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Abstract

Background: Identifying human and malaria parasite movements is important for control planning across all
transmission intensities. Imported infections can reintroduce infections into areas previously free of infection,
maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes
at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided
valuable insights into population and likely parasite movements within countries, but these data are restricted
to sub-national analyses, leaving important cross-border movements neglected.

Methods: National census data were used to analyse and model cross-border migration and movement, using
East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified
for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin
country borders and population size at destination, and regression models were developed to quantify and
compare differences in migration patterns. Migration data were then combined with existing spatially-referenced
malaria data to compare the relative propensity for cross-border malaria movement in the region.

Results: The spatial patterns and processes for immigration were different between each origin and destination
country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most
immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants.
Regression model fits also differed between specific migrant groups, with some migration patterns more
dependent on population size at destination and distance travelled than others. With these differences between
immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding
region, propensities to import malaria infections also likely show substantial variations.

Conclusion: This was a first attempt to quantify and model cross-border movements relevant to malaria
transmission and control. With national census available worldwide, this approach can be translated to construct
a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes
of this study will feed into wider efforts to quantify and model human and malaria movements in endemic
regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions.
Background
Funding for malaria control has substantially increased
in the past decade, reducing malaria burdens across
transmission zones [1-3]. However, financial resources
remain lower than the levels required to meet global
eradication goals [4] and, therefore, improvements in the
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quantitative evidence base are important for guiding the
strategic allocation of interventions. Human population
movement (HPM) that leads to the movement of infec-
tions, over varying spatial and temporal scales, plays an
important role in malaria dynamics across the full range
of transmission intensities and epidemiological phases
[5-9]. In malaria-free receptive settings (post-elimin-
ation), infection importation threatens reintroduction
and resurgence [10], whilst in areas of heterogeneous
risk (pre-elimination), higher transmission ‘hotspots’ may
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serve a infection sources (exporting infections) [5]. HPM
may also lead to the emergence of drug-resistant strains
of malaria that challenge control programs in both high
and low transmission areas [11-13]. Quantifying both
within country and cross-border movements is, there-
fore, important for strategic intervention planning and
surveillance at a national level, and encouraging and
facilitating country collaborations at a regional level.
The failure of previous elimination programmes was

partly attributed to imported infections from neighbouring
higher transmission risk countries [14]. In areas close to
elimination, HPM from higher transmission neighbouring
regions, combined with limited and unsustainable funding,
continue to challenge the achievement and sustainability
of malaria-free status [15]. Based on WHO recommen-
dations, an elimination feasibility assessment conducted
in Zanzibar illustrated the importance of quantifying
HPM for strategic elimination planning [16,17]. Countries
with higher malaria prevalence neighbours, such as the
Dominican Republic, South Africa and China often exhibit
higher prevalence ‘hotspots’ close to borders as a result
of cross-border movements carrying infections. HPM
in and out of these higher transmission regions may
lead to infection flows that threaten onward transmission
and burden health systems [5,7]. Drug resistance has been
a major challenge among migrant groups near border
areas in Asia and more recently in Africa [11]. Between-
country collaborations, such as the Lumombo Malaria
Control Initiative between bordering South Africa,
Swaziland and Mozambique [18], and the collaborative
malaria-free initiative launched in the Arabian Peninsula
[19,20], were developed to tackle malaria at a regional
scale. Such programmes benefit from quantitative evi-
dence on HPM to better devise national and regional
intervention and surveillance strategies [21], and refrain
from repeating the inefficiencies of single-country strat-
egies of the past [14].
In recent years, there has been a growth in the avail-

ability of data for measuring HPM across spatial and
temporal scales that are important for malaria control
[7]. The use of mobile phone call data records to model
parasite movements, by combining HPM trajectories with
malaria metric data offers one of the most promising
approaches, providing fine scale estimates in space
and time, and covering large percentages of national
populations [5,22-24]. Analyses of mobile phone data
however are constrained to within-country movements
due to phone network company restrictions and do not
contain information on individual-level demographics
and other malaria-level characteristics, such as the use
of preventive measures. Other data types, such as travel
history surveys, which may contain this type of data,
are restricted to small geographic areas and specific
sub-populations [25]. Cross-border questionnaires remain
expensive to undertake and in many malarious countries,
borders are porous, with HPM through remote land
border crossing points and ‘unofficial’ border points [26].
More widely used but less spatially and temporally refined
are census and survey data, which contain demographic
and cross-border migration data. Migration data from
censuses have recently been shown to strongly correlate
with movement patterns across temporal scales [27],
highlighting that such data may be useful for quantifying
malaria-relevant HPM. Quantitative cross-border HPM
evidence has rarely been used for understanding human
and malaria movements and providing guidance on extent
and nature of between-country cooperation for control
and elimination.
Here, to explore and illustrate the potential of census-

