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Abstract

Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) interventions can reduce malaria
transmission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock
shelters or other man-made structures. However, many malaria vector species can maintain robust transmission,
despite high coverage of LLINs/IRS containing insecticides to which they are physiologically fully susceptible,
because they exhibit one or more behaviours that define the biological limits of achievable impact with these
interventions: (1) Natural or insecticide-induced avoidance of contact with treated surfaces within houses and early
exit from them, thus minimizing exposure hazard of vectors which feed indoors upon humans; (2) Feeding upon
humans when they are active and unprotected outdoors, thereby attenuating personal protection and any
consequent community-wide suppression of transmission; (3) Feeding upon animals, thus minimizing contact with
insecticides targeted at humans or houses; (4) Resting outdoors, away from insecticide-treated surfaces of nets, walls
and roofs. Residual malaria transmission is, therefore, defined as all forms of transmission that can persist after
achieving full universal coverage with effective LLINs and/or IRS containing active ingredients to which local vector
populations are fully susceptible. Residual transmission is sufficiently intense across most of the tropics to render
malaria elimination infeasible without new or improved vector control methods. Many novel or improved vector
control strategies to address residual transmission are emerging that either: (1) Enhance control of adult vectors that
enter houses to feed and/or rest by killing, repelling or excluding them; (2) Kill or repel adult mosquitoes when they
attack people outdoors; (3) Kill adult mosquitoes when they attack livestock; (4) Kill adult mosquitoes when they
feed upon sugar or; (5) Kill immature mosquitoes in aquatic habitats. To date, none of these options has sufficient
supporting evidence to justify full-scale programmatic implementation. Concerted investment in their rigorous
selection, development and evaluation is required over the coming decade to enable control and, ultimately,
elimination of residual malaria transmission. In the meantime, national programmes may assess options for
addressing residual transmission under programmatic conditions through pilot studies with strong monitoring,
evaluation and operational research components, similar to the Onchocerciasis Control Programme.
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Background

Although hundreds of Anopheles species have been de-
scribed worldwide, certain biological and environmental
factors distinguish a small subset of a few dozen that ac-
tually mediate transmission of Plasmodium parasites to
humans in the wild [1,2]. First, only a subset of Anopheles
species are physiologically competent vectors, meaning
that they can support parasite development all the way
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from gametocytes through to sporozoites that are infec-
tious to humans, even if that only occurs under artificial
experimental conditions [3]. Second, a physiologically
competent vector can only transmit malaria outside a
laboratory if it actually bites humans and survives long
enough in the wild for sporogonic development of para-
sites to be completed [2-4]. The survival and reproduction
of mosquitoes, as well as sporogonic development of para-
sites within their bodies, are both heavily dependent upon
temperature, humidity and rainfall, so malaria trans-
mission is most widespread and intense in the warmer,
wetter regions of the tropics [5,6]. However, the specific
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behaviours exhibited by each distinct vector population
in a given locality are not only important determinants
of their vectorial capacity to mediate malaria transmission
[1,2,7] but also their vulnerability to control or even
elimination [8-13].

Feeding upon humans as a driver of malaria transmission
and intervention impact

Plasmodium vivax and Plasmodium falciparum account
for the vast majority (>90%) of human malaria infections
worldwide and both can only be transmitted from one
human to another via mosquitoes [5,6]. The entire infec-
tious reservoir for these hugely important pathogens is
to be found exclusively in humans, so their transmission
requires that a mosquito must bite at least two people in
its lifetime. Sustained local transmission therefore requires
that local Anopheles mosquitoes are not only physiolo-
gically competent and survive long enough for complete
sporogonic development of malaria parasites within their
bodies, but also that they feed at least occasionally upon
humans.

Malaria transmission intensity can be measured as the
entomological inoculation rate (EIR), expressed as the
number of times per year an individual human resident is
bitten by mosquitoes with infectious sporozoites in their
salivary glands. EIR increases approximately exponentially
as the proportion of blood meals that a vector population
obtains from humans increases (Figures 1A and 1B), so
the distribution of exceptionally high transmission inten-
sities across equatorial Africa and some parts of the Pacific
may be readily explained by the presence of Anopheles
species that rely almost exclusively upon humans for
blood (Figure 2). However, it is also critical to note that
where a vector is heavily reliant upon human blood, it
will often be consequently vulnerable to population
control with indoor residual spray (IRS) or long-lasting
insecticidal net (LLIN) products designed to kill mos-
quitoes when they encounter people or houses (Figures 1A
and 1B) [10-15].

Targeting stereotypical indoor resting and feeding
behaviours of human-specialized Anopheles

Given the importance of feeding upon humans as a deter-
minant of malaria transmission (Figures 1 and 2), it is un-
surprising that the most anthropophagic (predominantly
feed upon humans) vectors are by far the best studied.
It is also understandable that the specialized behavioural
adaptations, which many of them have in common, have
dominated thinking about malaria transmission and vector
control for decades. Many of the most regionally import-
ant vectors of malaria, like Anopheles gambiae, Anopheles
arabiensis and Anopheles funestus from Africa [16],
Anopheles stephensi, Anopheles culicifacies and Anopheles
punctulatus from Asia [17,18], or Anopheles darlingi,
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Figure 1 The importance of feeding upon humans as a
determinant of malaria transmission and vector control impact.
A and B: Simulated relationship between malaria transmission
intensity mediated by an Anopheles mosquito population and the
proportion of blood meals that these vectors obtain from humans, in
the presence and absence of long-lasting insecticidal nets (LLINs) with
a mean nightly usage rate of 80%, presented with a linear (A) and loga-
rithmic (B) vertical axis (Adapted from reference 11). C: Frequency dis-
tribution for the mean proportion of blood meals obtained from
humans for the 33 most important locally dominant malaria vectors
worldwide as reviewed in reference [7].

Anopheles punctimacula, Anopheles nunetzovari (species
B or C) and Anopheles albimanus from Latin America
[19,20] prefer to feed in the middle of the night when
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Figure 2 Global map of the highest human blood index among nationally important vectors, as extracted from reference 7 and kindly
drafted by Fredros Okumu and Alex Limwagu.

most humans are typically asleep, immobile and vulner-
able to attack. Feeding indoors at night is, therefore, the
behaviour that is targeted by use of LLINs to protect
sleeping humans.

Indoor feeding is then often conveniently followed by
resting within the same sheltered domestic structure for
one or two nights while the blood meal is digested and
eggs are developed. Applications of insecticides to houses
by IRS, to kill mosquitoes resting on inner surfaces of the
walls and roof after they have fed upon the human occu-
pants, is therefore a highly effective strategy for controlling
populations of vectors that rest indoors as a matter of
preference.

