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Abstract

Background: Temperature suitability for malaria transmission is a useful predictor variable for spatial models of
malaria infection prevalence. Existing continental or global models, however, are synoptic in nature and so do not
characterize inter-annual variability in seasonal patterns of temperature suitability, reducing their utility for predicting
malaria risk.

Methods: A malaria Temperature Suitability Index (TSI) was created by first modeling minimum and maximum air
temperature with an eight-day temporal resolution from gap-filled MODerate Resolution Imaging Spectroradiometer
(MODIS) daytime and night-time Land Surface Temperature (LST) datasets. An improved version of an existing
biological model for malaria temperature suitability was then applied to the resulting temperature information for a
13-year data series. The mechanism underlying this biological model is simulation of emergent mosquito cohorts
on a two-hour time-step and tracking of each cohort throughout its life to quantify the impact air temperature has
on both mosquito survival and sporozoite development.

Results: The results of this research consist of 154 monthly raster surfaces that characterize spatiotemporal patterns
in TSI across Africa from April 2000 through December 2012 at a 1 km spatial resolution. Generalized TSI patterns
were as expected, with consistently high values in equatorial rain forests, seasonally variable values in tropical
savannas (wet and dry) and montane areas, and low values in arid, subtropical regions. Comparisons with synoptic
approaches demonstrated the additional information available within the dynamic TSI dataset that is lost in
equivalent synoptic products derived from long-term monthly averages.

Conclusions: The dynamic TSI dataset presented here provides a new product with far richer spatial and temporal
information than any other presently available for Africa. As spatiotemporal malaria modeling endeavors evolve,
dynamic predictor variables such as the malaria temperature suitability data developed here will be essential for the
rational assessment of changing patterns of malaria risk.
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Background
The importance of temperature on numerous components
of the malaria transmission cycle has been recognized for
over 100 years [1-3], and been quantified in a series of
progressively more sophisticated models [4]. Meanwhile,
calibration of key temperature-dependent parameters, such
as those capturing effects on mosquito survivorship and ex-
trinsic incubation period (sporogony) has been refined by
laboratory experiment [5,6] and field observation [7-9].
One motivation for investigating temperature effects has
been to incorporate them in spatially distributed models in
order to map metrics of malaria risk across continental or
global scales [10-17]. Recent studies [18,19] have combined
climatic datasets with mechanistic models that link
temperature to transmission intensity to produce spatially
and temporally gridded estimates of temperature suitability
for malaria transmission. Such outputs can then be incorpo-
rated in risk models either as empirical covariates or as
spatially distributed biological variables [15].
The importance of using realistic seasonal and diurnal

temperature cycles within these models rather than simpler
annual or monthly mean values has been demonstrated
[20,21], and these elaborations have been incorporated to
varying degrees in existing temperature suitability maps
[18,19]. Common to these studies, however, is reliance
upon synoptic climatic data representing the average sea-
sonal pattern, typically based on annual temperature time-
series averaged across numerous years of measurements.
These synoptic products have been favored because, in
averaging across time, the data gaps, erratic measurements
and other errors associated with temporally disaggregated
(asynoptic) temperature measurements can be mitigated
[22]. This aggregation comes at a cost, however: in reality,
temperature patterns in a given region can vary substan-
tially from year to year – reflecting random fluctuation, cyc-
lical climatic events, or long-term secular trends – and this
inter-annual variation is not captured by synoptic data. Syn-
optic representations of malaria temperature suitability are
adequate when used in spatial malaria risk models that are,
themselves, essentially synoptic in nature (i.e., their focus is
on assessing long-term spatial patterns of risk). Increas-
ingly, however, the rationale for modeling malaria risk is
to examine or predict changes in the patterns of risk
through time [23]. This makes synoptic handling of
temperature effects less appropriate [24] and the incorpor-
ation of inter-annual trends and variation becomes more
important: whether the intention is to investigate the asso-
ciation between temperature and transmission, or simply
to control for it when investigating other factors of
interest.
This study builds on the temperature suitability model

