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Abstract

Background: As Plasmodium falciparum and Plasmodium vivax co-exist in most malaria-endemic regions outside
sub-Saharan Africa, malaria control strategies in these areas must target both species in order to succeed.
Population genetic analyses can predict the effectiveness of interventions including vaccines, by providing
insight into patterns of diversity and evolution. The aim of this study was to investigate the population genetics
of leading malaria vaccine candidate AMA1 in sympatric P. falciparum and P. vivax populations of Papua New
Guinea (PNG), an area of similarly high prevalence (Pf = 22.3 to 38.8%, Pv = 15.3 to 31.8%).

Methods: A total of 72 Pfama1 and 102 Pvama1 sequences were collected from two distinct areas, Madang and
Wosera, on the highly endemic PNG north coast.

Results: Despite a greater number of polymorphic sites in the AMA1 genes of P. falciparum (Madang = 52;
Wosera = 56) compared to P. vivax (Madang = 36, Wosera = 34), the number of AMA1 haplotypes, haplotype
diversity (Hd) and recombination (R) was far lower for P. falciparum (Madang = 12, Wosera = 20; Hd ≤0.92, R ≤45.8) than
for P. vivax (Madang = 50, Wosera = 38; Hd = 0.99, R =≤70.9). Balancing selection was detected only within domain I of
AMA1 for P. vivax, and in both domains I and III for P. falciparum.

Conclusions: Higher diversity in the genes encoding P. vivax AMA1 than in P. falciparum AMA1 in this highly endemic
area has important implications for development of AMA1-based vaccines in PNG and beyond. These results also suggest
a smaller effective population size of P. falciparum compared to P. vivax, a finding that warrants further investigation.
Differing patterns of selection on the AMA1 genes indicate that critical antigenic sites may differ between the
species, highlighting the need for independent investigations of these two leading vaccine candidates.
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Background
Although greater morbidity and mortality from malaria
is attributed to infection with Plasmodium falciparum,
Plasmodium vivax is responsible for much of the global
malaria burden. This species can also cause severe dis-
ease [1-4], has a broader geographic distribution than P.
falciparum and is increasingly being recognized as less
responsive to malaria control measures [5]. Indeed, in
the context of malaria elimination, it is thought that the
relatively resilient P. vivax will present the ultimate chal-
lenge in areas in areas of co-endemicity [6].
The greater resilience of P. vivax is thought to be pre-

dominantly due to its ability to form dormant liver stages
[7] and may also be because P. vivax is a more genetically
diverse parasite than P. falciparum. The greater diversity
of P. vivax has been demonstrated using a panel of global
isolates [8] and in an endemic area of Cambodia with
similarly low transmission of both species [9,10]. Diversity
is an indicator of the evolutionary fitness of a parasite
population as high genetic diversity provides greater po-
tential for adaptation to changing environmental condi-
tions and for immune escape, which is facilitated by
antigenic polymorphism [11]. Plasmodium falciparum di-
versity is strongly linked with the overall transmission in-
tensity of the broad geographic area [12] and is consistent
with decreasing diversity with distance from an African
origin [13]. However, diverse P. vivax populations have
been observed even in very low transmission settings [14,15]
and the origin of P. vivax is still being debated [16-18]. De-
fining the genetic diversity of P. falciparum and P. vivax
parasite populations can therefore provide important insight
into malaria epidemiology and parasite evolution, in
addition to how well the local parasite population might
respond to interventions such as malaria vaccines [19].
A broadly effective malaria vaccine is considered the

most sustainable approach to controlling and eventually
eliminating malaria [20]. One of the major barriers to
the development of malaria vaccines is the extreme di-
versity of leading candidate antigens. Therefore, a better
understanding of parasite antigenic diversity is urgently
needed [21,22]. As P. falciparum and P. vivax co-exist in
many malaria-endemic regions, it is essential that both
species be targeted if elimination is to be achieved.
Whilst many leading malaria vaccine candidates are
orthologous, on account of biological differences that
exist between the species it is not possible to extrapolate
findings from one species to the other [8,23-25]. There-
fore, the antigenic diversity of leading candidates must
be investigated independently for each species.
One of the most promising vaccine candidates for

both P. falciparum and P. vivax is the apical membrane
antigen 1 (AMA1) [26-33]. Although important for mer-
ozoite invasion, the precise biological function of AMA1
was largely unknown until it was recently reported that
P. falciparum AMA1 (PfAMA1) is essential for invasion
of host cells as it has a direct or indirect role in resealing
of the red blood cell at the posterior end of the invasion
event [34]. That AMA1 sequences are highly conserved
amongst all parasites of the Apicomplexa phylum sug-
gests conservation of fundamental biological properties
[35]. Additionally, both the P. falciparum [36-38] and
P. vivax [39-42] AMA1 ectodomains are highly immuno-
genic. PfAMA1 elicits antibodies that can inhibit invasion
of host cells in vitro [43-45], thereby contributing to pro-
tective immunity in humans naturally exposed to malaria
[46,47]. AMA1 is, therefore, considered to be a prime vac-
cine candidate for both P. falciparum and P. vivax, how-
ever few studies have investigated the genetic diversity of
AMA1 in sympatric P. falciparum and P. vivax popula-
tions [48,49]. In Venezuela, the genes encoding P. vivax
AMA1 (PvAMA1) were reported to be significantly more
diverse than PfAMA1. However, P. vivax has a much
higher prevalence than P. falciparum in this region, which
may explain the patterns observed [48]. The diversity of
each species at the ama1 locus is yet to be compared in
an area highly endemic for both species.
Intense year-round transmission of both P. falciparum

and P. vivax occurs on the north coast of Papua New
Guinea (PNG) [50]. Separate population genetic studies of
AMA1 have been done in this area for P. falciparum
[21,35] and P. vivax [51,52] however the results cannot be
directly compared on account of samples being collected
at different time points and because only partial ama1 se-
quences were analysed for P. falciparum. The findings of
these previous studies revealed that PNG parasites have a
genetically distinct repertoire of P. vivax AMA1 alleles
compared to other populations [51], whereas P. falciparum
AMA1 domain I (DI) sequences collected in the year 2000
from a single, highly diverse parasite population [35] were
found to be representative of the worldwide diversity [21].
The aim of this study was to investigate patterns of di-

versity, population structure and evolution of full-length
P. falciparum and P. vivax AMA1 genes in sympatric
parasite populations in two geographically distinct areas
of PNG. Analysis of the data confirmed and extended
previous findings, revealing important differences in the
population biology of P. falciparum and P. vivax in PNG
which may have important implications for the design of
AMA1-based vaccines.

