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Abstract

Background: The development of malaria vaccine has been hindered by the allele-specific responses produced by
some parasite antigens’ high genetic diversity. Such antigen genetic diversity must thus be evaluated when designing
a completely effective vaccine. Plasmodium falciparum P12, P38 and P41 proteins have red blood cell binding regions
in the s48/45 domains and are located on merozoite surface, P41 forming a heteroduplex with P12. These three
genes have been identified in Plasmodium vivax and share similar characteristics with their orthologues in Plasmodium
falciparum. Plasmodium vivax pv12 and pv38 have low genetic diversity but pv41 polymorphism has not been
described.

Methods: The present study was aimed at evaluating the P. vivax p41 (pv41) gene’s polymorphism. DNA
sequences from Colombian clinical isolates from pv41 gene were analysed for characterising and studying
the genetic diversity and the evolutionary forces that produced the variation pattern so observed.

Results: Similarly to other members of the 6-Cys family, pv41 had low genetic polymorphism. pv41 3′-end displayed
the highest nucleotide diversity value; several substitutions found there were under positive selection. Negatively
selected codons at inter-species level were identified in the s48/45 domains; p41 would thus seem to have
functional/structural constraints due to the presence of these domains.

Conclusions: In spite of the functional constraints of Pv41 s48/45 domains, immune system pressure seems
to have allowed non-synonymous substitutions to become fixed within them as an adaptation mechanism;
including Pv41 s48/45 domains in a vaccine should thus be carefully evaluated due to these domains
containing some allele variants.
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Background
Of the five malaria parasites (Plasmodium falciparum,
Plasmodium vivax, Plasmodium malarie, Plasmodium
ovale and Plasmodium knowlesi) affecting human beings,
P. falciparum is the species causing the most severe clin-
ical manifestations, whilst P. vivax is the species most
widely distributed throughout the world, mainly affecting
the Asian and American continents and causing the highest
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morbidity outside of Africa. In spite of efforts to date for
controlling malaria, it continues to be a serious public
health problem; 18.9 million cases of P. vivax occurred in
2012, children under five years old and pregnant women
being the most vulnerable populations [1].
An anti-malarial vaccine represents one of the alterna-

tive control measures regarding this disease; developing
a multi-antigen vaccine against the parasite’s blood stage
is focused on blocking all interactions with a host cell,
thereby avoiding recognition and subsequent invasion.
Several antigens have been proposed as vaccine candidates
[2-4]; however, as many of them have high genetic diver-
sity [5-12], this is an obstacle regarding such proposal
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[13,14] since they induce allele-specific immune responses
[15]. The genetic diversity of candidate antigens must thus
be evaluated [14,16] for selecting the most frequent vari-
ants or conserved domains [13,14].
Proteins involved in red blood cell (RBC) invasion have

been characterized in merozoite surface regions known as
detergent-resistant membranes (DRM) [17-19], many of
these being potential vaccine candidates [4,20,21]. Such
DRMs include a group of proteins belonging to the 6-Cys
family (P12, P38, P41 and P92) which is characterised by
the presence of domains containing six conserved cyste-
ines called s48/45 [17,22-24]. The P. falciparum P41
(Pf41) protein has two high-activity binding peptides in
the s48/45 domains [17], thereby suggesting a role in RBC
invasion. This protein does not have GPI-anchored do-
mains and its presence on merozoite membrane is due to
the formation of an inverted heteroduplex with Pf12
[25,26]. The pv41 gene has recently been characterised in
P. vivax (pv41) [22,27]; this gene encodes a 385 residue-
long membrane protein. Similar to its orthologue in
P. falciparum, the protein has a signal peptide and two
s48/45 domains but no GPI-anchor. The P. vivax P41
(Pv41) protein has been shown to be antigenic [27,28],
suggesting that it is exposed to the host immune system,
probably during invasion of the host cell.
Figure 1 pv41 haplotype distribution in the Colombian population an
haplotype distribution found in pv41. Panel B shows the origin of the refer
the Colombian population. Haplotype 1: Sal-I, Brazil-I, haplotype 2: India, ha
Korea, haplotype 1–2 and 6–13: Colombian isolates.
Given that Pv41 has been located on merozoite surface
and that it has no membrane anchoring domains [22,27],
it could be interacting with another protein anchored to
parasite surface. This protein’s similarity with its ortholo-
gue in P. falciparum suggests that Pv41 might form a
complex with Pv12, a protein which has been shown to be
highly conserved [29]. The present study was therefore
aimed at using population genetics analysis for evaluating
the pv41 gene’s genetic diversity by determining the evolu-
tionary processes producing the locus’s variation pattern.
The results showed that pv41 had low genetic diversity,
the gene’s 3′-end region being the most diverse, fixing
mutations by positive selection, probably as a mechanism
for evading the immune system. Like other members of
the 6-Cys family, this gene seemed to have functional con-
straints due to the presence of s48/45 domains.