The success of LLINs and IRS in combating malaria
transmission by stereotypical vectors which feed and
rest indoors is well established [21,22]. Even imperfect
coverage of entire human populations with LLINs and
IRS can have massive benefits for all members of
malaria-afflicted communities, including those whose
houses and sleeping spaces are not directly protected
[23]. This community-wide mass effect occurs because
those who are directly protected actually kill mosqui-
toes when they attempt to feed, so that vector survival
rates and population densities are reduced, resulting in
far fewer mosquitoes living long enough to mediate
transmission between humans (Figure 3) [23]. Further-
more, LLINs and IRS can have a surprisingly dramatic
impact on overall population size of stereotypical vec-
tors that depend heavily upon feeding on humans and
resting inside houses [13]: Entire vector populations

may be eliminated, or at least negated as a cause of mal-
aria, including documented examples for An. gambiae
and An. funestus in Africa, An. darling and An. nuneztovari
in Latin America, and An. punctulatus as well as Anopheles
koliensis in the Pacific [13].

Persistence of residual transmission after scale up of
LLINs and IRS: failure or limitation?

Despite the impressive successes that have been achieved
by targeting stereotypical vectors that feed and rest
indoors with IRS and LLINs, complete elimination of
malaria has rarely been achieved outside of areas that had
marginal transmission levels to begin with [13,24,25].
There are fundamental limits to how much impact even
the best implemented LLIN or IRS programmes can
achieve in most tropical settings (Figure 4A) and it is es-
sential to recognize that this phenomenon is normal and
has been repeatedly reported from a variety of settings
over the course of the last half century [13,26-30]. It is
crucial to distinguish between such fundamental limita-
tions of a given vector control strategy that has incomplete
but nevertheless valuable and stable levels of impact that
may be sustained over the long term (Figure 4A), and a
genuine failure of an intervention programme that enables
the vector population and malaria transmission to re-
bound (Figure 4B) [28,29,31].

While rebounding vector populations and malaria
transmission intensities have been most commonly associ-
ated with failures of implementation and funding for vec-
tor control programmes, the emergence of physiological
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Figure 3 Progressive dramatic reduction of mosquito survival
and infection probability as an increasing proportion of
available blood meals are covered with LLINs or IRS. The
probability curves presented represent the outputs of simulations
implemented exactly as previously described [14] at 0, 20, 40 and
60% biological coverage of all available blood resources [10,13] with
LLINs that kill 60% of all mosquitoes encountering them.

resistance to insecticides within these recovering mosquito
populations has also been implicated [32]. Physiological
resistance of mosquitoes to insecticides, resistance of pol-
icy makers to funding support, and resistance of the gen-
eral public to interventions, are all widely accepted as
important causes of vector control programme failure and
have been reviewed in detail elsewhere [33]. However, it is
less commonly understood that the fundamental limits of
what can be achieved with IRS, LLINs, or indeed any other
vector control strategy, are primarily defined by the behav-
ioural traits of mosquitoes [13,19,26-30,34-36].

It is also extremely important to understand that
many of the behavioural traits which allow residual pop-
ulations of vector mosquitoes to survive and persist-
ently transmit malaria despite high coverage of LLINs
or IRS, appear to have always been present in these pop-
ulations [13,26-29]. As such, they are better described
as pre-existing behavioural resilience (Figure 4A), rather
than emerging resistance in the strict sense (Figure 4B)
[28,29]. While the possibility that true behavioural resist-
ance may emerge in response to intervention pressure
upon vector populations cannot be ignored [30,37,38],
no clear-cut instance of this phenomenon has been
documented in the field [26,28]. While many instances
of apparently altered or atypical patterns of mosquito
behaviour have been reported, and some of these are
difficult to explain without assuming the emergence of
behavioural resistance [38], it is technically difficult to
unambiguously attribute these to the emergence of
heritably altered preference traits. Instead, these obser-
vations of altered mosquito behaviours may well arise
instead from either (1) altered taxonomic composition
of the vector population due to differential suppression
of various species and sub-species taxa as a result of
their varying degree of behavioural suitability to con-
trol with IRS or LLINS, or (2) altered expression of in-
nately flexible behaviours by mosquitoes in response to
the altered patterns of blood and resting site resource
availability in their environment following IRS or LLIN
scale up [26,28]. However, regardless of whether these
behaviours reflect the selection of new heritable resist-
ance traits, the altered expression of pre-existing resili-
ence traits, or a combination of both, the fact remains
that they will have to be deliberately and specifically
targeted with new vector control tools to achieve mal-
aria elimination [37,38].
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Beyond the stereotype: Mosquito behaviours that limit
the impact of LLINs and IRS

Unfortunately, the small number vectors that feed
predominantly on humans are responsible for such a
disproportionately large share of the world’s malaria
burden (Figures 1 and 2) that their specific behavioural
adaptations, to attacking sleeping humans inside houses
and then resting there, have been widely and inaccurately
stereotyped as typical of malaria vectors in general.
However, Anopheles species that exhibit high vectorial

capacity, but also high susceptibility to control or even
elimination with LLINs and IRS, are the exceptions ra-
ther than the rule among malaria vectors. Broadly
speaking, known behaviours that buffer mosquito popu-
lations and malaria transmission against IRS and LLINs
fall into two main categories: 1) Insecticide contact
avoidance and early-exit behaviours that minimize the
exposure hazard faced by vectors that preferentially feed
indoors, and, 2) Animal-feeding and outdoor-feeding be-
havioural preferences that allow mosquitoes to minimize
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contact with insecticides targeted at humans and houses
altogether.

Insecticide avoidance and early-exit behaviours among
indoor-feeding vectors

Several vector species appear to have always exhibited a
pre-existing tendency to exit houses soon after entering,
and this represents an important form of behavioural
resilience that receives inadequate attention [19,39-41].
However, it has long been known that such insecticide-
avoidance behaviours can also be induced or exacerbated
by irritant or repellent active ingredients that can en-
hance personal protection afforded by a protective meas-
ure but may also undermine potentially greater impact
upon vector populations that normally feed indoors
upon humans [42-44]. Recent simulation analyses sug-
gest that expression of such avoidance behaviours, which
allow vectors to either avoid, or enter but then safely
leave, houses protected by LLINs and/or IRS, actually
represent an optimal survival strategy for mosquitoes be-
cause it allows them to maximize their feeding probabil-
ity by continuing to forage until they find unprotected
hosts [38] (Figure 5). It is therefore understandable that
some remarkably robust populations of An. arabiensis
[45], a species known to be capable of avoiding insecticide
exposure when they enter houses [39-41], have retained
their historically strong preferences for feeding indoors
despite exposure to high levels of LLIN usage by humans
for over a decade [46].

