
precipitation from long term station average (mm) de-
noted by “dpave”. Table 1 displays mean values of the
climate variables considered.

Spatiotemporal hierarchical model
The goal is to develop a statistical model that utilizes
data on the number of cases of malaria and potential
variables that may be correlated with the spatial and/or
temporal variability of the number of malaria cases. To
this end, a spatiotemporal modelling approach within a
hierarchical Bayesian framework is adopted. The spatial
aspect of the modelling approach allows for taking into
account similarities between values observed at locations
that are located closer, ultimately allowing for “borrow-
ing strength” across space. Similarly, the temporal
aspect of the modelling approach allows for inference



Figure 1 Geographical map of average malaria rates.
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concerning temporal trends of changes of malaria cases.
Finally, the proposed model allows for spatial and tem-
poral trend analysis of the data as well as considering
the effect of predictor variables.
In particular, for a hierarchical model the following

general stages [19] are defined: data model, process
Figure 2 Annual malaria rates for the ten countries selected.
model, and parameters models. The data model is given
by:

ztePoi λtð Þ; t ¼ 1;…;T ;

where zt is the vector of malaria cases data at time t,
zt = (zt(s1), zt(s2),…, zt(sn))′ for locations s1, s2,…, sn with
number of years, t = 1,…,T = 11, and the number of
countries in the study, n = 10. These data are assumed to
follow a Poisson distribution with intensity λt = (λt(s1),
λt(s2),…, λt(sn))′. The Poisson model uses population
(denoted by “Pop”) as an offset variable (i.e., intensity is
the ratio of mean number of cases and population). Pois-
son distribution is the common and standard choice for
modelling rates. However, other data models may be
considered.
The process model is given by:

log λtð Þ ¼ log Poptð Þ þ β0 þ μ1t þ μ2t
2 þ

X8
k¼1

βkXk ;

where β0 is the intercept, μ1 = (μ1(s1), μ1(s2),…, μ1(sn))′ is
the spatially-varying regression coefficient for time



Table 1 Mean values of the climate variables considered

Country Mstpr Msepr Mtmp Dtpav Mvp Dp Totp Pop Rate

Benin 10,002.91 10,109.64 27.42 1.74 291.16 6.20 101.96 6,871,646 0.11

Burkina Faso 9,676.74 10,088.75 28.07 -2.28 192.49 5.96 136.49 12,169,430 0.09

Côte d’Ivoire 10,086.67 10,110.37 27.34 0.84 292.88 7.59 122.54 17,288,436 0.07

The Gambia 10,079.86 9,977.20 27.29 2.80 230.65 5.59 96.65 1,414,390 0.16

Ghana 10,078.94 10,121.23 27.23 0.00 296.77 5.46 71.80 20,227,154 0.15

Liberia 9,780.00 10,089.00 25.90 0.00 274.00 1.00 11.00 2,647,139 0.23

Mali 9,685.94 10,098.72 27.89 0.35 185.21 5.84 89.10 10,345,394 0.06

Senegal 10,102.72 10,124.10 26.53 12.14 237.63 4.08 86.05 11,032,891 0.10

Sierra Leone 9,980.27 10,102.76 28.52 15.16 287.20 5.03 1796.56 5,170,957 0.06

Togo 9,884.56 10,108.77 27.35 2.66 251.75 5.50 112.63 4,851,532 0.09
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(ie, linear and spatially-varying trend), μ2 = (μ2(s1), μ2
(s2),…, μ2(sn))′ is the spatially-varying regression coeffi-
cient for the second-order variable for time (i e, quad-
ratic and spatially-varying trend), βk denotes the kth
regression coefficient with k = 1,…,8. In this stage of the
model, the regression model allows statistical learning
from the predictors about the response variable, which
is the log of the Poisson intensities. Note that population
is used as the offset variable in the Poisson log-linear
model. Also, it should be noted that time series models
such as autoregressive models on the error terms may
be considered in order to address temporal dependence
in the data. This modelling strategy was considered in
the preliminary analysis of the data. However, the mod-
elling selection procedure significantly favoured models
with time as a predictor variable.
A useful aspect of the proposed model is the ability to

account for the spatially varying regression coefficients,
which facilitate a more flexible and robust interpretation
of results over both spatial and temporal scales. The
spatial structure is assumed for the linear and quadratic
trend coefficients though a covariance structure (Σμj

) on

their prior distribution:

μj eN 0;Σμj

� �
; j ¼ 1; 2;

Σμj ¼ σ2μjR τj
� �

;