derived migration data in quantifying cross-border human
and malaria connectivities and movements, analyses of
data from East Africa were undertaken. National census
data for Kenya, Tanzania and Uganda were analysed to
highlight patterns in cross-border migration by mapping
significant origin-specific immigrant ‘hotspots’ and sub-
national areas that should consider collaborating on
control and elimination strategies with neighbouring
countries. The data were fitted to a regression model to
help explain and compare observed patterns and describe
processes of immigration. Existing spatial malaria preva-
lence data and mathematical models were then combined
with HPM data to illustrate differences in malaria move-
ment propensities into Kenya, Tanzania and Uganda from
their neighbouring regions.
Methods
Census data
Cross-border census migration data were obtained for
Kenya, Tanzania and Uganda (Table 1). The Kenya 1999
census was obtained from the Kenya National Statistics
Bureau (KNBS). Individual-level records for all individuals
enumerated were available for selected variables, including
current sub-location (administrative level 5 boundary) of
residence, birth and previous residence location (district/
administrative level 2 boundary for internal migrants
and bordering country name for cross-border migrants),
and demographic data on age and gender. For Tanzania,
aggregated data on the number of residents in each
sub-location and their nationality were obtained from
the 2002 census. Demographic stratifications were not
available for Tanzania. For Uganda, 2002 census micro-
data, a systematic selected subset of countrywide national
housing and population census data obtained from Inte-
grated Public Use Microdata Series, International (IPUMS)
[28] were obtained online. The sample contained records
for all census questions for a 10% sample of all individuals
enumerated. To make migration definition comparable



Table 1 Description of the type of census data available for each country

Kenya Tanzania Uganda

Data type Individual level Aggregated data Individual level

Migration data Lifetime migration Lifetime migration Lifetime migration

Additional migration data Recent migration - Recent migration

Spatial resolution at destination Administrative level 5 Administrative level 5 Administrative level 2

Spatial resolution at origin Administrative level 0 Administrative level 0 Administrative level 0

Year of data collection 1999 2002 2002

Other variables Age, Gender - -
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between countries, migrants were defined based on place
of birth and current residence location. The respective
country censuses were also used to extract total popula-
tion size per administrative boundary.
Malaria data
Country-level malaria transmission maps for Kenya,
Tanzania and Uganda and their respective neighbouring
countries were obtained from the 2010 global Plasmodium
falciparum endemicity maps (with P. falciparum parasite
rate, standardized for 2-10 year olds (PfPR2-10), for 1×1 km
pixels) from the Malaria Atlas Project (MAP) [29,30].
To obtain population-weighted PfPR2-10, an Africa-wide
population distribution grid (with population density
for each 1×1 km pixel) was obtained from the WorldPop
Project [31] and country specific grids extracted. The
endemicity maps and population grids were aligned by
overlaying each country endemicity map over the popu-
lation distribution grid. For each pixel on the map,
population-weighted PfPR2-10 was calculated.
Spatial analysis
Origin-specific data on numbers of migrants (based on
birth country and current residence location comparisons)
were obtained for each administrative unit in the three
destination countries, Kenya, Tanzania and Uganda (at
different administrative resolutions, as described above).
The Getis-Ord G statistic was used to estimate local
‘hotspots’ of origin-specific immigrants (based on spatial
characteristics as temporal descriptions were not available
for all countries). Statistically significant hotspots were
determined based on a GiZScore > 1.96 (high Z scores
are a measure of standard deviation associated with low
p values. A GiZScore of 1.96 corresponds to p value < 0.05
and a 95% confidence interval using the standard Normal
distribution assumption of theoretical spatial randomness)
[32]. Significant hotspots were mapped to illustrate single-
origin, as well as multiple-origin, over-lapping hotspots.
Administrative units were classified into single-origin
hotspots if a location was a hotspot for migrants from
only one origin, and multiple-origin hotspots if a location
was a hotspot for migrants from more than one origin.