Methods
Study sites and isolates
The Madang and East Sepik Provinces on the north
coast of PNG are areas of intense perennial malaria
transmission and have been the focus of malaria re-
search and control efforts for more than half a century.
Cross-sectional malaria surveys including asymptomatic
volunteers of all ages were conducted in 2005 and 2006
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in four catchment areas including Mugil, Malala and
Utu in the Madang Province, and the Wosera district in
the East Sepik Province. The study sites and parasite iso-
lates have been described in detail elsewhere [53-55].
Plasmodium falciparum- and P. vivax- infected samples
were identified by PCR-based methods [54,55]. The
prevalence of both species was found to be similarly
high at 22.3 to 38.8% for P. falciparum [55] and 15.3 to
31.8% for P. vivax [54]. Isolates were also genotyped at
highly polymorphic loci to identify monoclonal infec-
tions as previously reported [53,54]. A total of 76 mono-
clonal P. falciparum [53] and 102 monoclonal P. vivax
isolates [54] were selected for analysis in this study.
Using microsatellite markers, a moderate to high degree
of population structure for P. falciparum (i.e. high diver-
sity between populations [53]) but limited geographic
population structure of P. vivax was identified in this re-
gion (i.e. limited diversity between populations [56]).
Therefore, for P. falciparum only isolates from Mugil were
used, and due to the relatively small number of P. vivax
samples available from each of the three Madang catch-
ments, isolates were combined to form a single population
for analysis. Catchment populations were also analysed
separately to confirm the patterns observed. The two dis-
tinct parasite populations will be referred to as Wosera
and Madang throughout the manuscript.
Ethical approval to conduct this study was granted by

the PNG Institute of Medical Research Institutional Re-
view Board (Nos 08–08 and 11–05), the Medical Research
Advisory Committee of PNG (Nos 10.23 and 11–06), the
Alfred Hospital Research and Ethics Unit (No 30/06Q and
420–10) and the Walter and Eliza Hall Institute Human
Research Ethics Committee (No 11–09 and 11–12).

PCR and sequencing
Whole genome amplification (WGA) was performed for
all P. falciparum samples using the Illustra GenomiPhi
V2 Amplification kit (GE Healthcare, NSW, Australia),
as per the manufacturer’s instructions. The multiple dis-
placement amplification (MDA) WGA method used has
been shown to result in a higher yield of non-artifact
DNA templates and reduced amplification bias com-
pared with PCR-based WGA methods [57]. Previously,
to investigate whether artifacts were introduced as a
result of WGA, P. vivax sequences obtained from un-
diluted genomic DNA and sequences amplified from
WGA template were compared [54]. Consistent with
previous reports [58,59], results were concordant be-
tween the WGA and unamplified DNA. Nucleotides 38
to 1,674 bp of the 1,869 bp Pfama1 coding sequence,
encompassing the prosequence, signal sequence and the
complete ectodomain (DI to DIII) were amplified using
a modified version of a previously described nested PCR
strategy [60,61]. Modifications included: both primary
PCR primers Fex (5'-ATGTACTTGTTATAAATTGTAC–3'
(Fwd)) and Rex (5'–CAGCTTCTCTTTTATGCTAA–3'
(Rev)). For the nested PCR, the published forward primer
F2 [60] was used with the TMr reverse primer (5'-GC
TGTCGCTGTATTAGCAACTA-3'). As the P. falciparum
genome is extremely AT-rich, if PCR was unsuccessful,
the PCR enhancers, dimethyl sulphoxide (DMSO, 5% PCR
grade; Sigma-Aldrich, MO, USA), Betaine (0.05 M PCR
grade; Sigma-Aldrich, MO, USA), bovine serum albumin
(BSA, 0.1 mg/mL PCR grade; Roche, GmbH, Germany) or
polyethylene glycol (PEG6000, 1.5%; Sigma-Aldrich, MO,
USA) were added to the PCR mastermix. Sequencing reac-
tions were performed by a contract sequencing facility using
the ABI BigDye Terminator Cycle Sequencing kit on an ABI
3730XL automatic DNA Analyser (Macrogen, Seoul, Korea).
For P. vivax, nucleotides 1 to 1,524 bp of the 1,686 bp
Pvama1 coding sequence, encompassing the signal sequence
and the complete ectodomain (DI to DIII) were amplified
and sequenced previously as described [48,51,62].

Analysis
The length of the Pfama1 ectodomain sequence ana-
lysed was 1,335 bp (from nucleotide 300 to 1,635, rela-
tive to the reference sequence 3D7 [GenBank accession
number XM_001347979.1]) and for Pvama1, 1320 bp
(from nucleotide 300 to 1620, relative to the reference
sequence Sal-1 [GenBank accession number AF063138]).
Differences in length were due to the insertion of five add-
itional residues within Pfama1 DIII (positions 471 to 473,
relative to the reference sequence 3D7) and the trans-
membrane region (positions 535 and 540, relative to the
reference sequence 3D7). For each of the P. falciparum
field isolates, raw sequence data were edited and high
quality sequences assembled into contigs using Sequencher
version 5.0 [63]. Editing of raw sequence data included
trimming the poor quality ends of sequence reads and
assembling sequences to the relevant reference se-
quence in order to generate a consensus sequence. Once
assembled to the reference, ambiguous base calls were
clarified and if the quality of the chromatogram was not
sufficient to enable ambiguous bases to be accurately
called, the sample was re-amplified and re-sequenced.
Only high quality data was included in the final dataset.
Single nucleotide polymorphisms (SNPs) were identified
by comparing the consensus sequence for each isolate
to the reference strains (P. falciparum 3D7). SNPs were
confirmed if they were present in at least one other isolate.
Rare SNPs, found in only one isolate, were confirmed by
amplifying and sequencing a second independent PCR
product. Sequences were deposited in GenBank [KF698984
to KF699059 (Pfama1) and KC702402 to KC702503
(Pvama1)] [51].
Although analysis of the P. vivax sequences was previ-