Methods
Declaration of ethical considerations
This study involved using thirty P. vivax-infected samples
collected between 2007 and 2010 (2007: 5 isolates, 2008: 3
isolates, 2009: 8 isolates, 2010: 14 isolates); they had been
obtained from different regions of Colombia (Figure 1,
South-west: Chocó, Nariño; South-east: Caquetá, Guainía,
Guaviare, Meta; Midwest: Bogotá, Tolima; North-west:
d origin of the reference strain sequences. Panel A shows the
ence strain sequences and panel C represents haplotype frequency in
plotype 3: Mauritania, haplotype 4: North Korea, haplotype 5: South
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Atlántico, Antioquia, Córdoba). All P. vivax-infected pa-
tients who provided blood samples were notified of the
study’s objective and then signed an informed consent
form. All the procedures involved in taking the samples
had already been approved by the Fundación Instituto de
Inmunología de Colombia’s (FIDIC) ethics’ committee.

Genotyping Plasmodium vivax samples
PCR-RFLP of the pvmsp-1 polymorphic marker was used
for identifying/analysing different genotypes in the sam-
ples and infection by a single P. vivax strain, as described
previously [30]. Briefly, this gene’s blocks 6, 7 and 8 were
amplified with direct 5′-AAAATCGAGAGCATGATCGC
CACTGAGAAG-3′ and reverse 5′-AGCTTGTACTTTC
CATAGTGGTCCAG-3′ primers. The amplified frag-
ments were digested with Alu I and Mnl I restriction
enzymes.

PCR amplification of the pv41 gene
Previously reported primers were used for amplifying
pv41 [22]. The PCR reaction mixture contained 10 mM
Tris HCl, 50 mM KCl (GeneAmp 10X PCR Buffer II
(Applied Biosystems)), 1.5 mM MgCl2, 0.2 mM of each
dNTP, 0.5 μM of each primer (direct 5′ ATGAAAAGG
CTCCTCCTGC 3′ and reverse 5′ CTCCTGGAAGGA
CTTGGC 3′), 0.76 U Amplitaq Gold DNA polymerase
(Applied Biosystems) and 40 ng genomic DNA at 50 μL
final volume. The PCR thermal profile was as follows: one
cycle at 95°C (7 min), 40 cycles at 95°C (20 sec), 60°C
(30 sec), 72°C (1 min) and a final extension cycle at 72°C
(10 min). The amplification products were purified using
an UltraClean PCR Clean-up kit (MO BIO). The purified
PCR products were bidirectionally sequenced with the
amplification primers using the BigDye method with
capillary electrophoresis, using the ABI-3730 XL se-
quencer (MACROGEN, Seoul, South Korea). Two inde-
pendent PCR products were sequenced per sample to rule
out errors.