proposed by Gething et al. [18] and presents the first asy-
noptic model of malaria temperature suitability, applied to
Plasmodium falciparum across the African continent. This
modeling endeavor spans the period from 2000 to 2012,
which aligns with the recent period of major investment in
malaria control [25-27]. The analysis is based on a newly
produced spatiotemporal data ‘cube’ derived from satellite
temperature measurements and subject to a novel nested
space-time interpolation algorithm to identify, remove, and
replace erroneous and missing values without the need for
temporal aggregation (personal communication with Weiss
DJ, Atkinson PM, Bhatt SJ, Mappin BJ, Hay SI, Gething
PW). Additionally, a new model is presented here to convert
observed land-surface temperatures into predictions of am-
bient air temperature, which is more relevant to malaria
transmission [3]. The remaining manuscript describes the
construction and validation of this model, presents the
resulting spatiotemporal predictions, and discusses their util-
ity in studying the contributions of temperature to recent
changes in African malaria endemicity.

Methods
This section describes the data, model construction and
validation, and processing steps undertaken to generate the
spatiotemporal predictions of temperature suitability. First,
the input satellite-derived land surface temperature imagery
is described, along with the steps undertaken to clean and
validate those data to provide a robust space-time data
product. Second, the statistical approach for conversion of
land-surface temperature to air temperature is presented.
Third, the additional temporal interpolation of these data to
approximate realistic diurnal and seasonal temperature
time-series is explained. Fourth, the propagation of these
time-series through the Gething et al. temperature suitabil-
ity model [18] is detailed.

Satellite imagery and pre-processing
The primary temperature datasets used in this analysis were
daytime and night-time Land Surface Temperature (LST),
measured at an approximate spatial resolution of 1 × 1 km
by the MODerate Resolution Imaging Spectroradiometer
(MODIS) thermal sensor on board the NASA-Terra satel-
lite system [28,29]. The daytime and nighttime measure-
ments are associated with approximately 10:30 AM and
10:30 PM local time, respectively, governed by the overhead
passing of the satellite. The raw data (MOD11A2) were
acquired in tiles, 48 of which were used to create mosaics
encompassing mainland Africa, Madagascar, and the
smaller islands nations of São Tomé and Príncipe, Equator-
ial Guinea, Comoros, Mayotte, and some of the islands
comprising the Seychelles. The temporal resolution of the
selected MODIS LST products is 8 days, derived for each
pixel as an average of between two and eight measurements
[30] after omitting any with poor data quality (e.g., those
capturing clouds). The resulting data archive consisted of
1,180 8-day composite mosaics (i.e. 590 each for daytime
and nighttime LST), and spanned from day 65 of the year
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2000 (i.e., March 5th, 2000) through to the end of 2012.
2From this archive, three composite dates (day 225 of year
2000, day 177 of 2001, and day 81 of 2002) were removed,
as they contained no data or excessive error.
An important challenge for multi-temporal satellite

imagery from tropical regions is the robust handling of
errors caused by persistent cloud cover. Cloud obscures
the sensor’s view of the Earth surface and leads to biased
or missing temperature readings. To overcome the prob-
lem of missing data, the eight-day LST composites were
first gap-filled using the method explained in Weiss
et al. (personal communication with Weiss DJ, Atkinson
PM, Bhatt SJ, Mappin BJ, Hay SI, Gething PW). Briefly,
this method fills missing pixel values based on the values
of usable pixels in close proximity and an adjustment
that incorporates spatial patterns in LST present on an-
niversary dates (i.e., composite images from the same
day, but different year) or from summarized datasets.
The gap filling approach was highly accurate (Table 1)
for LST, as demonstrated by introducing artificial gaps,
filling them using the newly developed method, and then
Table 1 Validation results for the gap-filling procedure applie

Year Day of year Calendar date Type I

2001 145 May 25th Night

2001 145 May 25th Night

2004 65 Mar 5th Night

2004 65 Mar 5th Night

2006 177 Jun 26th Night

2006 177 Jun 26th Night

2011 321 Nov 17th Night

2011 321 Nov 17th Night

2012 241 Aug 28th Night

2012 241 Aug 28th Night

2001 129 May 9th Day

2001 129 May 9th Day

2005 257 Sep 14th Day

2005 257 Sep 14th Day

2005 9 Jan 9th Day

2005 9 Jan 9th Day

2006 73 Apr 14th Day

2006 73 Apr 14th Day

2007 145 May 25th Day

2007 145 May 25th Day

Mean Night

Mean Night

Mean Day

Mean Day

Validation datasets were selected at random, but stratified to capture a wide range
testing the resulting values against the original measure-
ments. For the validation procedure, gaps were intro-
duced as horizontal and vertical stripes with widths of
(a) 25 pixels (i.e., ~25 km at the equator) to approximate
the mean gap sizes present in the least gap-filled data-
sets, and (b) 500 pixels (i.e., ~500 km at the equator) to
approximate the maximum gap sizes found in typical 8-
day MODIS composites for Africa. The Root Mean
Squared Error (RMSE) provides a summary indication of
how well the gap-filling model is likely to perform for a
single pixel.