Vectors that enter but then rapidly exit from human
habitations Several important vector species around the
world, such as An. arabiensis from Africa [39-41] or An.
darlingi, An. punctimacula and An. nunetzovari (species
B or C) from Latin America [19], enter houses but then
rapidly exit again, regardless of whether or not they have
successfully fed upon the human occupants. Even when
such vectors make direct contact with an insecticide-
treated wall [19] or blood host [47], they rarely do so for
longer than one or two minutes so that fatal exposure is
avoided. Interestingly, this particular combination of
behaviours was considered the most important obstacle
to elimination of malaria from the Americas with IRS
during the Global Malaria Eradication Programme [19]
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and the same is probably true in many parts of east Africa
today where An. arabiensis [39-41] is often responsible
for most of the persisting residual transmission follow-
ing successful scale up of LLINs [45,48-50].

Induced vector avoidance of contact with repellent or
irritant insecticides It has long been known that even
mosquitoes which are normally very susceptible to con-
trol with LLINs or IRS, due to the fact that they usually
feed and rest indoors, may choose to curtail or avoid
periods of physical contact with insecticides if they can
detect them with their sensory organs [42-44]. Such
stimulant insecticides artificially induce or exacerbate
early exit behaviours, ultimately attenuating mosquito
exposure to lethal doses [14,15,42-44,51]. Behaviour-
modifying insecticides which require direct physical con-
tact with a mosquito to induce an avoidance response are
known as contact irritants, while those that the mosquito
can sense in the air at a distance from the treated surface,
and then choose to avoid contact with, are known as
spatial repellents [51,52]. Many vector mosquito species
may feed and rest indoors in the absence of LLINs or IRS
with such irritant or repellent insecticides, but the pres-
ence of these active ingredients may induce them to leave
houses prematurely or even avoid entering in the first
place [26,43,51,53].

While many manufacturers emphasize that their prod-
ucts combine behaviour-modifying repellent and irritant
properties with contact toxicity, this ignores the fact that
these three actions occur sequentially and competitively
in that order [14,15,51]. No individual mosquito ap-
proaching a protected human can be classified as having
been affected by two or more of these actions: By defin-
ition, an insecticide can only kill a mosquito if it is not
first irritated upon contact, and neither of these out-
comes is possible if it is repelled before making contact
[51,54]. A given LLIN or IRS product may be optimized
to maximize the irritant and repellent actions of sub-
toxic doses of the active ingredient, thereby increasing
the level of personal protection that is most important
for preventing transmission by mosquitoes that only feed
occasionally upon humans [10,11], especially if they do
so outdoors [8,10,15]. However, this choice will reduce
exposure of mosquitoes to toxic doses of the active
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Figure 5 A schematic illustration of how mosquitoes may survive despite high coverage of long-lasting insecticidal nets or indoor
residual spraying by entering, but then rapidly leaving houses protected with LLINs or IRS without exposing themselves to lethal
doses of the active ingredients, and then continuing to forage until an unprotected blood host is found [38-41].
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ingredient that can kill them outright and therefore un-
dermines the massive community-level protection that
can be achieved through vector population suppression
where vectors are heavily dependent upon human blood
for their survival [8,10,14,15,51,55]. In summary, these
alternative modes of action must be traded off against
each other: While a contact toxin may have no advan-
tage over a behaviour-modifying irritant or repellent
where local vectors populations are not dependent on
human blood for their survival [8,10,11], in situations
where vectors predominantly feed upon people indoors
and can be killed inside houses by toxic insecticides
delivered as LLINs or IRS, supplementing these with any
repellent or irritant action may ultimately undermine their
potential to control [8,10,14,15,51,55] or even eliminate
[13] such stereotypically synanthropic vectors.

It is particularly notable that the principles underlying
the necessity to choose between toxic versus irritant and
repellent modes of action were widely accepted during
the era of the Global Malaria Eradication Programme
(GMEP) [42-44]. Indeed, by the end of the GMEDP, it was
already recognized that implementing IRS with DDT,
which is known to be both repellent and irritant [54,56],
generally had less impact than implementing IRS with
insecticides that lacked these properties [44]. In fact, the
main reasons why DDT was often selected as the active
ingredient of choice were its affordability and longer
duration of residual activity [44]. It is therefore timely to
note that these principles were played out again in recent
experimental hut trials in which IRS with DDT slightly
attenuated the toxic effects of one pyrethroid-treated
net product when the two were combined in the same
hut [40,41]. It is also noteworthy that the An. arabiensis
population that these IRS-LLIN combinations were
evaluated against already exhibited early exiting behav-
iour even in the absence of insecticides [40,41]. While
new vapour-phase repellents to prevent transmission
exposure outdoors are clearly essential, they should
be applied cautiously inside houses wherever indoor-
feeding or indoor-resting mosquitoes with strong prefer-
ences for human blood and high vectorial capacity exist
[8,10,14,15,51]. In such circumstances, purely toxic in-
secticide formulations delivered to houses, possibly in
the form of IRS and LLINS, are likely to achieve greater
impact [8,10,14,15,51].

Behavioural preferences for feeding outdoors and upon
animals

The majority of malaria vector species worldwide can be
described as zoophagic because they actually feed predom-
inantly upon animals (Figures 1C and 2). Since they rarely
bite humans, they are correspondingly less efficient at
transmitting malaria (Figures 1A and 1B). However, these
less potent vectors are often difficult to control with
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LLINSs or IRS, not only because they usually feed upon un-
protected animals (Figures 1A and 1B), but also because,
they usually prefer to feed at dusk and dawn (Figure 6)
when most of their human victims are outdoors, beyond
the protective reach of these prevention measures. Zoo-
phagic mosquitoes with moderate vectorial capacity,
most of which primarily feed and rest outdoors, are
widespread throughout the tropics (Figures 1C and 2).
These species often respond poorly to LLIN or IRS in-
terventions because the technologies are designed to
target the stereotypical behaviours of the smaller num-
ber of more potent, human-specialized species (Figure 1)
that mediate most, but by no means all, of the global
malaria burden (Figure 2).