ously reported [51], the genomic region investigated in
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the present study was smaller (1,320 bp) and included
an additional 96 bp at the 3' end not analysed previously
in order to enable direct comparison with Pfama1 se-
quences. Hence population genetic analyses were repeated
and extended compared to those performed previously for
all Pvama1 sequences included in the present study. Nine
additional reference sequences were also analysed includ-
ing the Pfama1 sequence of the FVO isolate (GenBank
accession no AJ277646.1); six primate-adapted P. vivax
isolates used for vaccine research (Chesson I, Belem,
India VII, Indonesia XIX, Palo Alto and North Korea;
GenBank accession nos EU395587 to EU395593) [64].
Multiple alignments were performed using the MUSCLE

algorithm implemented in MEGA version 5.0 software [65].
Polymorphism and diversity was estimated using DnaSP
version 5.0 [66] by calculating the total number of poly-
morphic sites (S); synonymous (SP) and non-synonymous
(NS) SNPs, average pairwise nucleotide diversity (π), num-
ber of haplotypes (h) and haplotype diversity (Hd), which is
an allele frequency based statistic analogous to the hetero-
zygosity and is calculated as follows:

Hd ¼ n= n−1ð Þ½ �½1−
X

f ið Þ2Þ�

Where n is the sample size and f is the frequency of the
ith allele [67]. As the number of haplotypes is influenced by
sample size, the allelic richness (RS) was also calculated, as
RS is normalized on the basis of the smallest sample size
[68]. RS was calculated using FSTAT version 2.9.3 [69].
Additionally, allele frequencies of all amino acid polymor-
phisms were calculated using CONVERT, version 1.31 [70].
To identify departures from neutrality, a sliding win-

dow analysis of Tajima’s D was performed using DnaSP
version 5.0 [66]. Negative values of Tajima’s D indicate
an excess of rare alleles consistent with directional selec-
tion or recent population expansion whereas positive
values indicate an excess of intermediate frequency mu-
tations, suggestive of a recent population bottleneck or
balancing selection [71]. Balancing selection maintains
alleles at balanced frequencies within populations in
order to maintain genetic diversity and therefore an evo-
lutionary advantage under immune pressure.
To estimate the amount of recombination in AMA1

genes, the recombination parameter (R), based on the
variance between the average number of nucleotide dif-
ferences between pairs of sequences, was calculated
using DnaSP version 5.0 as follows:

R ¼ 4Nr

Where N is the population size and r is the recombin-
ation rate per sequence [72]. All parameters of the equa-
tion were estimated from the input data by DnaSP
software in the process of calculating R.
To measure the degree of non-random association be-
tween alleles at two or more sites (linkage disequilibrium,
LD), D’ [73] and r2 [74] were calculated using the ‘Full
Matrix LD’ option of TASSEL software, version 3.0.157
[75]. LD was calculated only for SP and NS SNPs with a
minor allele frequency (MAF) or combined MAF ≥0.10
(‘common’ polymorphisms). ‘Combined MAF’ refers to the
combined frequencies of the minor alleles detected at spe-
cific sites. Only ‘common’ SP and NS SNPs with a MAF or
combined MAF ≥0.10 were analysed as inclusion of rare al-
leles can artificially inflate values of D’ [76]. Tri-allelic SNPs
were split so that the major allele was analysed separately
with each of the minor alleles. The Fisher’s Exact test was
used to measure significance of any associations.
The PvAMA1 model was generated as previously de-

scribed [51]. The PfAMA1 model was generated using
the same protocol [51] with the following modifications.
The chimeric template was generated using overlays of
the P. vivax (Protein Data Bank ID: 1W81) and P. falcip-
arum (Protein Data Bank ID: 1Z40) AMA1 crystal struc-
tures, and grafting PvAMA1 loop residues onto the
PfAMA1 core. The grafted residues were as follows:
PvAMA1 residues 41 to 52 (numbering relative to the
P. vivax reference strain Sal-1 AMA1 sequence) which
correspond to PfAMA1 residues 96 to 107 (numbering
relative to the P. falciparum reference strain 3D7 AMA1
sequence); PvAMA1 residues 116 to 123 which corres-
pond to PfAMA1 residues 171 to 178; and as the crystal
structure of PfAMA1 DIII is yet to be solved, PvAMA1
residues 383 to 400 and 416 to 474, which correspond
to PfAMA1 residues 438 to 455 and 471 to 532, respect-
ively. Three PfAMA1 loop structures missing from both
the PvAMA1 and PfAMA1 crystal structures were gen-
erated automatically by Modeller using only stereochem-
ical and geometric restraints: PfAMA1 residues 264 to
274 (loop 1), 383 to 387 (loop 2) and 456 to 470 (loop
3). The P. falciparum 3D7 reference sequence (GenBank
accession no XM_001347979.1) was aligned against the
chimeric template sequence in order to generate the
PfAMA1 model. As the incomplete PfAMA1 crystal struc-
ture necessitated modeling three missing loop structures
and grafting the entire DIII from the PvAMA1 crystal
structure, one hundred PfAMA1 models were generated
in order to determine the optimized model with the low-
est final probability density function (PDF) energy for
structural analysis. Discovery Studio, version 3.1 (Accelrys,
San Diego, CA, USA) was used to prepare figures.