Analysing genetic diversity
CLC Main workbench software v.5 (CLC bio, Cambridge,
MA, USA) was used for analysing and assembling the
electropherograms obtained by sequencing, giving one
sequence per sample. The 30 sequences obtained
from Colombian isolates were compared to and ana-
lysed regarding reference sequences obtained from several
sequencing projects [31,32] (PlasmoDB accession number:
PVX_000995, GenBank accession number: AFNI01000110.1,
AFNJ01000259.1, AFMK01000149.1 and AFBK01000223.1)
or reported in databases (GenBank accession number:
GU476495.1). These 36 sequences were then compared to
Plasmodium cynomolgi (GenBank accession number:
BAEJ01000104.1) and P. knowlesi orthologous sequences
(PlasmoDB accession number: PKH_030970), two species
which are phylogenetically close to P. vivax [33]. Gene
Runner software was used for translating all the sequences
for obtaining the deduced amino acid sequences; the
MUSCLE algorithm was then used for aligning such se-
quences [34] and then edited manually. The PAL2NAL
web-based tool [35] was then used for converting protein
alignments into their respective nucleotide alignments.
DnaSP v.5 software [36] was used for quantifying pv41

genetic polymorphism by calculating: the number of seg-
regant sites (Ss), the number of singleton sites (s), the
number of parsimony-informative sites (Ps), the number
of haplotypes (H), haplotype diversity (Hd, multiplied by
(n-1)/n, according to Depaulis and Veuille [36,37]), the
Watterson estimator (θw), the average number of nu-
cleotide differences (k) and nucleotide diversity per site
(π). Data was obtained for the reference sequences plus
the Colombian sequences (worldwide diversity), as well
as for just the Colombian sequences (local diversity).
The Colombian parasite population sequences were

used for evaluating the neutral model of molecular evo-
lution using tests based on the frequency spectrum of
nucleotide polymorphisms and haplotype distribution.
Tajima’s D test [38], Fu and Li’s D* and F* tests [39], and
Fay and Wu’s H test [40] were calculated for the first
group of tests. Fu’s Fs test [41] and K-test and H-test [37]
were calculated as part of the group of tests based on
haplotype distribution. The significance of all tests was de-
termined by coalescence simulations using DnaSP v.5 [36]
and ALLELIX software (provided by Dr Sylvain Mousset).
Sites having gaps were not taken into account for all tests.
The effect of natural selection was evaluated by calculat-

ing the difference between the average number of non-
synonymous substitutions per non-synonymous site (dN)
and the average number of synonymous substitutions per
synonymous site (dS) using the modified Nei-Gojobori
method [42]. Significance was determined by using Fisher’s
exact tests and the Z test incorporated in MEGA v.5 soft-
ware [43]. SLAC, FEL, REL [44], IFEL [45], MEME [46]
and FUBAR methods [47] were used for calculating the ω
(dN/dS) value for each codon in the pv41 alignment.
The McDonald-Kreitman test [48] was calculated for

evaluating the effect of natural selection on p41 during
the evolutionary history of P. vivax and related species
(Plasmodium cynomolgi and P. knowlesi); this test compared
intraspecific polymorphism with interspecific divergence
using a web server [49], which takes the Jukes-Cantor
distance correction regarding divergence per site [50]
into account. The Nei-Gojobori modified method
[42] was also used for calculating the difference between
non-synonymous (KN) and synonymous (KS) divergence
rates using Jukes-Cantor divergence correction [50]. Sig-
nificant values were determined by using the Z test in-
corporate in MEGA v.5 software [43]. SLAC, FEL, REL
[44], MEME [46] and FUBAR [47] methods were used



Figure 2 Aligning the haplotypes found in the pv41 gene.
The numbers in the upper part indicate the nucleotide position where
a substitution was observed; the dots indicate nucleotide identity.