Modelling migration
Modelling migration (based on birth country and current
residence location comparisons) flows can provide migra-
tion information for locations and time periods where data
are not available [27]. Traditionally, human movement
models have been based on the concept of gravity, that
assumes a positive relationship between migrant flow and
the product of population sizes as origin and destination,
and a negative relationship between migrant flow and
distance travelled [33,34]. To explore a possible gravity-
like pattern in cross-border migration in East Africa,
origin-specific immigrant occurrence was plotted against
Euclidean distance from shared borders between origin
and destination countries. With origins defined at a broad
resolution (country level, administrative unit 0), a trad-
itional gravity model could not be fitted. Instead, a simple
positive relationship between migrant flow between origin
i, and destination j, and total population size at the destin-
ation was assumed, with a negative relationship between
migrant flow and Euclidean distance between origin
country border and destination location for each origin-
destination pair (Equation 1).

Migrant flowi; j e
Total population sizejαi; j

Euclidean distancei; jμi; j
ð1Þ

A set of 3 linear regression models (one for each
destination country) were developed to quantify the
variability in migrant flow as determined by destination
population size and distance travelled, based on Equation
2. (Refer to Additional file 1 for expanded destination-
specific equations). To achieve a linear relationship,
all variables were log-transformed. To allow compari-
sons of the effect of destination population size and
distance travelled on migrant flows between origin-
destination pairs (different groups of migrants), dummy
variables and interaction terms were incorporated into
each model.



log Mi;j
� � ¼ β0 þ β1 R1 þ…þ βrRr þ α0 log Pj

� �þ α1R1log Pj
� �þ…þ αrRrlog Pj

� �þ μ0log Di;j
� �

þ μ1R1log Di;j
� �þ…þ μrRrlog Di;j

� �þ εi;j ð2Þ
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i=1,…,n; n=number of neighbouring countries for each
destination
j=1,2,3; 1=Kenya, 2=Tanzania, 3=Uganda
Mi,j: Total number of migrants from origin, i, to des-
tination, j.
Pj: Total population size of destination location within
each destination country.
Di,j: Shortest distance between origin country border
and destination location.
R1,…,r: Dummy variables representing neighbouring
countries per destination (r=Number of countries-1).
β0,…,βr; α0,…,αr; μ0,…,μr: Exponents estimated from
the data.
εi,j: Error term.
The overall fit of the regression models was quanti-

fied using an adjusted R-squared value. The effects of
population size and distance on migrant flow for each
origin-specific variable were estimated by adding the
origin-specific coefficient in each model to the reference
variable (representing an arbitrarily chosen origin country)
in each model. Significance of regression coefficients was
based on p-values from t-tests to determine differences in
the effect of population size and distance on migrant flow
between the reference origin and all other origins for each
destination.
For Kenya, this analysis was extended to include age