Results
Polymorphism and diversity of Plasmodium falciparum
and Plasmodium vivax AMA1 genes
The total number of polymorphic sites (S) in Pfama1
was almost double that of Pvama1 (Table 1). Similarly,
the number of NS SNPs for Pfama1 was nearly double



Table 1 Estimates of AMA1 genetic diversity for P.
falciparum and P. vivax in PNG

P. falciparum P. vivax

Wosera Madang Wosera Madang

Whole ectodomain

n 44 32 41 61

S 56 52 34 36

π (x 10−3) 14.2 13.4 7.6 8.5

NS 48a 47b 26 29c

SP 1a 1b 8 4c

h 20 12 38 50

Hd 0.92 0.91 0.99 0.99

RS 19 12 38 45

R 45.8 36.6 70.9 66.2

DI

S 36 32 21 23

π (x 10−3) 25.1 24.5 15.7 17.3

NS 30a 29b 14 16c

SP 1a 1b 7 4c

h 18 12 21 25

Hd 0.92 0.91 0.96 0.95

DII

S 8 8 4 6

π (x 10−3) 8.3 6.6 2.3 2.6

NS 8 8 4 6

SP 0 0 0 0

h 10 10 5 9

Hd 0.86 0.85 0.59 0.57

DIII

S 7 7 1 1

π (x 10−3) 14.8 13.7 0.2 1.3

NS 7 7 1 1

SP 0 0 0 0

h 9 8 2 2

Hd 0.86 0.84 0.04 0.25
DI=domain I; DII=domain II; DIII; domain III; n=number of samples; S=number
of polymorphic sites; π=nucleotide diversity; NS= number of non-synonymous
single nucleotide polymorphisms (SNPs); SP=number of synonymous SNPs;
h=number of haplotypes; Hd=haplotype diversity; RS: allelic richness;
R: recombination parameter.
aComplex codons not analysed by DnaSP software: 3 codons (292, 293, 294)
(301, 302, 303) (304, 305, 306).
bComplex codons not analysed by DnaSP software: 2 codons (292, 293, 294)
(301, 302, 303).
cComplex codon not analysed by DnaSP software: 1 codon (550, 551, 552).
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that of Pvama1 (Table 1). Conversely, the number of SP
SNPs was much lower in Pfama1 than for Pvama1. Des-
pite fewer polymorphic sites overall, the number of
Pvama1 haplotypes was more than four times that of
Pfama1 in Madang and nearly double the number de-
tected for Pfama1 in the Wosera. Haplotype diversity was
very high for both species, with Pvama1 haplotype diver-
sity close to the maximum of 1, indicating that all haplo-
types are rare (Table 1).
To ensure that using a combined P. vivax population did

not impact estimates of P. falciparum diversity, AMA1
diversity within the Mugil P. vivax population was also in-
vestigated. Diversity of AMA1 within the Mugil P. vivax
population was similar to that of the combined Madang
population, namely that diversity was high and exceeded
that of the Madang (Mugil) P. falciparum population
(Additional files 1 and 2). Hence, the differences observed
were not due to stratified population effects.
Polymorphism was distributed unevenly among the

three domains of AMA1 in both species. The number of
SNPs, and consequently nucleotide diversity, peaked in
DI for both Pfama1 and Pvama1 (Figures 1A and B;
Table 1). Again, there were a greater number of SNPs in
Pfama1 DI compared to Pvama1, but a higher number
of SP SNPs and increased allelic diversity resulted in
higher overall diversity of Pvama1 DI haplotypes (Table 1).
In contrast, the diversity of Pfama1 exceeded that of
Pvama1 in DII and DIII (Figure 1B; Table 1). For DII, the
number of haplotypes in Madang was similar for both
species, however in Wosera the number of Pfama1 NS
SNPs and haplotypes greatly exceeded that of Pvama1
(Table 1). For DIII, there were seven NS SNPs and a peak
in nucleotide diversity (π) for Pfama1 with eight and nine
haplotypes in the Wosera and Madang populations, re-
spectively but only a single NS SNP and two haplotypes
were detected for Pvama1 in each population (Figure 1B;
Table 1). No SP SNPs were detected in DII or DIII for ei-
ther species.

Evolution of Plasmodium falciparum and Plasmodium
vivax AMA1 genes
To identify departures from neutral evolution, the Tajima’s
D statistic was calculated using a sliding window ap-
proach along the length of the region encoding the
AMA1 ectodomain for each population of both spe-
cies. Although positive values of Tajima’s D, most likely
due to balancing (immune) selection, were observed
along the length of the ectodomain for Pfama1, highly
significant positive values of Tajima’s D (p < 0.01) were
observed in DIII (Figure 1C). This suggests that DIII is
an important target of protective host immune responses
within Pfama1.
For Pvama1, only DI deviated significantly from neutral

expectations, suggesting that this region is a strong target
of functional host immune responses (Figure 1C). Inter-
estingly, although the results were similar for the Wosera
and Madang Pfama1 populations, differences between the
Madang and Wosera Pvama1 populations were observed.
Whilst significantly positive values (p < 0.05) of Tajima’s D
were observed within DI for both populations, negative
values were also observed in DI for the Wosera popula-
tion, which can indicate an excess of rare alleles at these
sites consistent with purifying selection or a recent popu-
lation expansion. The negative values of Tajima’s D did
not reach significance (Figure 1C).



Figure 1 Polymorphism and selection of AMA1 genes in Plasmodium falciparum and Plasmodium vivax populations of Papua New
Guinea. The following results are based on the total dataset of 76 P. falciparum and 102 P. vivax sequences A) Polymorphism: Schematic of the
(i) P. falciparum and (ii) P. vivax genes encoding the AMA1 ectodomain, with all polymorphisms including non-synonymous (NS SNP, red lines),
synonymous (SP SNP, black lines) and singleton (dashed red and black lines, respectively) sites shown. Location of residues is indicated by the
colored panel along the top of the chart: signal sequence (grey), DI (red), DII (orange), DIII (blue), transmembrane region (black). B) Nucleotide
diversity: Sliding window analysis showing nucleotide diversity (π values for (i) Pfama1 and (ii) Pvama1. A window size of 100 bp and a step
size of 3 bp were used. C) Natural selection. Sliding window calculation of Tajima’s D was performed for all (i) 76 Pfama1 sequences and (ii) 102
Pvama1 sequences (black = Madang; grey =Wosera). A window size of 100 and a step size of 3 were used. A single asterisk (black = Madang;
grey = Wosera) indicates significant values for which p <0.05; and double asterisk indicates p <0.01.
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Recombination and linkage disequilibrium (LD) in
Plasmodium falciparum and Plasmodium vivax AMA1 genes
To explore how much genetic exchange occurs at the
AMA1 locus in each species, the amount of recombin-
ation and LD were estimated. The recombination param-
eter, R, was higher for P. vivax compared to P. falciparum,
and was higher in the Wosera compared to Madang for
both species (Table 1). Linkage disequilibrium was then
estimated between all pairs of ‘common’ polymorphic SP
and NS SNPs (Pfama1, n = 45; Pvama1 = 24). Significant
(p < 0.0001) LD values between distant sites were ob-
served for P. falciparum, whereas LD decayed with
physical distance between P. vivax polymorphic sites
(Figure 2). Together, these data demonstrate that the
rate of recombination in Pvama1 exceeds that of Pfama1
in these populations across the region evaluated.