Forero-Rodríguez et al. Malaria Journal 2014, 13:388 Page 4 of 10
http://www.malariajournal.com/content/13/1/388
for determining sites under interspecies selection using
the P. vivax, P. cynomolgi and P. knowlesi sequences as
data set.
ZnS [51] and ZZ [52] tests were calculated for evaluat-

ing non-random associations between polymorphisms
(linkage disequilibrium or LD) and the influence of in-
tragenic recombination on pv41. The minimum number
of recombination events (Rm) [53] was also calculated
and the GARD method [54] available from Datamonkey
[55] was used for evaluating recombination processes.

Results
Genetic diversity in pv41
Thirty P. vivax-infected samples, obtained from different
parts of Colombia (Figure 1), were genotyped using the
pvmsp-1 polymorphic marker. The RFLP patterns pro-
duced from pvmsp-1 blocks 6–8 suggested the presence
of different genotypes in the aforementioned samples as
well as single strain infections in each sample. Taking
into account that all these samples have been previously
used in other studies involving genes having high poly-
morphism [6], in which none of the electropherograms
revealed overlapping peaks during the sequencing, we
can ascertain the absence of multiple infections.
The 30 genotyped isolates had a 1,152 base pair (bp) frag-

ment corresponding to the pv41 gene. The sequences ob-
tained from these 30 isolates (Additional file 1) were
compared to and analysed together with sequences reported
by several sequencing projects [31,32]. Sequences having a
different haplotype were deposited in the GenBank database
(accession numbers KM212268-KM212275).
Table 1 gives the values for the estimators of genetic

diversity. Seventeen segregant sites were observed in the
sequences from different parts of the world, 12 of them
being parsimony-informative sites and five singleton sites;
13 haplotypes were found (Figure 2). Aligning the proteins
from P. vivax isolates from different geographical loca-
tions revealed substitutions in ten amino acids: N88D,
E89V, A258V, Q301H, K312N, M355R, S359H, Y361F,
N363D and R373G (numeration based on the Sal-I refer-
ence sequence). Ten segregant sites were found in the
Table 1 Genetic diversity estimators for pv41

n Sites Ss S Ps H θw k π

Worldwide diversity

36 1,068 17 5 12 13 0.0038 ± 0.0009 3.9 0.0037 ± 0.0006

Local diversity

30 1,115 10 1 9 10 0.0023 ± 0.0007 3.1 0.0028 ± 0.0005

The estimators of genetic diversity were calculated by using the sequences
obtained from the databases plus the Colombian ones (worldwide diversity)
and just using those obtained in the Colombian population (local diversity).
n: number of isolates, sites: total of sites analysed (excluding gaps), Ss: number of
segregant sites, S: number of singleton sites, Ps: number of parsimony-informative
sites, H: number of haplotypes, k: average number of nucleotide differences by
sequence pairs, θw: Watterson estimator, π: nucleotide diversity per site.
Colombian population (nine of them being parsimony-
informative sites), giving ten haplotypes (haplotypes 1, 2,
6–13) and 0.679 ± 0.083 haplotype diversity. Haplotype 1
had 50% frequency, followed by haplotype 11 (13% fre-
quency) and haplotype 10 (10% frequency); the remaining
haplotypes had low frequency (around 3%).
The average number of nucleotide differences per

pairs of sequences (k) was 3.9 when sequences from dif-
ferent parts of the world (worldwide diversity) were ana-
lysed and 3.1 for the Colombian population (Table 1).
Low Watterson estimator (θw = 0.0038 ± 0.0009) and nu-
cleotide diversity values (π = 0.0037 ± 0.0006) were ob-
served when the available sequences obtained from the
databases plus the Colombian ones were analysed; θw

was 0.0023 ± 0.0007 and π 0.0028 ± 0.0005 for the
Colombian population (Table 1). The nucleotide di-
versity analysis for Colombian locations showed that
the Midwest was the most diverse at the pv41 locus
whilst the lowest value was found in Colombia’s
South-west area (Additional file 2). The gene region
having the highest π value was found between nucle-
otides 1,064 to 1,130.