and gender, as such information were available here.
Age and gender stratified origin-specific immigrant
occurrence was plotted against Euclidean distance from
shared borders between origin countries and the destin-
ation country, Kenya. The regression model was extended
to include age and gender as additional explanatory vari-
ables, with corresponding dummy variables created for
age group and gender categories (Refer to Additional file 2
for extended equations).
Malaria connectivities
Malaria importation propensity quantifies likely imported
infection routes, as migrants are likely to maintain con-
nections with their home locations and may engage in
short term travel that, due to lost immunity, may lead
to imported infections at destination. Previous analyses
have shown the strong relationships between the strengths
of longer-term spatial migration connectivities and
shorter term movements [27]. Importation propensity
estimates were based on two endemicity metrics i) mean
population-weighted PfPR obtained at administrative 0
level (for the entire origin country) and ii) mean PfPR
within a 100 km buffer from destination country border
for each neighbouring origin country. PfPR provides a
useful measure for endemicity at large-scales, and as the
migration data does not include specific origin locations,
aggregated origin endemicity estimates at a national and
sub-national were used. The two types of endemicity esti-
mates for each neighbouring origin country were then
multiplied by the number of origin-specific migrants in
each destination country to obtain malaria importation
propensity, which was relatively compared within and
between the destination countries.
Results
Migration patterns
Patterns of significant origin-specific immigrant hotspots
differed both between and within destination countries
(Figure 1). In Tanzania (Figure 1A), the highest number
of origin-specific hotspots were seen close to the borders
with the origin countries of the respective sets of migrants,
except for migrants from Malawi, for which the majority of
hotspots were near Tanzania’s capital and largest urban city,
Dar es Salaam. Some locations were significant hotspots
for migrants from two different countries, for example, in
the northwest region, various Tanzanian sub-locations
were hotspots for both Rwandan and Burundian immi-
grants. Near Dar es Salaam, hotspots overlapped for
Kenyan and Malawi immigrants. Immigrant patterns in
Kenya (Figure 1B) differed from those in Tanzania. Most
distinctively, hotspot overlap was more prevalent, with
some locations being quantified as hotpots for all five
neighbouring countries. Additionally, Ugandan immigrant
hotspots were widespread across Kenya, whilst Ethiopian
and Somali immigrant hotspots were mainly in the central
region of the country. Tanzanian hotspots were seen in
the most populated regions across the border and near
large urban centres such as Nairobi and Mombasa,
whilst Sudanese hotspots were most prominent near
the shared border, in the central regions around Nairobi
and near Mombasa (Additional file 3). Even with the lower
resolution immigrant data available for Uganda (admin-
istrative 2 level hotspots, compared to administrative 5
level hotspots in Kenya and Tanzania), overlap between
origin-specific migrant hotspots was less frequent than
in Kenya (Figure 1C). Nevertheless, 5 districts in southern
Uganda were overlapping hotspots for migrants from both
Tanzania and Rwanda, and one north-western district was
a hotspot for migrants from Sudan and the Democratic
Republic of Congo.



Figure 1 Origin-specific immigrant hotspots in the three destination countries: A) Tanzania B) Kenya C) Uganda. Statistical significance
based on GiZScore > 1.96, using the Getis-Ord G statistic. Hotspots coloured based on origin country of migrants. Country codes: TZ: Tanzania, KE:
Kenya, UG: Uganda, RW: Rwanda, BU: Burundi, DRC: Democratic Republic of Congo, ZA: Zambia, MW: Malawi, MZ: Mozambique, SM: Somalia, ET:
Ethiopia, SU: Sudan.
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Migration processes
Each origin-destination pair showed a different relation-
ship between origin-specific immigrant abundance at
the destination and the distance between the origin
country border and the destination location (Figure 2). In
Tanzania (Figure 2A), the largest origin-specific immigrant
populations were found to be close to their respective
origin country borders, illustrating an inverse relationship
between immigrant population and distance between
origin and destination. Clusters of immigrants were
also seen in areas around and in the capital city, with
the inverse relationship between distance and migrant
size becoming less relevant. In Kenya, the inverse relation-
ship between distance and migrant population abundance
was mainly seen for immigrants from Tanzania (Figure 2B).
Clusters close to the capital seen for Ethiopian, Somali and
Sudanese migrants however were less distinct than for
Tanzania, whilst Ugandans showed a more even disper-
sion across Kenya. Patterns were less obvious for
Uganda due to the low resolution of immigrant data
(Figure 2C).
Overall fits of destination-specific regression models

differed, with adjusted R-square values for Kenya being
27.65%, 23.49% for Tanzania and 18.05% for Uganda.
Across all origins and destinations, population size was
positively associated with migration whilst distance showed
an inverse relationship, except for Ugandans in Kenya
(Table 2). For Tanzania and Uganda, distance was a more
important determinant for migration compared to popula-
tion size at destination, however in Kenya, population size
at the destination location was a significant determinant
for all migrant groups. For Tanzania, significant effects of
distance correlated with most migrant populations being
concentrated along borders, as illustrated in Figures 1 and
2. Similarly, population sizes at destination locations as a
significant determinant of migration in Kenya correlated
with immigration patterns illustrated in Figures 1 and
2. Within destination-specific regression models, the
importance of population size and distance describing
the variation in origin-specific immigrants also showed
heterogeneity through differences in effects sizes. For
example, in Kenya, population size had the largest
effect for Somali and Sudanese migrants, compared to
migrants from other origins. As Ugandan immigrants
showed a more dispersed distribution (Figure 1), the
effect of destination population size was the smallest
compared to migrants from other origins. By including
age and gender as additional explanatory variables, the
model fit for Kenya improved from 27.65% to 33.14%,
highlighting the importance of accounting for demo-
graphic differences [9]. Significant differences between
age groups were identified for origin countries, however
differences in gender remained insignificantly different
throughout (Additional file 4).