Three-dimensional structural modeling of PfAMA1 and
PvAMA1 polymorphisms
All residues found to be polymorphic were mapped to
the respective three-dimensional model for P. falcip-
arum and P. vivax AMA1. Previously, only PvAMA1
polymorphisms predicted to be under balancing selection
were mapped to the P. vivax three-dimensional model
[51]. In the present study, all polymorphic loci were
mapped, extending the previous study by including eight
additional sites polymorphic amongst PNG PvAMA1 se-
quences: M51, D133, A172, G253, R317, T359, K400 and
Q484. In order to determine the proximity of the poly-
morphic residues to the ligand-binding cleft, the residues
comprising the hydrophobic cleft [77] were also mapped.
All polymorphic residues (PfAMA1, n = 47; PvAMA1,

n = 28) identified amongst PNG isolates that were located
within the region used to generate the respective models
(Additional file 3) mapped to solvent-exposed surfaces
(Figure 3). Consistent with the findings of Bai et al. [33], a
biased distribution of polymorphisms was observed for
both species, with 41 (87%) PfAMA1 polymorphic resi-
dues and 25 (89%) PvAMA1 located on one face of the
AMA1 molecule. For PfAMA1, three polymorphic DII
residues (K376T, H393R and K395R) were located on
the opposing ‘silent’ face (Figure 3; Additional file 4).
For PvAMA1, two polymorphic signal sequence resi-
dues, M51I and R66K, and one DII residue, T359A,
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Figure 2 Linkage disequilibrium in AMA1 genes of Plasmodium falciparum and Plasmodium vivax populations in Papua New Guinea.
The indices of linkage disequilibrium (LD), r2 (i and ii) and D’ (iii and iv) were calculated for all AMA1 polymorphisms with a MAF ≥0.10 for (A)
Wosera and (B) Madang populations. SNP position is shown on the Y axis and black squares represent self comparisons. Numbering is relative to
the Pfama1 3D7 reference sequence (GenBank accession no: XM_001347979.1) and the Pvama1 Sal-1 reference sequence (GenBank accession no:
AF063138), respectively. Coloured squares above the black diagonal represent values obtained for each pair of sites following r2 or D' calculations.
Below the black diagonal line on each heat map, coloured squares reflect the significance value (p). An asterisk denotes tri-allelic SNPs that were
split into two so that the major allele was analysed separately with each of the minor alleles. For interpretation, see the scale to the right of diagrams.
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were located on the opposing ‘silent’ face (Figure 3;
Additional file 5).
In both species, Tyr251, the hydrophobic cleft residue

reported to be essential for RON2 binding [78] was
strictly conserved (Additional file 3). Of the 15 ortholo-
gous sites that were polymorphic in both species, ten
were located within DI and five within DII (Additional
files 3, 4 and 5). Eight of those surrounding the hydro-
phobic binding cleft have been previously associated
with antigenic escape for PfAMA1 ([11,79], Additional
files 3, 4 and 5).
Whilst the overall distribution of polymorphic residues

was similar for both species, important differences with
regards to species-specific polymorphisms surrounding
and comprising the binding cleft were observed. Two
hydrophobic binding cleft residues, M190I and M224I,
were found to be polymorphic in 25 and 4% of PNG
PfAMA1 sequences, respectively (Figure 3; Additional files
3 and 4). In all sequences only one of these sites, but not
both, was polymorphic. None of the PvAMA1 hydropho-
bic cleft residues were found to be polymorphic. Addition-
ally, all polymorphic PfAMA1 residues observed amongst
PNG sequences that were located proximal to the binding
cleft have been associated previously with antigenic es-
cape [11,79]. For PvAMA1, with the exception of
N130K, all polymorphic residues located proximal to
the binding cleft also aligned with PfAMA1 residues be-
longing to the c1 or c3 clusters associated with antigenic
escape (Figure 3; Additional file 3). However R317Q,
found in three (3%) PNG PvAMA1 sequences, was lo-
cated in DII and immediately proximal to the hydropho-
bic binding cleft (Additional file 5). The orthologous
PfAMA1 residue, Ala372, was strictly conserved.

Relevance of PfAMA1 and PvAMA1 diversity to vaccine
design
In order to compare and contrast the extent of PfAMA1
and PvAMA1 antigenic diversity within PNG, haplotypes
were constructed using ‘common’ amino acid polymor-
phisms (MAF ≥0.10), as these polymorphisms are pre-
dicted to contribute the majority of antigenic diversity
and are therefore relevant to vaccine design [51].
Of 48 PfAMA1 polymorphic amino acid sites, 41 had

a MAF, or combined MAF of ≥0.10 (Figure 4A). These
‘common’ sites included the highly polymorphic c1 and
c1L cluster residues that have been previously associated
with antigenic escape [79]. An additional PfAMA1 poly-
morphic residue at the C-terminal end (position 544)
was also included in the haplotype analysis but was not
mapped to the PfAMA1 model as it was located outside
the region used to generate the crystal structure. Of the
41 ‘common’ PfAMA1 polymorphisms, the majority
(n = 34, 83%) were dimorphic. Five polymorphisms were
tri-allelic (12%) and two were tetra-allelic (5%) (Figure 4A).
The majority of common polymorphisms were clustered
in DI (n = 25, 61%, Figure 4A).
Previously, PvAMA1 polymorphism amongst a popu-