The spatial correlation is considered based on an
exponential covariogram model

R τj
� � ¼ exp −τjd

� �
; j ¼ 1; 2;

where the spatial correlation is based on the Euclidean
distance (d) and a spatial range parameter, τj (which
governs the strength of spatial correlation over spatial
locations). A symmetric correlation function is assumed.
Many other choices for the spatial correlation function
exist including models for areal data (e g, see [20]).
The prior densities described above as well as other

prior densities that should be defined for unknown pa-
rameters are all part of the third stage of the hierarchical
model (parameter models). The prior distributions are
defined based on relatively non-informative distributions
with small mean and large variances for all the unknown
parameters. In particular, the priors for constant regres-
sion coefficients are defined as normal distributions with
mean 0 and variance 100, and priors for each of the
variance components are defined as inverse-Gamma dis-
tributions with mean 0.1 and variance 100. The choices
of priors considered here are standard choices in the
Bayesian modelling literature [21-23], however other
reasonable choices of prior distributions may be consid-
ered and results should not be sensitive to these choices
(note that non-standard choices may require additional
computational burden and/or algorithmic strategies).
Ultimately, there is interest in drawing inference about

the unknown parameters and the process (ie, intensity
parameters) conditioned on data. Using the Bayes’ the-
orem, the joint posterior distribution of the unknown
parameters is proportional to the product of the sam-
pling distribution and the prior densities. Often, the joint
posterior is too complex and instead, one can draw sam-
ples from it using computational approaches such as
Markov chain Monte Carlo (MCMC). MCMC methods
are popular for simulating from complex posterior dis-
tributions. MCMC methods are a class of algorithms for
sampling from probability distributions based on con-
struction of a Markov chain that has the desired distri-
bution as its stationary distribution [21] and includes
algorithms such as the Metropolis–Hastings and the
Gibbs sampler [22,23]. Gibbs sampling is the main basis
of the freely distributed software WinBUGS/OpenBUGS
[24], which was used to fit this model.



Figure 3 Geographical map of posterior mean results for the
spatially-varying linear trend coefficient.

Table 2 Posterior results for the constant regression
coefficients

Mean Sd 95% CI

Intercept -2.728 0.0444 (-2.814, -2.642)

Mstpr 0.0869 0.041 (0.0067, 0.1674)

Msepr -0.114 0.0184 (-0.149, -0.0768)

Mtmp -0.2034 0.02514 (-0.2528, -0.1545)

Dtpav 0.0615 0.0407 (-0.0184, 0.1416)

Mvp 0.1544 0.0432 (0.0705, 0.2402)

Dp -0.1162 0.0203 (-0.1556, -0.0761)

Totp -0.1055 0.0377 (-0.1808, -0.0325)

(columns from left to right: mean posterior, posterior standard deviation,
95% credible interval) for Model 1 (M1).
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In order to assess the model goodness-of-fit and selec-
tion of the “best” model from the pool of candidate
models, several different models were considered and
model selection was conducted based on a commonly
used method for hierarchical Bayesian models called the
deviance information criterion (DIC). DIC introduced by
[25] as a generalization of Akaike's information criterion
(AIC), is a penalized likelihood method based on the
posterior distribution of the deviance statistic defined as

D θð Þ≈−2log p y θÞÞ;jðð

Where y denotes the data, p(y|θ) denotes the sampling
distribution (i e, likelihood function) of data given model
parameters (θ), and C is a constant.
DIC is defined as

DIC ¼ 2�D−D �θ
� �

where �D is the posterior mean of the deviance, and D
�θ
� �

is the deviance of the posterior mean values for the
model parameters (denoted by θ). Based on the DIC cri-
terion, models with relatively lower DIC values indicate
a better fit to the data compared to models with higher
DIC values.
Three different models were considered: a model with

spatially varying linear and quadratic trends (M1), a
model with spatially varying linear trend and no quad-
ratic trends (M2), and a model with constant linear
trend and no quadratic trends (M3). Additional models
were also applied to check for multicollinearity in the
variables. Mainly, departure of precipitation from long
term station average (dpave) was dropped from the
models due to collinearity (dpave was negatively corre-
lated with departure from average temperature, dtpave,
with correlation coefficient -0.63).
Results
Results were obtained based on 90,000 MCMC realiza-
tions after ignoring the first 10,000 as the “burn-in”
period. Based on DIC values, the model with spatially
varying linear and quadratic trends (M1) performed best
among the models considered (DIC = 1320), followed by
the model with spatially varying linear trend, M2 (DIC =
1454). The model without the spatially varying trend
term, M3 had the worst performance (DIC = 1985).
Based on these results, it is clear that including spatially
varying trend terms is necessary.
Table 2 gives the constant regression coefficients for

the model. Figures 3 and 4 show geographical maps of
posterior results (mean and standard deviation, respec-
tively) for the spatially varying linear trend term, μ1
(i e, country-specific linear trend coefficients). Similarly,
Figures 5 and 6 show geographical maps of posterior re-
sults (mean and standard deviation, respectively) for the
spatially varying quadratic trend term, μ2 (ie, country-
specific quadratic trend coefficients).
Most of the predictor variables are statistically significant