Malaria connectivities
Based on the variations seen in immigrant patterns and
heterogeneity in malaria transmission risk across the
East African and neighbouring regions, propensities to
import infections likely differs substantially between



Figure 2 Distance-migrant functions, illustrating the relationship between the number of migrants in each destination country: A)
Tanzania B) Kenya C) Uganda, compared to the Euclidean distance from origin country border. Y-axis is represented under a logarithmic
scale to illustrate variation. Country codes: TZ: Tanzania, KE: Kenya, UG: Uganda, RW: Rwanda, BU: Burundi, DRC: Democratic Republic of Congo,
ZA: Zambia, MW: Malawi, MZ: Mozambique, SM: Somalia, ET: Ethiopia, SU: Sudan.
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destination countries. As seen in Figure 3, under the
assumptions used here, for all three East African countries,
the urban areas such as Nairobi, Mombasa, Dar es Salaam
and Kampala had higher estimated propensities to import
infections (likely sinks of infection). The distribution of
importation potential by Ugandan immigrants was wide-
spread in Kenya, however, it was focused to north western
border regions in Tanzania. Overall, based on the largest
immigrant population sizes and higher endemicity in
Uganda, compared to Kenya’s other neighbouring countries,
propensity to import was significantly higher by Ugandans
(Figure 4). In Tanzania, the largest propensities were
estimated to be from immigrants from Burundi and the
Democratic Republic of Congo, whilst in Uganda, estimates
were largest for Sudanese and Congolese immigrants.

Discussion
Quantifying HPM can provide useful information for
evidence-based malaria control and elimination planning.
As shown here, the patterns and processes of movements
can differ significantly over space as well as between
countries and demographic groups [9], which leads to
heterogeneities in infection importation propensities,
underlining the importance of accounting for local context.
Quantifying these differences can aid the identification
of population groups most likely to import infections,
neighbouring countries and regions that are most likely
to export infections (“sources”) and within country loca-
tions that are at elevated risk of importation on onward
transmission (“sinks”). Identifying key population groups,
sources and sinks allows national control and surveillance
resources to be strategically tailored and targeted [35,36],
and highlights areas and populations where further data
collection studies [37] and detailed assessments can be
made. As drug resistance continues to create challenges
for malaria control, particularly in border regions, data
on cross-border movements can inform containment
strategies [35]. Moreover, quantifying these cross-border
linkages and connectivities can provide indicators on
when and where neighbouring countries might collaborate



Table 2 Regression analysis outputs for three destination-specific models, which model migration as the dependent
variable and destination population size and distance travelled as the independent variables