lation of global sequences was investigated [51]. Whilst
it was reported that PNG PvAMA1 sequences were dis-
tinct from all others worldwide, as global diversity was
the focus of the previous study, the mutations and com-
binations thereof unique to PNG were not investigated.
In the present study, when compared to the 23 sites with
a MAF ≥0.10 identified amongst the global P. vivax popula-
tion, three sites (N132, P210, G288) had a MAF <0.10 and
one site (R438) was invariant amongst PNG sequences.
Residue D133, invariant amongst all other populations
worldwide [51] had a MAF ≥0.10 amongst PNG se-
quences. Additionally, seven polymorphic sites with a
MAF <0.10 amongst the global population were found to
be invariant amongst PNG PvAMA1 sequences: G117,
D158, H193, V218, K368, V382, N445. Hence, although
PvAMA1 diversity was investigated previously, the resi-
dues and haplotypes analysed in the present study differ
considerably on account of the unique polymorphisms
and combinations thereof identified amongst PNG
PvAMA1 sequences.
Amongst PNG PvAMA1 sequences, 28 sites were

polymorphic however only 18 were common (Additional
file 5), less than half the number detected for PfAMA1.
PvAMA1 allelic diversity was however higher than of
PfAMA1 with a larger proportion of tri-allelic (Pf: n = 5,
12%; Pv: n = 5, 27%) sites (Figure 4A). None of the poly-
morphic PvAMA1 sites were tetra-allelic.
Based on the 41 common PfAMA1 polymorphisms,

only 21 PfAMA1 haplotypes were detected (Madang =12,
Wosera =18). Despite less than half the number of com-
mon amino acid polymorphisms compared to PfAMA1,



Figure 3 (See legend on next page.)
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Figure 3 Three-dimensional structural model of Plasmodium falciparum and Plasmodium vivax AMA1 polymorphisms. A) Solvent-accessible
surface representation of the ‘active face’ of the PfAMA1 and PvAMA1 three-dimensional (3D) models. Polymorphic residues are colored according to
location: DI in cyan, DII in magenta, DIII in orange. Hydrophobic ligand binding cleft residues are shown in dark blue. Residues labeled with bold,
underlined type are polymorphic in both P. falciparum and P. vivax. Residues of potential immunological relevance with a MAF ≥0.10 are indicated with
an asterisk. B) Solvent-accessible surface representation of the ‘silent face’ of the PfAMA1 and PvAMA1 models. The hydrophobic cleft and polymorphic
residues are shown, with coloring and labeling as described for panel A. C) Solvent-accessible surface representation of the PfAMA1 and PvAMA1
models showing a top-view of the hydrophobic binding cleft. Hydrophobic cleft and polymorphic residues are shown, with coloring and labeling as
described for panel A. Note that for PfAMA1, hydrophobic cleft residues M224 and M190 are polymorphic and colored cyan (not dark blue) as they are
in DI.
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there were 78 unique PvAMA1 haplotypes (Madang = 48,
Wosera = 36). Almost half (47.6%, n = 10) of the PfAMA1
haplotypes were shared between Madang and Wosera, and
four haplotypes were highly prevalent (frequency = 11.3 to
22.7%). Conversely, all 78 PvAMA1 haplotypes were rela-
tively rare (frequency <6.5%) with only 7.7% (n = 6) shared
between Madang and Wosera (Figure 4B). This further
demonstrates that in PNG, PfAMA1 diversity is substan-
tially lower than PvAMA1 diversity.
Of direct relevance to vaccine design, the prevalence

of alleles being used in vaccine development were then
investigated. Whilst the PfAMA1 vaccine allele, FVO
was found in both populations, albeit at a low frequency
(Madang = 6.2%, Wosera = 2.2%; Figure 3B), the PfAMA1
vaccine allele 3D7 and none of the seven primate-
adapted PvAMA1 alleles used for vaccine development,
(Sal-1, Chesson I, Belem, India VII, Indonesia XIX, Palo
Alto and North Korea), were detected in either popula-
tion (Figure 4B).
Polymorphism of residues located within the epitopes of

invasion inhibitory antibodies is associated with immune
escape [11,79,80]. All five of the PfAMA1 c1 cluster res-
idues that are essential for binding of the inhibitory
antibody 1F9 were polymorphic (E197G/D/Q, H200D/
L/R, F201L, D204N and I225N; Additional file 4) [77]. It
has been reported that any substitution of the PfAMA1
Glu197 completely abrogates 1F9 binding [77]. Only five
of the 76 PNG PfAMA1 sequences investigated (6.5%)
had the reference allele at this residue (Additional file 4:
Table S1). Six PfAMA1 DII residues (Asp348, Lys351,
Gln352, Phe385, Asp388 and Arg389) reported to be
critical for binding of the 4G2 inhibitory antibody [81]
were conserved amongst the PfAMA1 PNG sequences
analysed.

Discussion
This is the first study of comparative P. falciparum and
P. vivax genetic diversity to be conducted in a setting of
high or similar co-endemicity, and the first study to dir-
ectly compare the diversity of sympatric parasite popula-
tions in PNG. Additionally, presented here is the most
comprehensive analysis of P. falciparum AMA1 diversity
in PNG performed to date. Indices of recombination,
haplotype number and diversity for PvAMA1 exceeded
those of PfAMA1 in both geographic areas investigated.
Consistent with previous observations following analysis
of neutral molecular markers [53-56], it is likely that the
effective population size of P. vivax exceeds that of P.
falciparum within PNG.
For each species, diversity was similar in both geo-

graphic areas investigated despite the fact that Wosera
had a lower prevalence of P. vivax than Madang [54]
and a highly variable prevalence of P. falciparum among
the different villages [55]. In the years prior to sample
collection, increased access to treatment and the wide-
spread roll-out and use of insecticide-treated bed nets
(ITNs) resulted in a significant decline in the prevalence
of both P. falciparum and P. vivax infection in the
Wosera [82]. However, in the same geographic area in
the year 2000, 27 PfAMA1 DI haplotypes were identified
from 168 samples [35] compared to the 18 haplotypes
from only 44 samples collected in 2005 (this study), sug-
gesting that reductions in prevalence have had a limited
impact on Pfama1 diversity. Reduced malaria parasite
prevalence is a clear indicator that the control measures
implemented in the Wosera have been effective. How-
ever, further substantial decreases in the prevalence of
both species are required within this region to impact
parasite antigenic diversity, which has long been a bar-
rier to development of a successful malaria vaccine
[22,83,84].
Whilst the overall distribution of polymorphic residues