Evaluating the effect of natural selection on pv41
Tajima’s D, Fu and Li’s D* and F*, Fay and Wu’s H, Fu’s
Fs and the K- and H-test neutrality tests did not give sta-
tistically significant values (Table 2); this meant that neu-
trality could not be ruled out. The differences between
non-synonymous and synonymous (dN - dS) substitu-
tions rates throughout the gene were evaluated for esti-
mating the effect of natural selection in pv41, as well as
in each s48/45 domain (s48/45 N-Terminal: nucleotide
76–351 and s48/45 C-Terminal: nucleotide 784–1,095);



Table 2 Tests based on the neutral model of molecular evolution, linkage disequilibrium and recombination for the
pv41 gene in the Colombian population

n
Tajima Fu and Li Fay

and Wu H Fu Fs K-
test H-test Zns ZZ RM

D D* F*

30 0.79023 0.86738 0.9868 −1.857 −1.267 10 0.679 ± 0.08 0.3627* 0.2073* 2

*p <0.05.
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however, no significant values were found (Table 3). The
sliding window (Figure 3) for the ω (dN/dS) rate gave a ω
close to 1 at the 3′-end of pv41, indicating a number of
non-synonymous substitutions fixed within P. vivax in
this region at a higher rate than in the rest of the se-
quence. Tests estimating dN/dS for each site (codon)
were then performed for identifying whether individual
codons in pv41 were under selection; seven codons were
found to be under positive selection and one codon
under negative selection (Figure 3). Substitutions
V269A, H312Q and G384R were exclusive for the
Colombian population. The K323N, H370S amino acid
changes were found in Colombian isolates and some refer-
ence sequences, whilst the N88D and E89V substitutions
were present in Mauritanian and South Korean sequences,
respectively.
The McDonald-Kreitman test was calculated for evalu-

ating how selection had acted throughout p41’s evolu-
tionary history; it revealed significant values, thereby
showing that polymorphism was greater than divergence
(p < 0.05) (Table 4). A sliding window for ω divergence
(KN/KS, non-synonymous divergence/synonymous diver-
gence), obtained by comparing the P. vivax sequences to
sequences from phylogenetically close species (P. cyno-
molgi and P. knowlesi), gave values less than 1 in the
s48/45 domains, as well as in some areas between these
domains, thereby indicating that KS tended to be greater
than KN. Significant negative values (p < 0.001) were found
when estimating the difference between non-synonymous
and synonymous divergence (KN - KS) (Table 5). The
codon-based selection tests found 13 positively selected
codons and 77 negatively selected codons at inter-species
level (Figure 3).

Linkage disequilibrium (LD) and recombination
The ZnS, ZZ and RM tests were calculated for determin-
ing possible associations between polymorphism and/or
Table 3 Difference between the non-synonymous substitution
substitution per synonymous site (dS) rate

n s48/45 N-terminal

Worldwide isolates dN - dS

36 −0.0001 ± 0.0008

Colombian isolate

30 0.0000 ± 0.0000

No statistically significant values were found.
the presence of recombination in pv41 (Table 2). The
ZnS test gave 0.3627, this being statistically significant
(p < 0.05). Lineal regression between LD and nucleotide
distance gave a slight reduction in LD as nucleotide dis-
tance increased, suggesting recombination events. This
was confirmed when the ZZ test was calculated, giving
0.2073 (p < 0.05); two minimum recombination sites were
found (Table 2). The GARD method (available from the
Datamonkey web server) gave a recombination breakpoint
in position 936 (number based on Sal-I sequence) con-
firming than intragenic recombination was involved in
generating new haplotypes in pv41.