Population size Distance

Model 1. destination: KE Origins Effect se t p-value Effect se t p-value

TZ^ 0.32 0.01 33.23 <0.05* -0.37 0.01 -51.55 <0.05*

ET 0.28 0.02 -2.37 <0.05* -0.16 0.01 16.36 <0.05*

SM 0.40 0.02 5.43 <0.05* -0.15 0.01 15.95 <0.05*

SU 0.41 0.01 6.43 <0.05* -0.09 0.03 10.89 <0.05*

UG 0.24 0.01 -5.74 <0.05* 0.12 0.01 42.07 <0.05*

Model 2. Destination: TZ KE^ 0.53 0.01 46.55 <0.05* -0.44 0.01 -55.07 <0.05*

MZ 0.37 0.04 -4.10 <0.05* -0.32 0.02 5.23 <0.05*

MW 0.37 0.06 -2.48 0.01 -0.15 0.03 9.59 <0.05*

ZA 0.23 0.06 -4.76 <0.05* -0.34 0.03 2.94 <0.05*

DRC 0.61 0.06 1.48 0.14 -0.75 0.05 -6.38 <0.05*

BU 0.47 0.04 -1.56 0.12 -0.52 0.02 -3.35 <0.05*

RW 0.45 0.06 -1.36 0.17 -0.80 0.04 -9.80 <0.05*

UG 0.40 0.06 -2.13 <0.05* -0.59 0.04 -3.78 <0.05*

Model 3. Destination: UG TZ^ 0.40 0.01 41.44 <0.05* -0.35 0.01 -58.89 <0.05*

KE 0.99 0.33 1.79 0.07 -1.15 0.22 -3.62 <0.05*

SU 0.43 0.54 0.05 0.96 -1.69 0.31 -4.38 <0.05*

DRC 1.13 0.34 2.13 <0.05* -1.19 0.20 -4.18 <0.05*

RW 0.77 0.35 1.04 0.30 -1.03 0.25 -2.70 <0.05*

^reference category for each destination-specific regression model.
*significant, based on a 5% significance level.
Country codes: TZ: Tanzania, KE: Kenya, UG: Uganda, RW: Rwanda, BU: Burundi, DRC: Democratic Republic of Congo, ZA: Zambia, MW: Malawi, MZ: Mozambique,
SM: Somalia, ET: Ethiopia, SU: Sudan.
Effects of each independent variable, stratified by origin country, were estimated using the regression coefficients of the interaction terms (interaction between
explanatory variables and dummy variables created to represent respective origin countries).
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to plan interventions and share information at both
national and regional levels (Figure 1). For example, based
on the assumption that some migrant groups may have
higher fluxes of travel to home countries, prophylaxis may
be made available in regions where these types of migrant
populations are most abundant. In East Africa, such a
strategy may be adequate for DRC migrants living in
Tanzania as DRC migrants are concentrated in the
western regions close to borders, however would be
difficult to administer for Ugandans living in Kenya, as
populations are more spread across the country. In
general however, the operational challenges for prophy-
laxis provision at this scale need consideration.
Migration patterns are heterogeneous, both within and

between destination countries. Migrant flow strengths
have been shown to correlate with short term movement
patterns (may result due to migrants maintaining ties
and visiting family at origin locations) [27], which are of
importance in terms of imported infections [x], depending
on endemicity levels at origins (Figures 3 and 4). Differ-
ences in the rural-urban distribution of migrant populations
may therefore imply that some migrant groups may be
more likely to import infections into urban areas
compared to rural areas, a result that has previously
been shown [9]. Due to differences in receptivity, the
likelihood of onward transmission differs between rural
and urban settings [38]. With heterogeneous transmis-
sion within country borders and likely significantly lar-
ger amounts of internal migration (Additional file 4), it
can be important to collectively assess both internal
and cross-border importation. Nevertheless, the abun-
dance of cross-border immigrant populations provide
useful indications on where countries can collaborate to
develop context-specific and targeted interventions. For
example, based on the migration hotspots identified
here, for Kenyan malaria control strategies, it may be
beneficial to highlight collaboration with neighbouring
countries as a national policy, as previously done in
Southern Africa [18], however, in Tanzania, collabora-
tive work may best focused in areas close to borders.
The data and methodology used introduces some lim-

itations into this study. Issues with census data include
the difficulty of capturing up-to-date migrant trends,
migrants who are fleeing from conflict or political instabil-
ity [39] and other high-risk groups for infection import-
ation, such as highly mobile populations and illegal



Figure 3 Comparing spatial patterns of origin-specific propensities of malaria importation into Kenya, Tanzania and Uganda from
neighbouring countries, based on two types of malaria endemicity estimate assumptions at origins (i) population-weighted mean
PfPR and (ii) mean PfPR within 100 km from destination country border. Propensity of importation = number of origin-specific migrants *origin
PfPR estimate. Scale represents one standard deviation from the estimated value, divided into four categories. Country codes: TZ: Tanzania, KE:
Kenya, UG: Uganda, RW: Rwanda, BU: Burundi, DRC: Democratic Republic of Congo, ZA: Zambia, MW: Malawi, MZ: Mozambique, SM: Somalia,
ET: Ethiopia, SU: Sudan.
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immigrants, demonstrating the inadequacy of census data
capturing the full range of HPM. Moreover, census data
does not record detailed malaria-relevant characteristics,
such as bed net use and access to healthcare, which would
allow more detailed stratification of high-risk groups, but
the integration of such datasets with georeferenced house-
hold survey information offers possibilities to overcome
this [7,9]. Migration rates can be used as an indication
for comparing the relative likelihoods of shorter term
travel [27], however, frequencies of travel to/from home
locations and elsewhere are unknown and therefore diffi-
culties remain in estimating absolute numbers of imported
infections. Furthermore, using migration as an indicator
for future shorter term HPM may be less applicable for
certain groups, such as those fleeing from conflict, as
they are less likely to return home. Censuses generally
record international migrant origins at a coarser resolution
(country name) compared to within country locations
(smaller administrative boundaries), making it difficult
to estimate relative parasite carriage rates through malaria
prevalence maps. Limitations also arise in the structure of
the regression models presented here, which only include
effects of distance and population size at destination
on migrant flows. Other push and pull factors, such as
demographics, occupation and socioeconomic factors
[40], are likely to be important to include, as demonstrated
here for Kenya (Additional file 2). Finally, some limitations
exist in the use of PfPR data as a malaria metric in this
context. Mean PfPR endemicity maps provide high reso-
lution spatially-referenced metrics at large scales, but PfPR
is a poor measure for low transmission areas (requiring
large survey samples to detect cases) [41]. Additionally,
the contemporary map data used here do not provide
measures of receptivity and therefore are limited in terms
of assessing the effects and implications on local transmis-
sion from imported cases in an area [16].
We have presented here a framework built on census-