was similar between the species, species-specific differ-
ences with regard to the number of polymorphic residues,
levels of synonymous polymorphism and substitution of
specific AMA1 residues were observed. Consistent with
previous observations, the level of synonymous poly-
morphism amongst Pvama1 sequences exceeded that of
Pfama1 [48]. Although higher than Pfama1, it has been
suggested that synonymous polymorphism in Pvama1
may not be neutral as the level of Pvama1 synonymous
polymorphism is greatly reduced in comparison to an-
other P. vivax merozoite antigen gene, merozoite surface
antigen 1 (Pvmsp1) [52]. In addition, the overall number
of polymorphic residues in P. falciparum was almost
double that of P. vivax. Amino acid polymorphisms within
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Figure 4 Frequency of AMA1 polymorphisms and haplotypes in Plasmodium falciparum and Plasmodium vivax populations in Papua
New Guinea. A) Polymorphisms. The frequencies of common polymorphisms are shown for (i) PfAMA1 (n = 41) and (ii) PvAMA1 (n = 18).
Location of residues is indicated by the colored panel along the top of the chart: signal sequence (grey), DI (red), DII (orange), DIII (blue),
transmembrane region (black). Allele frequencies are indicated by the proportion of each bar shaded. Sites that are polymorphic in both
species are indicated by an asterisk. Antigenic escape residues defined for PfAMA1 (the “c1L” cluster) are indicated by the horizontal black
line (ii). B) Haplotypes. Frequencies of haplotypes based on common polymorphisms for (i) PfAMA1 (n = 21) and (ii) PvAMA1 (n = 78).
Coloured segments indicate shared haplotypes between the two populations and grey indicates those unique to one population. The size
of the fragment reflects the relative frequency of the haplotype within the population. Reference strain haplotypes are colored to highlight
presence/absence in the populations investigated. For PfAMA1, only one haplotype was identical to a reference strain (FVO). No naturally
circulating PvAMA1 strains shared haplotypes with any of the reference strains analysed, and thus they are shown in grey. Sample size (n)
and origin are indicated.
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malarial antigens are typically clustered within sequences
coding for B- and T-cell epitopes, hence are associated
with immune evasion [85]. Indeed, AMA1 substitutions of
potential clinical and functional importance were found in
PNG parasites. These included PfAMA1 K230Q/E, which
has previously been associated with clinical malaria in
Kenyan children and is located at the periphery of the
interface between AMA1 and growth-inhibitory anti-
body 1F9 [36]. Located within or proximal to the hydro-
phobic binding cleft, the PfAMA1 M190I and M224I,
and PvAMA1 R317Q substitutions were also observed.
The latter two substitutions have not been previously
described, and may play a role in immune evasion, or
have functional consequences for binding to RON2 [78].
However, it has been reported that not all genetic diver-
sity within PfAMA1 is antigenically relevant and that in-
deed it may be overcome with careful selection of a few
divergent alleles [80]. Whereas the majority of poly-
morphic PfAMA1 residues were bi-allelic, 27% of the
PvAMA1 polymorphic residues had three variants, con-
tributing to the higher overall diversity. Whether the
same diversity-covering approach can be used to over-
come PvAMA1 diversity remains unknown, and studies
to identify the specific PvAMA1 residues associated
with immune evasion must be performed.
Furthermore, although AMA1 DI was clearly under

balancing selection in both species, the strongest signa-
tures of immune selection were detected in DI for P.
vivax, and DIII for P. falciparum, suggesting that the
dominant immune targets may differ between the spe-
cies. Analysis of 64 Pvama1 sequences from Sri Lanka
demonstrated that PvAMA1 DII is also under selection
[40]. However, the results of the present study are analo-
gous to those obtained for 372 global PvAMA1 se-
quences, the largest and most comprehensive analysis of
worldwide PvAMA1 diversity performed to date, and sug-
gest that DI is an immunodominant region of PvAMA1
[51]. That nucleotide diversity and signatures of immune
selection for PfAMA1 are highest within DI and DIII, has
also been reported following analysis of African P. falcip-
arum sequences [36,86]. It has been proposed that strong
signatures of selection within PfAMA1 DIII may be due to
T-cell responses against allele-specific epitopes [36,87,88].
However, LD between polymorphic DI and DIII residues
was also observed amongst PfAMA1, but not PvAMA1,
sequences. Previously, LD was reported to be absent
among putatively neutral microsatellites in the same sam-
ple set [53]. Hence, the LD between PfAMA1 DI and DIII
residues might be the result of conformational association
between residues comprising important domain-spanning
epitopes [36] or alternatively, compensatory mutations to
preserve protein function. However, as none of the linked
residues co-localized when mapped to the PfAMA1 3D
structural model, this is unlikely.
Differences between the two malaria species with