Association of LST and air temperature
The temperature constraint equations used within the
Gething et al. temperature suitability model [18] were cali-
brated in experimental settings based on air temperature as
opposed to LST. While LST is readily available in high
resolution spatiotemporal datasets, air temperature is more
closely aligned with adult vector survivorship and the dur-
ation of sporogony [19]. Although closely related physically,
the relationship between the two metrics is complex and
d to the LST mosaics

ntroduced stripe width (km) R2 RMSE (degrees C)

25 0.976 0.750

500 0.896 1.335

25 0.974 0.865

500 0.919 1.376

25 0.980 0.890

500 0.910 1.647

25 0.978 0.895

500 0.916 1.511

25 0.969 0.838

500 0.877 1.516

25 0.983 1.179

500 0.944 1.942

25 0.978 1.142

500 0.900 2.167

25 0.973 1.392

500 0.895 2.429

25 0.967 1.273

500 0.890 2.003

25 0.983 1.204

500 0.942 1.976

25 0.975 0.848

500 0.904 1.477

25 0.977 1.238

500 0.914 2.103

of seasonal conditions.
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geographically heterogeneous. As such, a means of convert-
ing LST to air temperature was required to use the estab-
lished temperature suitability modeling framework.
Numerous studies have explored the relationship be-

tween air temperature and LST measured from thermal
sensors on satellites, including those onboard the MODIS
platforms. A common finding is a strong linear correlation
(i.e., R2 > 0.8) between night-time LST and minimum air
temperatures, but a less predictable relationship between
daytime LST and maximum air temperatures e.g., [31]. This
discrepancy has been the subject of modeling efforts that
utilized the relationship established by Nemani and Run-
ning [32] between LST and vegetation indices derived from
satellite imagery as a correction factor [33,34]. The basic
vegetation index correction concept has since been ex-
tended using factors such as soil moisture [35], elevation
[36] and, most recently, a wide suite of land-cover variables
in a multivariate mixed-effects statistical model [19]. Alter-
native methods have also been devised such as a correction
based on solar zenith angle [37]. However, despite these ef-
forts, no consensus exists on the optimum approach for con-
verting LST to air temperature, particularly for continental-
to-global scale analyses in which land cover variability and
seasonality greatly affect the relationship between daytime
LSTand maximum air temperature [38].
For the present study, a parsimonious land-to-air

temperature conversion model was sought that could
provide accurate conversions without requiring complex
handling of ancillary land cover data. This was driven by
the very large computational demands associated with
processing the high-resolution spatiotemporal data cube,
and the difficulties associated with obtaining reliable
temporally-dynamic data on putative land cover covari-
ates. To devise an alternative approach, a dataset of
georeferenced air temperature observations was required
Figure 1 Comparison of observed versus modelled minimum air temp
temperature (LSTnight) from the MODIS sensor.
that could be combined with MODIS LST values to in-
vestigate the resulting bivariate relationships. Daily data
was obtained for all meteorological stations available
within Africa from the NOAA National Climatic Data
Center consisting of daily minimum and maximum tem-
peratures for 407,857 daily observations from 154 me-
teorological stations. These data were summarized to
create 8-day estimates for minimum and maximum
temperature that matched the averaging periods associ-
ated with the LST dataset. After removing any with fewer
than three daily observations for minimum or maximum
temperature, the final number of 8-day temperature obser-
vations was 12,531.
As reported by other authors [31], a strong linear rela-

tionship (R2 > 0.82) between minimum air temperatures
(Tmin) and night-time LST (LSTnight) was found, which
negated the need to include additional variables when con-
verting LSTnight to Tmin. Instead a modest correction (i.e., a
linear model with intercept close to zero and gradient close
to one, Equation 1) was applied to marginally improve the
RMSE. The result of the Tmin model is shown in Figure 1.