derived migration data for providing broad assessments
of cross-border human and malaria movements. While
the example analyses were focused on importation to



Figure 4 Relative magnitudes of origin-specific malaria importation propensity into each destination country (Kenya, Tanzania and
Uganda), based on two types of endemicity estimate assumptions ((i) population-weighted mean PfPR and (ii) mean PfPR within 100 km
from destination country border). The y axis shows origin-specific malaria importation propensity as a percentage of the total malaria importation
propensity in the respective destination country. Country codes: TZ: Tanzania, KE: Kenya, UG: Uganda, RW: Rwanda, BU: Burundi, DRC: Democratic
Republic of Congo, ZA: Zambia, MW: Malawi, MZ: Mozambique, SM: Somalia, ET: Ethiopia, SU: Sudan.
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Kenya, Tanzania and Uganda, with census data widely
available [42] and existing global malaria endemicity data
[29], these methods can be expanded to continental
scales, through the assembly of census, microdata, mobile
phone call records and household surveys that record
cross-border migration and HPM [7]. If movement data
can be stratified by age groups and if age at which move-
ments occur can be obtained, mathematical models can
be used to estimate age-specific PfPR estimates and refine
estimates of propensities of groups and routes for malaria
importation [43-46]. The analyses presented here repre-
sent a starting point for mobility assessments, and ideally
should be supplemented with cross-border surveys [47],
and other surveys with questionnaire designs that include
adequate travel history questions, targeting specific mobile
populations and high-risk locations. Census migration
data can also be integrated with HPM estimates from
mobile phone usage data and malaria surveillance data to
refine importation estimates [5,22,23], though such phone
data are often difficult to obtain and expensive to process,
which represents a constraint for many poorly-resourced
malarious regions. Through the addition of migrant char-
acteristic descriptions, for example occupational groups
and improved spatial population descriptions, more
complex spatial analyses and interaction models may be
utilized [48,49]. Novel analysis and modelling methods
could also be developed to combine migration data with
spatially-referenced drug resistance data [50] to understand
migration as a determinant of drug resistance emergence
[12]. Finally, with human movements playing an important
role in the transmission of other diseases and a range of
health concerns, the framework put forward here may also
be of value in understanding epidemiological dynamics and
designing intervention strategies beyond malaria.

Conclusion
With national and international funding under threat, novel
tools and techniques that improve the evidence-base
for designing more efficient intervention and surveillance
strategies are important. Here, a framework for utilizing
existing HPM data from censuses has been developed,
and combined with readily available malaria endemicity
maps to illustrate how existing retrospectively gathered
data can be used for quantifying cross-border movements
relevant for malaria intervention and surveillance strategies.
Significant variations between countries, within countries
and between migrant groups were found, highlighting the
importance of local context in mobility assessments and
the value of such data. Identifying key regions and migrants
groups enables surveillance and intervention strategies to
be built around available evidence, and provides useful
guidance for countries embarking on collaborative efforts.

Additional files

Additional file 1: Equations for model 2 split by destination country.

Additional file 2: Model 2 for Kenya, extending model to include
age and gender.

Additional file 3: Hotspots indicating possible between country
collaborations.

Additional file 4: Methods used to generate networks of internal
and cross-border migrants were similar to methods developed and
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applied in Pindolia et al [1]. With no data on cross-border migrant
origins, mean in-degree and mean in-graph strength were used instead
of mean degree and mean graph strength, which incorporate HPM in
both directions.
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