regards to levels of polymorphism, diversity, LD and
rates of recombination might instead reflect differences
in population size and potentially, divergent evolutionary
histories of P. falciparum and P. vivax within PNG. Re-
combination accounts for the majority of the diversity
observed within malarial antigens [85]. It occurs much
more frequently than point mutations resulting in amino
acid changes, and can change several nucleotides at once
in a single event [85]. As recombination results in pro-
duction of new variants by combining existing types
found within a population, effective population size is a
key determinant of population genetic diversity [76,89].
Genome-wide sequencing of a small panel of geograph-
ically diverse isolates has demonstrated that the world-
wide genetic diversity and effective population size of P.
falciparum is greatly reduced compared to P. vivax, due
to at least one major population bottleneck and multiple
drug-induced selective-sweeps [8]. Despite also experi-
encing strong drug pressure, the greater stability of the
larger, more diverse and ancient global P. vivax popula-
tion can be attributed to the latent hypnozoite reservoir
and more rapid rate of gametogenesis [8]. During past
malaria elimination attempts in PNG, large-scale malaria
control programs carried out from the 1950s-70s may
have initially had a greater impact on P. falciparum until
the emergence of chloroquine-resistant strains [90,91].
In the 1980s, chloroquine-resistant P. vivax also emerged
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in PNG [92,93], although the drug pressure on this parasite
is not expected to be as strong as that on P. falciparum
due to the lower frequency of clinical cases and anti-
malarial treatment. Analysis of neutral microsatellite
markers has shown that P. falciparum populations of
Madang and Wosera are genetically differentiated [53],
however very limited population structure is observed
in Pfama1. This might be the result of past reduction
in effective population size (e g, a bottleneck), after
which common AMA1 haplotypes would be maintained
by balancing selection while differentiation at neutral
markers would increase through genetic drift. In con-
trast, very weak P. vivax population structure [56] and
detection of a high number of extremely diverse, low fre-
quency PvAMA1 haplotypes is consistent with a stable
and large effective population size, high levels of recom-
bination and high gene flow between areas. Divergent
values of Tajima’s D for Pvama1 sequences from the
Wosera and not Madang potentially suggests that the en-
vironmental or selective pressures acting on the Madang
and Wosera P. vivax populations may not be the same (i.
e. local adaptation). Combined, it is therefore likely that in
PNG, Pvama1 diversity exceeds that of Pfama1 on ac-
count of a larger, more frequently recombining and more
ancient P. vivax population compared to P. falciparum.
However, as microsatellites are highly polymorphic [12,59]
and AMA1 is under selection in both species [36,51], it
will be necessary to analyse more slowly evolving loci,
such as mitochondrial DNA in order to clarify the evolu-
tionary histories of P. falciparum and P. vivax in PNG.

Conclusions
It is likely that the diversity of PvAMA1 far exceeds that
of PfAMA1 in a highly endemic region of PNG because
of the underlying parasite population biology [53,94]. Di-
versity was extremely high in both species and in both
populations investigated, despite recent reductions in
prevalence in one area (Wosera). Hence, far greater re-
ductions in prevalence of both species will be required
to impact the diversity of P. falciparum and P. vivax
AMA1. Differing patterns of balancing selection suggest
that dominant immune targets may differ between the
two species, which is important knowledge for develop-
ment of AMA1-based vaccines. Furthermore, vaccine
haplotypes for both species were found to circulate at
very low frequencies if at all, in PNG. As inclusion of al-
leles not representative of a given population may result
in poor vaccine efficacy [80], this important observation
suggests that vaccines based on reference strains might
have limited efficacy in this region. The results of this
study highlight differences in the population biology and
evolution of P. falciparum and P. vivax in PNG, and
have important implications for the design of AMA1-
based vaccines.
Additional files

Additional file 1: Frequency of AMA1 polymorphisms and
haplotypes in the Plasmodium falciparum and Plasmodium vivax
Madang and Mugil populations of Papua New Guinea. i) Haplotypes.
Frequencies of haplotypes based on common polymorphisms for (A)
PvAMA1 Madang (n = 18), (B) PvAMA1 Mugil (n = 18) and (C) PfAMA1
(n = 41). Coloured segments indicate shared haplotypes between the
Wosera and Madang/Mugil populations for each species. Grey indicates
haplotypes unique to the specified population. For PfAMA1, only one
haplotype was identical to a reference strain (yellow: FVO). No naturally
circulating PvAMA1 strains shared haplotypes with any of the reference
strains analysed. Sample size (n) and origin are indicated. ii) Polymorphisms.
The frequencies of common polymorphisms are shown for (A) PvAMA1
Madang (n = 18), (B) PvAMA1 Mugil (n = 18) and (C) PfAMA1 (n = 41).
Location of residues is indicated by the colored panel along the top of
the chart: signal sequence (grey), DI (red), DII (orange), DIII (blue),
transmembrane region (black). Allele frequencies are indicated by the
proportion of each bar shaded.

Additional file 2: Estimates of AMA1 genetic diversity for
Plasmodium falciparum and Plasmodium vivax within Madang and
Mugil.

Additional file 3: Protein sequence alignment showing regions of
Plasmodium falciparum and Plasmodium vivax AMA1 used to
generate three-dimensional models. The P. falciparum 3D7 (GenBank
accession no: XM_001347979) and P. vivax Sal-1 (GenBank accession no:
AF063138) reference sequences were aligned using MEGA version 5.0
[65]. Numbers indicate the position of residues relative to those of the
P. falciparum sequence. Gaps are indicated by dashes. Red bold type
indicates residues observed to be polymorphic in both species; black
bold type indicates residues polymorphic in either P. falciparum or P. vivax.
The domain boundaries are demarcated by vertical lines, as indicated. Boxes
indicate the positions of antigenic P. falciparum amino acid clusters, c1-3
[79]; grey shading indicates antigenic escape residues in the c1L cluster [11].

Additional file 4: Summary of polymorphisms in PfAMA1
sequences from Papua New Guinea. All 47 residues polymorphic
amongst PNG PfAMA1 sequences are summarized here. The amino acid
position (relative to reference isolate 3D7), the 3D7 allele, the variant
allele(s) observed, the number of sequences identical to 3D7 at each
polymorphic site and the number of sequences containing the variant
allele(s) at each polymorphic site are listed. Sites identical to the 3D7
sequence are indicated by a dot. The 41 polymorphisms with a minor
allele frequency (MAF) ≥0.10 are shown in bold. Sites polymorphic in
both species are highlighted in red.

Additional file 5: Summary of polymorphisms in PvAMA1
sequences from Papua New Guinea. All 28 residues polymorphic
amongst PNG PvAMA1 sequences are summarized here. The amino acid
position (relative to reference isolate Sal-1), the Sal-1 allele, the variant
allele(s) observed, the number of sequences identical to Sal-1 at each
polymorphic site and the number of sequences containing the variant
allele(s) at each polymorphic site are listed. Sites identical to the Sal-1
sequence are indicated by a dot. The 18 polymorphisms with a minor
allele frequency (MAF) ≥0.10 are shown in bold. Sites polymorphic in
both species are highlighted in red.
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