(all except “dtpave”). In particular, as shown in Table 2,
mean sea-level pressure (msepr), mean temperature (mtmp),
number of days with precipitation ≥1 mm (dp) and total



Figure 4 Geographical map of posterior standard deviation results for the spatially-varying linear trend coefficient.
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precipitation (totp) show negative association with malaria
rate, ie, a decrease in either of these variables is associated
with an increase in malaria rate. Table 3 shows same re-
gression results as Table 2 but without the spatially varying
trend term (i.e. trend term is constant). By comparing
these results one can see the effect of including the
spatially varying trend terms on the other regression coef-
ficients. Mainly, mean station pressure (mstpr) becomes
positively significant, and total precipitation (totp) be-
comes negatively significant. Therefore, a model that does
not account for the spatially varying trends may miss
important associations (such as the mean station pressure).
Some limitations exist for this study. First, the United

Nations defines 15 countries for West Africa; however,
in this study only ten were considered due to the sparse-
ness of the data for the other five countries. Also, the
study uses annual and country averages as potential
variables and thus may miss potentially significant
seasonal and local-scale effects.
The main findings may shed light on better understand-

ing the association between weather and climate variables
and spread of malaria. Critically, the results show statisti-
cally significant association between malaria rates and
several climate variables (temperature, precipitation and
pressure) after accounting for spatiotemporal variability in
the data. In most other studies of the impact of climate
on malaria distribution, spatial and temporal variability
in the data are ignored and data are modelled based on
an incorrect assumption of independence. This sensitiv-
ity of malaria incidence to climate factors in Africa is
generally consistent with literature [3,7,4,11]. The nega-
tive correlation between temperature and malaria rate
could be explained by the no-linear response of malaria
spread to temperature, with a negative association for



Figure 5 Geographical map of posterior mean results for the spatially-varying quadratic trend coefficient.
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higher temperatures. Note that mean annual tempera-
tures in our study range between 26°C and 28°C, and it
is possible that seasonal temperatures higher than 28°C
might have occurred that, according to [8] are associated
with decreased malaria rates. The study also found nega-
tive correlation between the total amount of annual rain-
fall and malaria rate, which is inconsistent with [7] and
[11]. Compared to temperature, rainfall associations with
malaria are less understood. In addition, rainfall is spatially
and temporally much more variable than temperature and
perhaps total annual precipitation may not be a good
proxy for the seasonal values associated with malaria
occurrence.

Conclusions
Studies on the modelling of malaria incidence have
shown that its relationship with environmental and
socio-economic variables is inherently complex and
spatially and temporally heterogeneous. This study intro-
duces a hierarchical Bayesian modelling framework for
the analysis of malaria distribution and its relationships
with climate factors in ten West African countries. The
proposed hierarchical model takes into account spatio-
temporal dependencies through spatially varying linear
and quadratic trend terms. The reported malaria cases
and deaths for an 11-year period (1996-2006) were
linked with annual climate data for each country. The
two most important climate factors were found to be
average annual temperature and total annual precipita-
tion, and they show negative associations with malaria
incidence.
A model without the spatially varying trend showed

a positive association with total precipitation and
no statistical significance for mean station pressure.



Figure 6 Geographical map of posterior standard deviation results for the spatially- varying quadratic trend coefficient.

Table 3 Posterior results for the constant regression
coefficients

Mean Sd 95% CI

Intercept -2.537 0.025 (-2.586, -2.489)

Mstpr 0.032 0.033 (-0.033, 0.097)

Msepr -0.1401 0.0177 (-0.174, -0.1043)

Mtmp -0.1685 0.0193 (-0.2055, -0.1302)

Dtpav 0.0505 0.0345 (-0.017, 0.1187)

Mvp 0.298 0.0299 (0.24, 0.357)

Dp -0.159 0.0176 (-0.194, -0.125)

Totp -0.053 0.0284 (-0.1095, 0.002)

(columns from left to right: mean posterior, posterior standard deviation,
95% credible interval) for Model 3 (M3; ie, constant trend term).
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Therefore, a model that does not account for the
spatially varying term may misinterpret or totally miss
important associations.
The proposed modelling approach appropriately

accounts for spatial and temporal dependence typical in
studies of infectious diseases such as malaria. Results
demonstrate that the proposed modelling approach is
robust and can be useful in understanding the impact of
climate change on the spread of malaria. Additionally,
the model can be applied to analyse the spread of
other infectious diseases and in optimizing manage-
ment efforts (eg, drug policy changes) on the spread
of malaria. With a more rigorous effort, this modelling
framework can be extended to account for socio-
economic factors as well as other important factors such
as access to health, information on drug policy, and
drug resistance.
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