Discussion
Merozoite-expressed members of the 6-Cys family in P.
falciparum (Pf12, Pf38 and Pf41) have high RBC binding
activity peptides [17], indicating that these play a role
during recognition of a host cell. Previous studies have
shown that members of this family are antigenic
[23,24,27,28] and highly conserved (p12 and p38) in both
P. falciparum and P. vivax [26,29,56,57]. This means
that they are promising candidates for inclusion in an
anti-malarial vaccine, avoiding allele-specific immune re-
sponses. The pv41 gene has been shown to be highly con-
served when compared to other genes encoding antigens
in P. vivax (e.g., pvmsp-7 [6], pvmsp-5 [7,12], pvmsp-3
[9,10], pvmsp-1 [5,8]).
The pv41 nucleotide diversity was low in the Colombian

population; however, π values and haplotype number were
dissimilar for each Colombian locality, suggesting different
evolutionary histories possibly due to a structured popula-
tion. However, this pattern could have been due to few
samples having been collected from some locations. The
use of neutral markers could lead to confirming whether
Colombia has a structured population.
pv41 nucleotide diversity was higher than that re-

ported for pv12, but similar to that found in pv38 [29];
s per non-synonymous site (dN) and synonymous

s48/45 C-terminal Complete sequences

dN - dS dN - dS

0.0018 ± 0.0015 −0.0005 ± 0.0013

0.0024 ± 0.0015 0.0007 ± 0.0010



Figure 3 Sliding window of omega values (ω = dN/dS and KN/KS) for three members of the 6-Cys family expressed in merozoites.
The ω values (dN/dS) for Plasmodium vivax pv12, pv38 and pv41 genes are shown in red, divergence (ω = KN/KS) between P. vivax and Plasmodium
cynomolgi (Pcyn) in purple and between P. vivax and Plasmodium knowlesi (Pkno) in green. The graphical representation of each gene is given
below the respective sliding window, showing the position of the segregant sites and which of them were influenced by natural selection.
Intraspecies selected sites can be seen in the upper part of each gene and inter-species selected sites are indicated in the lower part. The sites
were identified by the Datamonkey server. The schemes for pv12 and pv38 have been modified from Forero-Rodríguez et al. [29].
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however, fewer haplotypes were found in pv41 compared
to pv38 (14 haplotypes have been reported for it in the
Colombian population) [29]. Since the Pv41 protein has
no membrane-anchoring domains, it could be interact-
ing with proteins anchored to the merozoite surface. It
has been shown that Pf12 and Pf41 proteins form an
inverted heteroduplex on parasite membrane [25,26].
Due to these proteins’ similarity, it is probable that Pv12
Table 4 McDonald-Kreitman test for evaluating the action of

P. vivax/P. cynomolg

Worldwide isolates Fixed Polymorphic

Non-synonymous substitutions 45.62 11

Synonymous substitutions 110.71 6

Colombian isolates

Non-synonymous substitutions 46.69 8

Synonymous substitutions 112.65 2

The McDonald-Kreitman test involved using the sequences obtained from the data
obtained in the Colombian population (Colombian isolates). The data regarding div
that from two related species: P. cynomolgi and P. knowlesi. NI: neutral index.
and Pv41 may also interact in P. vivax. This could
explain the high degree of conservation found in Pv12
(π = 0.0004 ± 0.0001 [29]). If Pv41 forms a protein com-
plex with Pv12, the latter could be masked whilst Pv41
would be more exposed to a host’s immune system,
greater diversity thus being found in Pv41 (π = 0.0037 ±
0.0006) regarding Pv12 (π = 0.0004 ± 0.0001). Since such
complex formation would be anti-parallel, the region
natural selection on the p41 gene

i P. vivax/P. knowlesi

NI (p-values) Fixed Polymorphic NI (p-values)

4.45 (0.003)
61.95 11

4.12 (0.004)
138.81 6

9.65 (0.000)
63.06 8

8.80 (0.001)
138.81 2

bases together with the Colombian ones (worldwide isolates), and just those
ergence between species was obtained by comparing P. vivax sequences to



Table 5 Difference between non-synonymous divergence per non-synonymous site (KN) and synonymous divergence
per synonymous site (KS)