Vectors that feed upon animals Many mosquitoes are
highly specialized in terms of their preferred blood sources
[57], and exhibit enormous diversity of preference even
between morphologically identical members of a single
species complex [58-61]. Humans represent only one of
the many vertebrates Anopheles have adapted to exploit
[57] and the vast majority of malaria vectors feed primarily
on animals (Figures 1C and 2). EIR levels as low as 0.1
infectious bites per person per year are typically sufficient
to sustain endemic populations of malaria parasites
[62-64] so a mosquito species may be capable of sus-
taining endemic malaria transmission even if it feeds
only rarely upon humans (Figure 1A and B). So while a
small proportion of the world’s overall malaria burden
is caused by Anopheles which prefer to feed upon ani-
mals, these comprise the majority of all malaria vectors
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Figure 6 Frequency distribution of the preferred biting times
for 25 separate populations of 11 Latin American Anopheles
species, which were classified as either: 1) potent primary vectors;
2) weak, incidental or secondary vectors; or 3) non-vectors
(Adapted from reference [19]).
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worldwide (Figures 1C) and affect the majority of the
global at-risk human population who live outside of
Oceania or Africa south of the Sahara [5,6] (Figure 2).

Most of the world’s at-risk population [5,6] is therefore
exposed to limited, but nevertheless self-sustaining, mal-
aria transmission by mosquitoes which have moderate
vectorial capacity since potentially infectious humans con-
tribute only a minority of the blood meals they rely upon
to survive and reproduce (Figure 2). While the malaria
transmission caused by this near-ubiquitous plethora of
zoophagic vectors occurs at relatively modest intensities, it
is also relatively unresponsive to control with measures
that target human blood sources, such as IRS and LLINs
(Figure 1A and B). While high coverage of these measures
can achieve useful community-wide reductions of malaria
transmission by preventing human-vector contact [10,11],
the actual impact upon population density and survival of
vectors is likely to be negligible given that these mosqui-
toes obtain most of the blood they need from animals
(Figure 1A and 1B). This disconnect, between targeting
IRS and LLINs at the humans who need to be protected
and not at the animals that mosquitoes depend on for
survival, creates a gap in protective coverage of the
blood resources that actually sustain the vector popula-
tion [8,10,11,13]. High coverage of all these blood re-
sources with interventions that render them hazardous
to mosquitoes is required if population control is to be
achieved, rather than merely direct personal protection
of the subset that humans represent [8,10,11,13].

Vectors that feed on people when they are active out-
doors Even amongst the stereotypically nocturnal major
vectors of Africa, which overwhelmingly prefer to feed
at night when people are asleep [16], a small but import-
ant portion of feeding activity does occur at dawn and
dusk. While this represented a minor fraction of histor-
ical malaria transmission in unprotected African popula-
tions, it now typically accounts for approximately half of
all transmission exposure to residual vector populations
for individuals protected against most indoor exposure
by LLINs [29] (Figure 7). Furthermore, several recent re-
ports of atypical or altered biting patterns by these same
vector species suggest that higher proportions of trans-
mission now occur outdoors in the evenings and early
mornings [50,65-70] so the majority of residual exposure
of net users most probably occurs outdoors in many
African settings.

Beyond Africa, the four major Latin American vectors
which were historically implicated in the failure of IRS
to eliminate malaria from Colombia [19,20] predomin-
antly fed upon humans when they slept indoors at night
(Figure 8), to essentially the same extent as stereotypical
African vectors (Figure 7). However, in this historical ex-
ample, at least half of residual transmission by all four of
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these Latin American species would also have occurred
outdoors if all residents had used a modern LLIN
(Figure 8).

While Anopheles dirus in south-east Asia can exhibit
similarly stereotypical nocturnal, indoor-feeding behav-
iour, this is unusual amongst vectors within the region
(Figure 9) and there are numerous other examples of
An. dirus mostly feeding outdoors, much earlier in the
evening [73]. Similarly to their African counterparts, at
least half of the exposure of residents who use LLINs to
such stereotypically nocturnal, indoor-feeding vectors
populations where they occur in south-east Asia occurs
while they are outdoors (Figure 9). This is particularly
worrying in relation to An. dirus, the most important
vector in the greater Mekong region where containment
of growing parasite resistance to artemisinin-based drugs
will most probably require elimination of transmission at
sub-regional level [74].

By comparison with these stereotypical anthropophagic
Anopheles that are all known to be associated with intense
transmission of malaria, species with lower vectorial cap-
acity, most of which are more inclined to feed upon ani-
mals, typically exhibit no such adaptation to feeding in the
middle of the night when people are asleep. Instead, such
crepuscular vectors feed at dawn and/or dusk, or during
the hours of darkness immediately before dawn and after
dusk (Figure 6) when most people are awake and active,
and it is impractical to protect them with LLINs. Feeding
upon exposed humans at dawn and dusk predominantly
occurs outdoors, and is consequently usually followed by
resting outdoors, beyond the reach of IRS.

As just one example of a vector that often departs
from the stereotype of indoor feeding and resting, sev-
eral reports of An. dirus feeding outdoors in the evening
[73] indicate that the only published example from
which exposure distribution could currently be calcu-
lated (Figure 9) may not be fully representative of the
species in general. Furthermore, remarkably high pro-
portions of malaria transmission occur outdoors across
all the other major regions of Asia (Figure 9). In the
absence of any preventative measure, approximately half
of transmission by all vectors in the south, south-east
and Pacific regions of Asia, other than Anopheles culici-
facies, occurs outdoors so provision of either LLINs or
IRS is unlikely to directly protect against this fraction of
exposure. Even for An. culicifacies, the most endophagic
vector on the continent, one fifth of exposure occurs
outdoors for non-users of LLINs. Furthermore, for users
of LLINs, remaining indoor exposure that nets cannot
be expected to completely prevent, accounts for only
one fifth of residual transmission by An. culicifacies, and
less than one tenth of residual transmission by all the
other Asian vectors described in Figure 9. It is also notable
that apparently altered behaviours, presumably reflecting
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Figure 7 Estimates of the proportion of human exposure to African malaria vector populations that occurs indoors for both
unprotected residents (mm,;) and users of long-lasting insecticidal nets (m,; ), from field sites across eastern, southern and western
Africa [16], as previously calculated [71,72] and presented in summary form [29]. Original data kindly provided by Bernadette Huho, Olivier
Briét, Aklilu Seyoum, Chadwick Sikaala, Nabie Bayoh, John Gimnig, Fredros Okumu, Diadier Diallo, Salim Abdulla and Tom Smith.

behavioural resistance in the strict sense [38], have been
observed on several occasions following implementation
of IRS against these Asian vectors [26,73]. Clearly, any
vector measure selected to complement LLINs as a
means of providing direct personal protection must be

feasibly applicable by human users outdoors, including
during periods when they are active, if it is to confer any
meaningful incremental impact.