Tmin ¼ 0:209 þ 0:971_LSTnight ð1Þ

The linear relationship between daytime LST (LSTday)
and maximum air temperature (Tmax) was weaker (R2 <
0.67, Figure 2) than that between LSTnight and Tmin. To
augment this model, the inclusion of the diurnal
temperature range, LSTΔ = LSTday − LSTnight, was investi-
gated. This follows from studies [39,40] that found the
difference between satellite-derived maximum and mini-
mum LST is inversely related to both moisture availability
and thermal inertia properties of the land surface. Further
work [32] has demonstrated how those same properties
mediate the relationship between land surface and air
erature (Tmax). The model was based on nighttime land-surface



Figure 2 Comparison of maximum air temperature (Tmax) observed at ground stations and daytime land-surface temperature (LSTday)
measured by the MODIS sensor.
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temperature by comparing LST measurements for a single
forest patch, on days with very similar air temperature and
relative humidity, but with markedly different moisture
availability. In this study [32], when the forest patch was
moist, LST was lower and more similar to the measured
air temperature than during the dry period, which was
likely the product of latent heat flux (i.e., thermal en-
ergy lost from the surface due to evapotranspiration).
Together these findings suggest that cells with high
LSTΔ will be associated with lower moisture availability
and therefore a greater disparity between daytime LST
and Tmax. Including LSTΔ in the Tmax model resulted in
an improvement in R2 from 0.66 (AIC 68952) to 0.78
(AIC 63389). Additional variables tested for their utility
in modeling Tmax were latitude, longitude, Enhanced
Figure 3 Comparison of observed versus modelled maximum air tempe
temperature (LSTday) and daily temperature range (LSTΔ) from the MODIS sen
Vegetation Index (EVI), elevation, and daylight hours as
calculated using the approach defined by Forsythe et al.
[41]. No variables other than LSTΔ increased R2 to
above 0.70. However, when daylight hours (DAYlength)
was then included as a third covariate the overall model
performance improved significantly (R2 of 0.80, AIC
62688), albeit more modestly than through the inclu-
sion of LSTΔ alone. It is plausible that daylight length
improves the model as it captures the time that elapses
between sunset and the night-time passing of the
MODIS sensor (i.e., at 10:30 PM local time), which is
relevant for LSTΔ since the land surface will have less
time to cool when the sun sets later. None of the other
variables tested warranted inclusion in the final model
as they were either non-significant or had very little
rature (Tmax). The model was based on daytime land-surface
sor, along with the number of daylight hours DAYlength at each location.
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effect on model performance. Therefore, the final Tmax

model used LSTday, LSTΔ, and DAYlength as predictor
variables (Equation 2) and produced a final R2 for Tmax

similar to that for Tmin (Figure 3).

Tmax ¼ 8:149 þ LSTday _ 0:949 þ LSTΔ _− 0:541 þ DAY length _− 0:866

ð2Þ

Temperature interpolation
As in the original Gething et al. [18] model, it was ne-
cessary to interpolate the 8-day Tmin and Tmax data
time-series at each pixel to a much finer temporal reso-
lution to incorporate diurnal variation and allow a 2-
hour discrete time-step in the temperature suitability
model, representing an acceptable approximation of a
continuous process. A two-step interpolation process
was implemented and applied to each pixel for each
monthly processing step by first creating daily Tmin and
Tmax values from the 8-day composites and then con-
verting the daily temperature values into 2-hour slices by
adjusting for diurnal temperature variability. The first step
in this process was to identify all 8-day LST periods
that intersected the temporal window of the month in
question plus the 31 preceding days, and then fitting
a spline through the 8-day Tmin and Tmax values to
produce daily estimates. With daily Tmin and Tmax

values, the day of the year of each day, and the lati-
tude and longitude of the pixel, the diurnal
temperature curve fitting approach used by Garske et
al. [19] was applied, which modified daytime
temperature using a sine wave model (Equation 3) and
nighttime temperatures using an exponential decay func-
tion (Equation 4). For these equations the times of sun-
rise and sunset were calculated using the Office of the
United States Naval Observatory algorithm [42].