P. vivax/P. cynomolgi

n s48/45 N-terminal s48/45 C-terminal Complete sequences

Worldwide isolates KN - KS KN - KS KN - KS

36 −0.0151 ± 0.0031* −0.0107 ± 0.0032** −0.0160 ± 0.0028*

Colombian isolates

30 −0.0178 ± 0.0038* - 0.0126 ± 0.0035** −0.0174 ± 0.0030*

P. vivax/P. knowlesi

n s48/45 N-terminal s48/45 c-terminal Complete sequences

Worldwide isolates KN - KS KN - KS KN - KS

36 −0.0196 ± 0.0036* −0.0107 ± 0.0034** −0.0185 ± 0.0031*

Colombian isolates

30 −0.0233 ± 0.0042* −0.0125 ± 0.0036** −0.0217 ± 0.0035*

KN - KS difference was estimated using the sequences obtained from the databases together with the Colombian ones (worldwide isolates) and just with those
obtained in the Colombian population (Colombian isolates).
n: number of isolates. *p <0.000; **p <0.001.
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most exposed to Pv41 would be the C-terminal in which
high fixation of non-synonymous substitutions was ob-
served (Figure 3).
No significant values were found in the neutrality tests

based on the polymorphism frequency spectrum or the
haplotype-based tests (Table 2), meaning that the hypoth-
esis regarding neutrality could not be ruled out. Such
hypothesis stated that pv41 haplotypes could be fixed in
different populations thereby producing a population
structure in this locus and new pv41 haplotypes might
thus appear if new parasites populations are evaluated.
No significant values were found when the effect of

natural selection was evaluated by means of the differ-
ence between non-synonymous and synonymous substi-
tutions (dN - dS) in either the whole gene or in each s48/
45 domain (Table 3). However, the pv41 sliding window
gave a peak close to 1 at the 3′-end of the gene (Figure 3);
several non-synonymous mutations would thus seem to
be fixed in this region. The codon-based selection tests
showed that seven out of the ten codons having mutations
producing a change in the protein were positively selected
(Figure 3). Three of these seven codons (V89E, H359S
and G373R) produced radical substitutions (changing
amino acid physical/chemical properties). The R355M
substitution also produced a radical change but selection
signals were not identified in this site. Such positively se-
lected codons were predominantly found towards the
gene’s 3′-end (encoding the protein’s C-terminal region)
and could have been fixed to enable evading the immune
system since this region would be more exposed due to
the possible antiparallel formation of a Pv12/Pv41com-
plex. Substitutions in codons 258, 301 and 312 located in
the s48/45 domain could become deleterious due to them
being able to alter the domain’s structure; however, they
had positive selection signals. Such substitutions were
conservative and maintained the amino acids’ physical-
chemical characteristics, thereby enabling evasion of the
immune system and maintaining the domain’s structural
conformation. Interspecies ω values were higher than 1 in
some regions of p41, mainly outside s48/45 domains.
Thirteen codons were positively selected at interspecies
level; amino acid fixation would allow immune evasion of
the respective host. Alternatively, positive sites found in
s48/45 domains (which are involved in red blood cell inva-
sion [17]) would be a P41 adaptation to the host receptor
molecule.
The ZnS test had significant values, indicating LD. The

linked positions were found in the 3′-end of the gene. The
mutations found there led to changes in protein sequence
H359S, Y361F and D363N. The first substitution (H359S)
produced a radical amino acid change, which was fixed by
positive selection whilst the other two changes were con-
servative without selection signals. Since amino acid
H359S was fixed by positive selection, this led to Y361F
and D363N becoming fixed due to the short physical dis-
tance between them.
Genetic diversity in pv41 was produced by point mutations