The major vectors of south Asia only occasionally feed
upon humans [7], and largely do so outdoors [79], so the
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maximum biological coverage of blood resources that can
be achieved with LLINs appears negligible because it is
viewed solely in terms of feeding behaviours alone
(Figure 10). However, these major vectors are nevertheless
remarkably susceptible to control with IRS [22], because
they usually rest inside houses and cattle shelters after
feeding [79]. This example illustrates just how important it
can be to clearly identify and distinguish the specific blood,
resting site, sugar, or larval habitat resource, or subsets
thereof, that a given intervention actually targets and to
quantify the rate at which it is utilized [8,80]. Such quantita-
tive approaches to surveying mosquito resource utilization
behaviour may be useful to distinguish: (1) scenarios in
which LLINs or IRS may have little impact, so that alterna-
tive vector control strategies are desperately needed; and
(2) scenarios such as the south Asian example outlined
above, where IRS may be surprisingly effective so additional
approaches may be viewed as complementary and second-
ary, rather than superior, primary alternatives [8,80].

Quantifying the limits of biological coverage that are
attainable with LLINs and IRS Achieving population
control of malaria vectors, rather than merely personal
protection of human individuals and communities,
requires that reasonably high mosquito mortality rates
are achieved, similar to those depicted at the bottom of
Figure 3. However, delivering such a population control

impact in practice requires high insecticide coverage of all
blood sources, or all associated resting sites, rather than
just the fraction represented by the human population
[10]. It is, therefore, critical to conceptualize and quantify
the influence of feeding upon animals and feeding or rest-
ing outdoors in terms of field-measurable, behaviourally-
defined gaps in the de facto coverage of blood or resting
site resources that IRS and LLINs achieve [10,13]. Indeed
the natural limits of what is possible with LLINs, and to a
lesser extent IRS, may be represented in terms of gaps in
biological coverage of all blood resources [8,13]. Biological
coverage may be plotted as the product of the proportion
of blood meals obtained from humans and the proportion
of human blood meals obtained indoors, both of which
can be readily measured in the field, with the remaining
uncovered proportions along each axis of the two-
dimensional plot representing the coverage gaps [10,13].
The data presented in Figures 1, 2, 7, 8 and 9 can therefore
be used to illustrate the impressive extent of the biological
coverage gaps caused by mosquitoes feeding upon
animals, and upon humans when they are outdoors
(Figure 10). Even in Africa, where the biological coverage
limits of LLINs are generally quite high, it is notable that
that the biological coverage gaps for An. arabiensis (18%),
often the most robust of the three most important vectors
in the region, are more than twice as large as those for An.
gambiae (7%) and An. funestus (6%), which have both
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Figure 9 Estimates of the proportion of human exposure to Asian malaria vector populations that occurs indoors for both
unprotected residents (mm, ;) and users of long-lasting insecticidal nets (m,; ), from the Solomon Islands [75], Laos [76], Iran [17] and
Myanmar [77,78], calculated as previously described [71,72], except that in the Iranian examples, indoor and outdoor biting densities
were assumed to be equal because they were not reported separately [17]. Original data from the Solomon Islands and Myanmar were
kindly provided by Hugo Bugoro, Tanya Russell, Frank Smithuis and Nick White.

been eliminated, or almost eliminated, by LLINs or IRS on
several occasions [13].

While estimates of biological coverage based on hu-
man blood utilization patterns may be relevant to IRS in
the many settings in which vectors rest where they feed,
they may be misleading where vectors feed indoors but
rest outdoors or vice versa [8]. Improved entomological
survey methods are therefore required to quantify vector
utilization of treatable resting site surfaces so that simi-
lar, but more directly relevant, biological coverage limits
can be estimated for IRS [8,80].

The scale of the challenge presented by residual
transmission

The best estimates to date all suggest that transmission of
P. falciparum malaria only drops below self-sustaining
levels at EIR values of less than 0.1 infectious bites per
year [62-64,81], so historical values approaching 1000
infectious bites per year reported from several setting
are approximately ten thousand times higher than
those required to sustain a stable parasite population
(Rp = 10,000). Thus, even a 99% reduction of transmis-
sion by LLINs/IRS would only take control half way
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Figure 10 A graphic illustration of the estimated maximum achievable biological coverage of all blood resources (C,, ,qx) utilized by
the vector species described in Figures 1, 2, 7, 8 and 9, for which estimates of both the proportion of blood meals obtained from
humans (Qp) and the proportion of human blood meals obtained indoors (m,;) were available. The width of the grey rectangles relative to
that of the white squares represents the limit of personal protection and derived community-wide reduction of mutual human-vector exposure,
while their relative area represents the achievable limit of biological coverage of all blood resources that determines the extent to which the

density and survival of the vector population can be controlled [8,10,11,13].




Killeen Malaria Journal 2014, 13:330
http://www.malariajournal.com/content/13/1/330

along the pathway to elimination and further reductions
of similar magnitude would be required to destabilize
P. falciparum parasite populations in such settings
(Figure 11). Residual transmission can therefore be
remarkably intense, especially in many parts of Africa
and Oceania, where it can occur at intensities far in excess
of the thresholds required to be self-sustaining, irrespect-
ive of how effectively LLINs, IRS and complementary
interventions to diagnose and treat humans are applied
[26,28-30,35,36]. Now that history has repeated itself, it
must be accepted that these limitations are fundamental
and biological in nature, rather than financial or oper-
ational [29]. Improved programmatic funding and
effectiveness, to deliver better coverage of improved IRS
or LLIN products, will not achieve elimination of
malaria transmission from most settings because their
fundamental limitations of impact are defined by vector
behaviours that enable them to avoid fatal contact with
these interventions [13,26-30,34-36]. Perhaps the most
convincing proof of this principle lies in the exceptions:
Iran [82] and Sri Lanka [83], for example, are both on
the verge of elimination because their southern Asian
vectors all predominantly rest indoors [79] and are

Page 13 of 22

therefore vulnerable to control with IRS [22], despite
feeding largely upon animals [7] and often feeding out-
doors on the important occasions when they do attack
humans (Figure 9).

Defining residual malaria transmission

These well-established, fundamental and biological limi-
tations of IRS and LLINs need to be openly and unam-
biguously acknowledged at all national and international
levels of policy and practice. The term residual malaria
transmission is therefore defined here as all forms of
malaria transmission that persist after full universal
coverage with effective LLIN and/or IRS interventions
has been achieved.