T tð Þ ¼ Tmin þ Tmax − Tminð Þ_ sin π
t − tsunrise

tsunrise − tsunriseð Þ þ 3:72

� �

for day time temperatures

ð3Þ

T tð Þ ¼ Tmin þ T sunset − Tminð Þ_ exp ‐2:2
t − tsunset

24 − tsunset − tsunriseð Þ
� �

for nigthttime temperatures

ð4Þ

Temperature suitability model for Plasmodium falciparum
The temperature suitability model defined in Gething et
al. [18] was implemented using the derived 13-year, two-
hour resolution air temperature time-series for each 1 ×
1 km pixel. That model is described at length in the earl-
ier study [18] and, therefore, the full description is not
repeated here. In brief, the model captured two key
mechanisms by which temperature mediates the trans-
mission cycle of P. falciparum: survival of adult Anoph-
eles and the extrinsic incubation period of the parasite
within the vector. Note that the selected temperature
suitability model does not currently incorporate the ef-
fect of temperature on larval development, which im-
pacts the density of adult mosquitoes and may affect
epidemiologically important aspects of mosquito biology.
The model simulated for every 1 × 1 km pixel a new co-
hort of vectors (of arbitrary size) emerging every two
hours throughout the modeled period. It then tracked
for each cohort their proportional survival [43] and cap-
acity to support a complete extrinsic incubation period
[44] as functions of the continuously changing
temperature regime at each location. Practically speak-
ing, each two-hour time step was intersected by 372 co-
horts (i.e., all the cohorts that emerged from the
preceding 31 days), and if the cohort was infectious at
the intersecting time step, the proportion of surviving
mosquitoes was added to the cumulative temperature
suitability total for that time step. Intuitively, a newly
emerged cohort immediately begins to decline in size as
individual mosquitoes die (according to a temperature
dependent daily survival probability). Simultaneously,
that cohort can take blood meals, become infected, and
the ingested gametocytes can begin their development
into mature sporozoites, again according to a
temperature dependent process. By capturing this
process numerically for each cohort, and integrating
across all cohorts present in each pixel at each time
step, the model evaluated the relative abundance of
vectors, and the proportion that are potentially infec-
tious, at all space-time locations. The resulting pixel-
level time-series of the proportion of infectious vec-
tors were then aggregated temporally and standard-
ized by the maximum possible predicted value,
leading to a comparable Temperature Suitability Index
(TSI) value between zero and one for every pixel in
each month.

Results
A total of 154 monthly grids of TSI were produced,
spanning the period of April 2000 through December
2012. An animation showing the full set of monthly
TSI rasters is available for download as Additional file
1. The results show spatial patterns similar to average
monthly conditions derived in previous analyses
[18,19], but the utility of the new dataset is most ap-
parent in its ability to characterize inter-annual vari-
ability. For example, Figure 4A – 4C illustrate
noticeable differences in modeled TSI for the month of
April in southern Africa, Madagascar, and to a lesser ex-
tent in east Africa (highlighted in the zoomed-in portion



Figure 4 Example temperature suitability index predictions for three consecutive Aprils. Shown are (A) April 2000, (B) April 2001 and (C) April
2002. Note the obvious differences in southern Africa and Madagascar, as well more subtle differences visible in the zoomed-in view of East Africa (e.g.,
southern Central African Republic as well as the Ethiopian highlands).
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of the figures). All other months in the dataset show simi-
lar spatiotemporal variability when compared across dif-
ferent years in areas experiencing transitional seasons (e.
g., in months during which changes from warm to cool
seasons occur).
To further illustrate the utility of the dynamic temp