(Figure 2); however, the recombination could also have been
responsible for the genetic polymorphism found in this gene.
The lineal regression between LD and nucleotide distance
had a slight reduction in LD as nucleotide distance increased;
this may have been a consequence of recombination pro-
cesses. The ZZ test gave significant values, suggesting that
recombination took place in this gene. Two minimum re-
combination sites were found and the GARD method
(available from the Datamonkey web server) identified a
recombination breakpoint in position 936, meaning that
recombination produced new haplotypes in pv41.
The McDonald-Kreitman (MK) and omega divergence

tests (ω = KN/KS) were calculated for inferring natural
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selection signals which might have influence the evolu-
tionary history of p41. The latter was calculated for the
gene’s complete length and for each s48/45 domain. Sig-
nificant values were found in the MK test throughout
the whole gene (Table 5), polymorphism being greater
than divergence; this could have resulted from weak
negative selection or balancing positive selection. The lat-
ter is responsible for keeping allele variants (haplotypes) at
intermediate frequencies as a mechanism for evading host
immune responses; however, a major haplotype was found
in the Colombian population whilst the rest occurred at
low frequency. Due to the population structure reported
in America [58], haplotype segregation could have led to
different frequencies or new haplotypes could have diver-
sified within American (or Colombian) subpopulations,
meaning that if just one population is analysed, then bal-
ancing positive selection signals will not always be de-
tected with population methods (Tajima, Fu and Li, Fay
and Wu, Fu and K-test, and H-test). Alternatively, if bal-
ancing selection has resulted from frequency dependent
selection, it would be expected that a haplotype would
be presented as a major allele during a determined period
of time and then become replaced by another less frequent
one as an evasion mechanism. These haplotypes’ frequency
must therefore be evaluated during different intervals of
time in several populations involving larger sampling.
On the other hand, the ω (KN/KS) rate sliding window

showed that most values obtained throughout the gene
were lower than 1, indicating high synonymous substitu-
tion fixation following P. vivax/P. cynomolgi/P. knowlesi
divergence. The same pattern was observed in pv12 and
pv38 (Figure 3 and [29]). The difference between non-
synonymous and synonymous (KN - KS) divergence was
estimated, giving significant negative values (p < 0.001)
in pv41 as well as in the s48/45 domains of this gene
(Table 4). A large amount of negatively selected codons
were identified which were preferentially located in the
s48/45 domains (Figure 3). These results suggested that
p41 had diverged due to negative selection; such pattern
was similar to that previously reported for other mem-
bers of the P. vivax 6-Cys family [29,56]. pv12 and pv38,
like pv41, had various codons under negative selection at
interspecies level which were preferentially located in
the s48/45 domains (Figure 3). Such accumulation of
interspecies synonymous substitutions suggested that
evolution had tried to maintain domain structure in the
different members of the 6-Cys family by eliminating all
deleterious mutations due to the functional importance
which these domains seem to have [17,59].

Conclusions
6-Cys family members seem to play a role during host cell
recognition [17,59]. Due to the high degree of P12, P38
[29] and P41 protein conservation (at both intraspecies
and interspecies level) given by the fixation of a large
amount of synonymous substitutions, these three proteins
may have evolved under strong functional constraints,
possibly due to the presence of s48/45 domains which
seem to have served as ligands for recognising the host
cell [17,59,60]. Consequently, s48/45 domains should
remain conserved as the resulting mutations could be
deleterious; their evolution would thus have been slower
regarding other functionally less important ones. Pv12,
Pv38 and Pv41 thus warrant consideration as valuable can-
didates for developing a vaccine. However, a functional
constraint does not imply that these regions may not vary.
Pv41 s48/45 domains have been seen to have changes in
their protein sequence, which seem to have been positively
selected. Such changes conserve physical-chemical proper-
ties and thus structure/function may not become compro-
mised, but could enable evasion of the immune response.
Including Pv41 in a vaccine should thus be carefully evalu-
ated due to the presence of variants in these regions.
This is also another aspect that must be taken into ac-

count when developing vaccines. It has been proposed
that a completely effective vaccine requires the inclusion
of both functional and conserved regions; however, vac-
cination could thus produce new selective pressure in
these regions and parasites could fix mutations as an
adaptation mechanism (in spite of their functional im-
portance) and the appearance of new variants might thus
reduce vaccine’s efficacy.
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