New and improved vector control options for controlling

and eliminating residual malaria transmission

In order to eliminate malaria from most endemic re-
gions of the tropics, concerted investment is required,
not only to sustain and consolidate recent gains with
LLINs and IRS [33], but also to select, develop and
rigorously evaluate supplementary vector control stra-
tegies that address residual transmission by deliberately
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holoendemic sub-
Saharan Africa over
the last half century

1000
1

100
1

Ro
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Figure 11 A schematic representation of the sequential layers of interventions required to eliminate malaria from the most staunchly
endemic regions of Africa, adapted from references [64] and [29]. White arrows crudely illustrate the impacts of intervention strategies for
which reasonable experience and understanding already exists (suppression of high transmission with LLINs or IRS and elimination of sparse
residual human parasite reservoirs with drugs). Dark arrows illustrate the potential impact of interventions that urgently need to be developed
and evaluated to either maximize impact of existing control measures (adequate and sustainable financing, long-term resistance management) or
make more meaningful progress towards elimination (programmatic-scale interruption of residual transmission by behaviourally resilient and/or
resistant mosquitoes using novel vector control tools, possibly supplemented with vaccines or chemoprophylaxis).
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targeting the mosquito behaviours which enable it
[8,26-30,34-41,50-55,67-73,75,80]. A very wide diversity of
novel or improved strategies for controlling vectors of
residual transmission is now emerging (Figure 12).

Improving control of house-entering adult mosquitoes

Perhaps the oldest proven means of preventing human
exposure to malaria transmission is the modification of
houses to prevent mosquitoes from entering them [86]
and this time-honoured approach has recently proven
successful even in impoverished African settings where
housing quality is limited [87-89]. Alternatively, new ema-
natory products that release vapour-phase insecticides
offer the opportunity to repel or kill mosquitoes that
would otherwise enter houses and feed upon their occu-
pants [51]. However, the potential for these approaches to
interact antagonistically with existing IRS and LLIN inter-
ventions needs to be carefully examined [10,14,15,51]. It
may also be possible to improve upon the efficacy of IRS
and LLIN technologies with enhanced active ingredients
and formulations, and insecticidal wall linings are also
showing considerable promise [90-92]. However, merely
enhancing and refining these conventional indoor control
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methods may not always address the fundamental behav-
ioural reasons why they achieve little impact upon vectors
like An. arabiensis, An. darlingi, An. nunetzovari (species B
or C) and An. punctimacula that minimize contact with
treated surfaces while resting or feeding indoors
[19,39-41,47]. Nevertheless, it is encouraging that recent
assessments of IRS with a new organophosphate against
An. arabiensis in east Africa proved far more successful
in the absence of LLINs [93] than with them [40,41],
presumably because mosquitoes that have fed are far
more inclined to rest in a treated house than those that
have not. While exclusively community-level control of
malaria transmission by killing mosquitoes after allow-
ing them to feed upon humans is theoretically benefi-
cial, it does raise significant practical and ethical
concerns [14,55]. Fortunately, other approaches may
also be feasible: the impact of both chemical and bio-
logical insecticides against An. arabiensis can be dra-
matically enhanced by physically obstructing their exit,
rather than their entry, from houses or trap structures,
particularly if the active ingredients are applied to the
obstructed exit points [94-96]. A promising alternative
approach is to provide oral formulations of systemic
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insecticides to humans to kill mosquitoes that feed
upon them [97].

Protecting humans against adult mosquitoes when they are
active outdoors

LLINs and insecticide-treated hammocks may readily be
used to protect people sleeping outdoors but are obviously
impractical when they are active [84]. The most obvious
options for preventing outdoor exposure of humans, espe-
cially when they are active and cannot be practically
enclosed within a structure like a net, include insecticide-
treated clothes [98,99] and repellents delivered as topical
applications or vapour-phase emanators [51,100]. While
such approaches to personal protection of people may
achieve valuable community-wide impact upon transmis-
sion by simply reducing human-vector contact, they are
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unlikely to reduce the survival, density or vectorial cap-
acity of the vector population where they obtain most of
their blood from animals [8,10,11] (Figure 13).

Killing adult mosquitoes when they attack livestock

Complementary approaches for killing mosquitoes
when they feed upon animals, by treating livestock with
topical [101] or systemic insecticides [97] may therefore
be invaluable for tackling residual transmission through
population control of zoophagic mosquitoes. Note, how-
ever, that great care should be taken to ensure the insecti-
cide treatments used have a purely toxic mode of action
and lack any irritant or repellent properties that could
divert mosquitoes that would otherwise feed on animals
to nearby humans [102]. Given that livestock owners
primarily apply such veterinary products to protect the
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animals themselves, any potential for effective malaria
vector control will require integration of malaria con-
trol priorities into agricultural practices, rather than
vice versa.

Killing adult mosquitoes when they feed upon sugar

An exciting new approach to killing a wide diversity of
vector species, regardless of their feeding or resting be-
haviours, is to treat natural or artificial sugar sources
with insecticides [103-105]. The impressive impacts of
toxic sugar baits upon three distinct vector species
[103-105] are consistent with the high rates at which
these mosquito populations utilize sugar [80,106]. Given
the widespread dependence of mosquitoes upon sugar
[107-109], especially when infected with malaria para-
sites [110], it appears that toxic sugar baits may be as
generally effective [80] against a wide range of vectors
as LLINs are against human-feeding vectors [21] and as
insecticide-treated livestock are against animal-feeding
vectors [101].

Improving implementation systems for larval source
management (LSM)

The most direct way to control adult mosquitoes, espe-
cially those that are hard to kill because the exhibit
various forms of behavioural evasiveness, is simply to
prevent them from emerging in the first place. Imma-
ture egg, larval and pupal stages cannot fly so they are
obviously unable to escape from physical modifications
or insecticides applied directly to the aquatic habitats
they live in [111]. LSM is perhaps the best established
of all mosquito control strategies, with an impressive
track record that was largely gained when it was the
only mainstream malaria prevention strategy, before
the advent of long-lasting adulticides prompted the
shift to IRS, and then LLINs, as the highest priority
intervention options [112,113]. Even more encouragingly,
renewed investment in developing and evaluating such en-
vironmental management or larvicide application methods
in Africa have yielded several examples of convincing
success [89,112,113], leading to revised guidelines for
implementation [114]. However, there have also been
some examples where impact has been absent, limited
or unclear and most successes have come from areas
with medium-to-high human population density where
aquatic habitats are relatively few, fixed and findable
[89,112-114]. Indeed, seasonally-targeted LSM, imple-
mented only when larval habitats contract to far more
manageable levels in the dry season, may have a role to
play in the final stages of eliminating malaria transmis-
sion [29,36,115]. However, it remains difficult to envis-
age how LSM strategies might be applied routinely and
continuously in rural areas with sparse human popula-
tions, especially during the wet season peak of
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transmission when many areas are subject to flooding
[112,114]. Furthermore, even where larval source man-
agement is clearly applicable in principle, rigorously
evaluated models for effective programme implementa-
tion, monitoring, management and governance in con-
temporary tropical settings [116,117] remain scarce.
Larval source management may have an important role
to play in a wide variety of settings, and the implementa-
tion systems to deliver it are evolving, but its applicability
in rural parts of the tropics will remain limited for the
foreseeable future [112,114] and much remains to be done
in terms of defining how to establish and sustain effective
programmes based on rigorous, quality-assured entomo-
logical surveillance [117-120].