erature suitability dataset, longitudinal graphs were
created for randomly distributed points (n = 50),
twelve of which are shown in Figure 5 to highlight
how synoptic data may fail to adequately capture vari-
ability within malaria temperature suitability (Figure 6).
Generally speaking, areas that experience seasonal
variability in TSI can be characterized much more
thoroughly through the use of a dynamic product
than with a synoptic product, as the timing, magni-
tude, and duration of TSI peaks and troughs vary
from year to year. In cases where TSI is always low,
such as in the Sahara, or always high, such as in west
African equatorial rain forests, synoptic TSI is func-
tionally equivalent to the new dynamic TSI. This is
also true in rare cases where intra-annual TSI pat-
terns are highly consistent from year to year. How-
ever, the vast majority of areas with endemic malaria
that experience seasonal variability in TSI have at
least one month during year in which TSI (which
ranges between 0.0 and 1.0) has a standard deviation
between approximately 0.1 and 0.25, with some areas
exceeding 0.4 (Figure 7).
Figure 5 Comparison points for demonstrating the utility of dynamic
background dataset.
Discussion
As malaria mapping and research projects are adapted
and expanded to include both space and time, dy-
namic spatiotemporal data products will be essential
for modeling changing malaria infection prevalence
and disease burden. This work creates one such dy-
namic covariate, building on the earlier, static, prod-
uct established by Gething et al. [18] which
subsequently proved the most informative covariate in
the contemporary modeling of global P. falciparum
malaria [15]. Ultimately, only downstream modeling
efforts will fully demonstrate the benefit of dynamic
TSI over synoptic products, but given the inter-
annual variability evident within the dynamic TSI
product, this dataset is expected to significantly im-
prove the predictive capacity of malaria risk models.
The dynamic TSI dataset is particularly useful for

capturing infrequent events that interrupt typical
seasonal patterns of malaria transmission. Note-
worthy examples of such events are (1) peaks in TSI
that are higher or last longer than TSI peaks in a
typical year, and (2) troughs in TSI that are smaller
(or non-existent) or shorter than usual. Furthermore,
in areas where the timing of seasonal transitions is
irregular, synoptic data created from simple aver-
aging will have an unrealistically low amplitude in
cases where peaks or troughs can occur in different
months (e.g., if peaks occur in either January or
TSI over synoptic products. Mean annual TSI is used here as the



Figure 6 Longitudinal comparison of dynamic vs. synoptic TSI.
Points 1 - 3 are cases where the dynamic TSI data provide limited
improvement over synoptic averages. Points 4 - 12 are examples of
areas where the magnitude and/or timing of TSI are poorly repre-
sented by synoptic data in one or more years.
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February the resulting synoptic average will have a
peak spanning both month, but not as high as an
actual peak due to the muting effect of averaging).
From a malaria control perspective, areas that ex-
perience unusually high or long TSI peaks may ex-
perience outbreaks within human populations that
have low acquired functional immunity or occur in
areas poorly equipped to deal with an outbreak (e.g.,
without adequate stores of anti-malarial drugs) due
to the ephemeral nature of local malaria infection
periods [45]. Even in areas accustomed to seasonal
malaria [46], unusual timing or durations of periods
of transmission suitability have implications for mal-
aria commodity procurement, control planning, and
implementation.

Conclusions
Creation of dynamic temperature suitability products
is the logical progression from previous research en-
deavors that established a methodology for creating
synoptic products, as well as a necessary step for de-
veloping spatiotemporal malaria prevalence and bur-
den models that utilize temperature suitability as a
predictor variable. The datasets underlying the TSI
data product resulting from this research are daily
minimum and maximum temperatures, which were
modeled from MODIS LST datasets using an ap-
proach described in this paper. The use of
temperature data from MODIS facilitated the creation
of output with a 1 × 1 km spatial resolution, which
represents the highest spatial resolution malaria
temperature suitability product currently available for
Africa. The temporal resolution and extent of the
MODIS data archive, in combination with substantial
advances in algorithmic efficiency, allowed TSI to be
modeled monthly from April 2000 through December
2012. With the operational TSI production method-
ology established by this research, data continuity can
be maintained for the Africa TSI product for the life
of MODIS sensor, as well as adapted for use with
LST data produced from alternate sensors. Further-
more, the spatial scope of the TSI product can be
expanded to include other areas of the tropics with
malaria transmission, including those with endemic
Plasmodium vivax, and potentially be adapted for
use with other vector-borne diseases affected by
temperature.



Figure 7 Maximum monthly TSI standard deviation. The value represented by each cell is the maximum per-month standard deviation, as
determined from the value calculated for each month (Jan. – Dec.) from the 13-year longitudinal dataset (2000-2012). The month of greatest
standard deviation is typically associated with seasonal transitions such as spring, fall, or the onset or conclusion of the wet season.
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Additional file

Additional file 1: This animation iterates through the full set of 154
monthly TSI rasters resulting from this research.
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