Learning how to tackle residual transmission with
unproven vector control options

There are numerous supplementary vector control
options for tackling mosquitoes that persist and mediate
residual transmission because they rest outdoors, feed
outdoors or feed on animals (Figure 12), and these may
be rationally selected based on local surveys of vector
behaviours (Figure 13) [8,28,80]. However, none of these
options have been developed and evaluated sufficiently
to justify unreserved recommendation for national-scale
roll out by NMCPs. In the absence of an adequate evi-
dence base, NMCPs must either accept the limitations
of IRS and LLINs by waiting for the research community
to fill remaining knowledge gaps, or they must press
ahead as best they can. A medium-to-long term strategy
is clearly required to enable NMCPs and their scientific
partners to define the needs, markets, ideal product char-
acteristics and optimal delivery systems for such additional
control tools through an adaptive learning process
[121,122]. Given the considerable resource constraints
that already restrict implementation of LLINs and IRS
[123], and the limited evidence available to guide efforts to
address residual transmission, perhaps the best way for-
ward for NMCPs is to selectively incorporate supplemen-
tary vector control tools into exploratory, pilot-scale
integrated vector management programmes [124] that
evolve and expand as they establish their own supporting
evidence base over the long term, just as the Onchocercia-
sis Control Programme did [125,126].

Selecting complementary vector control methods by
characterizing vector behaviours

While the broad diversity and exciting potential of the
options described in Figure 12 is encouraging, this also
makes it difficult to select any one of them ahead of an-
other. With limited resources, and a bewildering array of
unproven methods for controlling behaviourally evasive
vectors to choose from, NMCPs, together with their in-
dustrial and scientific partners, need to rationally select a
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small subset of these options to take forward for concerted
programmatic development and evaluation [8,127]. The
likelihood of success or failure of all the options described
in Figure 12, are determined by measurable behaviours of
mosquitoes and humans (Figure 13). The behavioural de-
terminants of potential applicability and impact of LSM
strategies can be reliably assessed with straightforward,
well-established field procedures for surveying the distri-
bution of productive habitat among different types of
water bodies [112,114]. In the case of interventions that
target blood resources, conceptual frameworks for their
selection based on field measurements of vector behav-
iours, using well-established survey methods that may be
readily incorporated into national surveillance platforms
(Table 1), are now emerging [8]. This approach may also
be extended to a wide variety of other targetable resources
that mosquitoes need to survive (Figures 12 and 13), espe-
cially if entomological methods for measuring utilization
rates for targetable resting sites can be improved [8,80].
Many countries have now established surveillance
platforms for monitoring physiological resistance to
insecticides among nationally important vectors at se-
lected sentinel sites [33]. However, the results of these
simple insecticide susceptibility assays are not sufficient
in themselves for NMCPs to rationally select and imple-
ment optimal vector control strategies. This is due to
the fact that the small experimental enclosures and
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insectary rearing conditions they are conducted under
are not representative of how wild mosquitoes interact
with insecticides in the field. While there are examples of
physiological resistance to insecticides resulting in inter-
vention failure [28,32,135,136], LLINs appear to provide
valuable levels of personal protection against even highly
pyrethroid-resistant vectors [137], and there are examples
in which community-level transmission control has been
maintained despite such resistance [138]. Several possible
reasons for this have been outlined or even demonstrated
[139-141]. The quantitative influence of mosquito behav-
iours upon the successes, limitations and failures of spe-
cific intervention strategies, even those as well-established
as IRS and LLINs, remain uncertain. It is therefore essen-
tial that national entomological surveillance schemes now
supplement routine surveys of physiological resistance
with regular surveys of mosquito and human behaviours
and of underlying resource use and livelihood patterns of
those human populations [8,28,142]. Platforms for con-
tinuous longitudinal monitoring of vector population and
malaria transmission dynamics will also be required at
the same sentinel locations so that the relevance to
programmatic decision-making of any worrying behav-
ioural or physiological traits observed can be directly
appraised (Figure 4) [28,31,33,121,142].

Unfortunately, the examples of well-characterized vector
behaviours described in Figures 7 to 10 are merely static

Table 1 A suggested generic plan for strengthening national or regional malaria vector monitoring platforms to

incorporate assessment of essential behavioural phenotypes and their influence upon vector control impact, mosquito
population dynamics and epidemiological outcomes [8,28]

1. Expand and/or consolidate any existing national network of sentinel surveillance sites for physiological resistance of malaria vector mosquitoes to
insecticides [33], ideally integrating these with similar platforms for other common mosquito-borne pathogens, such as lymphatic filariasis. Such
sites should also overlap both with existing historical entomological study sites for which baseline legacy data is available, and with national
platforms for assessing malaria burden through cross-sectional malaria indicator surveys or quality-assured facility-based surveillance.

2 Establish continuous longitudinal surveillance of mosquito population densities, and the transmission intensity each distinct population mediates,
at sites where physiological resistance is monitored, so that the effects of vector control implementation upon seasonal and inter-annual trends
can be assessed. Such surveillance platforms are essential to quantify residual transmission and distinguish between the fundamental limitations
of an effective vector control strategy delivering incomplete but valuable and sustained impact versus an intervention failure, in the strict sense,
which allows vector populations and malaria transmission to rebound (Figure 4) [28,29,31]. Such continuous, longitudinal surveys of malaria vector
population dynamics have never been applied before at nationally representative scales. As such, affordable, practical community- or district-
based mosquito trapping schemes, which are nevertheless resourced and managed by centralized national programmes, may need to be
developed and evaluated [31,120]. Given the reliance of scalable trapping schemes, especially those which are community-based, upon widely
scattered, field-based personnel who may not always perform adequately [118,119], it is also essential to establish quality assurance systems in
which each of these sentinel sites is regularly and randomly re-surveyed by a centrally coordinated, specialist entomological team using the same
trapping methods [31,120]. Given the diversity of vector species and behaviours across the tropics, setting up such platforms for monitoring
mosquito population dynamics may require initial pilot evaluations to select and calibrate suitable trapping methods or validate calibrations from
elsewhere.

3. Incorporate surveys of vector feeding and resting behaviours (using human landing catch by participants protected with drug chemoprophylaxis
[128] and backpack aspirator/resting container/screening barrier sampling tools [129-131], respectively) into the quality assurance surveys
described above under point 2, so that the extent to which each important vector species feeds on humans, feeds indoors, or rests indoors, can
be quantified.

4. Integrate monitoring of relevant human behaviours [16] and ecology, including resource use and livelihoods, vector control coverage and
livestock ownership into national malaria surveys and/or entomologic surveillance platforms, so that their contributions to intervention limitations
and failures can be assessed.

5 Where substantial transmission occurs indoors, experimental hut [132-134] facilities should be established at one or two sentinel sites where the
most nationally-relevant vector species are abundant, so that the efficacy of vector control interventions can be assessed before and after their
introduction [39].
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stereotypes that fail to capture the considerable variations
that occur in behaviour within individual vector species,
as a function of time, location and local intervention his-
tory. While behavioural variability has been documented
for a wide diversity of other important vectors of residual
malaria transmission [26,53,73,142], An. arabiensis is a
particularly good example with which to illustrate this
point because it exhibits impressive variability in essen-
tially all its relevant behaviours [28,59,142]. The propor-
tion of blood meals it obtains from humans spans the
whole range of possible values depending on how it
responds opportunistically to fine scale variations in
blood host availability [143]. While it feeds outdoors to
a considerable degree in parts of Tanzania with high
coverage of LLINs [50] or house screening [65,144], it
persists with predominantly indoor feeding habits in
parts of neighbouring Kenya with even longer-standing
LLIN coverage [46]. Given the opportunity to feed
within houses where the occupants lack LLINS, it does
so and can be successfully targeted with IRS [93]. How-
ever, in stark contrast, it rapidly leaves houses where occu-
pants use LLINs so that supplementary IRS consequently
has little impact [39-41].

National and regional malaria control programmes will
therefore need to carefully consider how, where and when
they monitor important mosquito behaviours [8,28,142].
Thus far, even well established entomological methods for
measuring vector behaviours have only been applied at
village or district scale, and with inconsistent methodology
and haphazard distribution across times and locations [2].
This is because they have been predominantly funded
through sporadic, short-term research projects. These op-
portunistic, inconsistent and unreliable sources of vector
behaviour measurements now need to be superseded by
programmatically-funded, longitudinal monitoring sys-
tems operating consistently at national and regional
scales (Table 1).

While routine monitoring of mosquito behaviours and
population dynamics is essential to characterize and
quantify intervention limitations and failures, it can also
provide valuable explanatory evidence with which to bol-
ster support for existing interventions like LLINs and IRS
[8,13,16,26,28,46,70,142]. For example, the impressive
recent demonstration of the massive impact of LLINs in a
holoendemic Senegalese village where residents were pro-
vided with almost daily access to testing and treatment
[145], is completely compatible with Figures 3, 7, 10 and
11. First, the observed impact on EIR, as measured by
human landing catches, appears plausible (Figure 3) based
on the expected level of biological coverage that would be
achieved for the three vectors present (Figure 10), given
that their human-feeding behaviour in this location [66]
appears approximately consistent with most other reports
for the same species from elsewhere in Africa (Figure 7).
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Furthermore the EIR values reported after LLIN distri-
bution were measured by fully exposed volunteers so de
facto transmission levels experienced by protected resi-
dents were probably a further order of magnitude lower
(Figure 7), reduced from >100 to <1 infectious bite per
person per year and therefore consistent with the length
of the upper white arrow in Figure 11. Given the ongoing
challenge of sustaining funding support for provision of
proven interventions like LLINs and IRS [123], it is essen-
tial that control programmes can access, interpret and
disseminate such data routinely not only to understand
and address their own shortcomings, but also to promote
and sustain their successes [8,16,28,142].

Programmatic evaluation of new intervention options:
learning by doing

Where local circumstances allow, NMCPs may incorpor-
ate supplementary vector control approaches into explora-
tory programmes that should include strong monitoring,
evaluation and operational research components in the
same way that the Onchocerciasis Control Programme
did [125,126], initially through exploratory pilot assess-
ments at manageable, sub-national scales. This strategy
will minimize the cost of learning from mistakes along
an uncertain route to an adequate evidence base and, even-
tually, to full-scale implementation. While randomized-
controlled trials to evaluate intervention efficacy are of
course invaluable contributions to the evidence base, eval-
uations of effectiveness under non-randomized program-
matic conditions are often more relevant, representative
and feasible for NMCPs [146].

While such ambitious, NMCP-led programmes for
regularly monitoring, evaluating and targeting specific
insect behaviours remain to be realized in relation to the
vectors of malaria [121,122], the overwhelming historical
success of black fly control by the regional Onchocerciasis
Control Programme in West Africa [125,126] illustrates
just how much may be accomplished with a similar strat-
egy of practice-led research, rather than research-led prac-
tice. While this approach will undoubtedly take years of
troubleshooting, this challenging developmental phase is
also an exceptionally useful opportunity for “learning-by-
doing”. This substantial body of work will probably span
at least a decade and represents a historic opportunity to
strengthen and institutionalize national expertise through
participation in operational research and evaluation at an
advanced scientific, rather than merely technical, level. All
such investments in these new programmatic monitoring
platforms should, therefore, include substantive training
components from the outset, especially at postgraduate
and post-doctoral level. While a decade may seem like
a long time for NMCPs struggling under difficult cir-
cumstances to deliver malaria control to huge at-risk
populations, it represents the shortest possible period
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required to develop even a single individual scientist
beyond the level of competence to real expertise [147].
Developing relevant expert human resources in the
fields of vector biology, epidemiology, informatics, sta-
tistics and mathematical modelling will therefore re-
quire immediate, concerted and sustained investment
in the capacity-strengthening opportunities presented
by this extended, but obviously finite, phase of oper-
ational research. Crucially, such expert human capacity
needs to be established under sustainable and appropriate
conditions of ownership and governance at national in-
stitutions in malaria endemic countries [121,122]. While
private and para-statal institutions like universities and
research institutes have an important role to play, it is
the governmental ministries and departments, including
the NMCPs themselves, that must receive the highest
priority for investing in capacity strengthening [121,122].
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