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Abstract

Background: Even though Plasmodium vivax has the widest worldwide distribution of the human malaria species
and imposes a serious impact on global public health, the investigation of genetic diversity in this species has been
limited in comparison to Plasmodium falciparum. Markers of genetic diversity are vital to the evaluation of drug and
vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite
populations.

Methods: The genetic diversity of eight P. vivax populations (n = 543) was investigated by using two microsatellites
(MS), m1501 and m3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These
were compared with published data of the same loci from six other P. vivax populations.

Results: In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest
heterozygosity within Asian populations, where expected heterozygosity (He) was 0.92-0.98, and alleles with a high
repeat number were more common. Pairwise FST revealed significant differentiation between most P. vivax
populations, with the highest divergence found between Asian and South American populations, yet the majority
of the diversity (~89%) was found to exist within rather than between populations.

Conclusions: The MS markers used were informative in both global and local P. vivax population comparisons and
their seven and eight bp repeat length facilitated population comparison using data from independent studies. A
complex spatial pattern of MS polymorphisms among global P. vivax populations was observed which has potential
utility in future epidemiological studies of the P. vivax parasite.
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Background
Even though the malaria parasite Plasmodium vivax has
the widest global distribution of the five human malaria
species and imposes a serious impact on global public
health, descriptions of global genetic diversity of this para-
site are more limited than for Plasmodium falciparum. A
recent study comparing the total genomic diversity among
six P. vivax isolates drawn from Asia, Africa and South
America with a comparable set of six P. falciparum
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isolates reported twice as much single nucleotide poly-
morphism (SNP) diversity and a far deeper divergence
among the P. vivax geographic strains [1]. There are accu-
mulating reports of clinically severe disease and drug-
resistant P. vivax in some parts of the world [2-8], which
reinforce the need for more detailed exploration of the
global geography of P. vivax genetic diversity.
In the past, the most commonly used genetic markers for

genotyping of P. vivax malaria parasites were antigen-
coding genes, such as the gene encoding the circumsporo-
zoite protein, Pvcsp, and the genes coding for the merozoite
surface proteins Pvmsp-1 and Pvmsp-3α [9-13]. Other
antigen-coding genes such as Pvgam-1, Pvdbp, Pvama-1
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were used less frequently, possibly because of limited diver-
sity of the individual loci [reviewed by [14]]. Comparison
between populations using these markers has been compli-
cated by differences in allele identification protocols used in
different laboratories.
In recent years, microsatellites (MS) as short tandem

repeats found throughout the P. vivax genome [15] have
increasingly been used in studies of genetic diversity in
P. vivax. As MS are generally non-coding, they are not
subject to the same selective forces as antigen-encoding
genes, and are thus more suitable for the analysis of P.
vivax population structure [15,16]. Commonly, multiple
MS loci found on different chromosomes are used in
studies of population structure [6,17-20]. Repeat number
polymorphism observed in a MS is the result of replica-
tion slippage that occurs during DNA replication, when
the new strand mispairs with the template strand, and
the degree of polymorphism is proportional to the
underlying rate of mutation and the effective population
size [15,21]. Slippage events become more common as
the total number of repeats increase [19]. Hence, short
repeat arrays tend to be less polymorphic than longer re-
peat arrays [1,22].
Most MS-based studies of genetic diversity and popula-

tion structure of P. vivax parasites focus on one particu-
lar country or region, but three studies have compared
population level diversity between countries or regions
[17,19,20], with sample sets between 214 to 425 samples.
Two of the studies use a 13–14 tri- and tetra-nucleotide
repeat MS [19,20], while the third study analyses nine
MS with repeat lengths of two to eight base-pair (bp)
[17]. All the studies have revealed high levels of microsat-
ellite diversity, with few private alleles being unique to
populations or a specific geographical area.
The amalgamation of data from independent studies

analysing genetic diversity at MS is hindered by use of
different MS markers and further compounded by diffi-
culties in the standardization of fragment size estimation
on different sequencer machines. To simplify comparison
between studies, a uniform set of MS loci is needed. Se-
lection of MS with repeat lengths above four bp possibly
improves the repeatability of allele classification among
different laboratories as has been observed for P. falcip-
arum MS studies [16].
In the present study the genetic diversity of samples

from Sri Lanka, Nepal, Pakistan, and Afghanistan in
South Asia, Venezuela and Ecuador in South America
and Sudan and Sao Tome in Africa were analysed, using
two MS m1501 (with seven bp repeat lengths) and
m3502 (with eight bp repeat lengths) located on chromo-
some 1 and 3, respectively, initially described by Imwong
et al. [17]. The data generated were compared with the
published allele frequency data from Korea [6], India,
Laos, Thailand and Colombia [17] and PNG [18]. The
study evaluates the global and local genetic diversity at
these two MS loci and assesses their differentiation
among P. vivax populations worldwide.

Methods
Sample collection
The current study analysed 543 P. vivax samples from
Asia (Sri Lanka, Pakistan, Afghanistan, and Nepal), Africa
(Sudan and São Tomé) and South America (Venezuela
and Ecuador) and compared these data with published
MS data from India, Thailand, Laos, Korea, PNG and
Colombia described by others [6,10,17,18]. In total, 1,440
samples from 14 countries across three continents were
compared, and the details of where and when these were
collected are detailed in Table 1.

Samples from Nepal
Samples from Nepal were collected in two separate stud-
ies estimating the malaria burden in Nepal; 38 samples
collected in 2009–2010 from Jhapa (n = 33) and Banke
(n = 5) [23], and 17 samples in Kanchanpur (n = 5) and
Jhapa (n = 12) in 2006 (Sean Hewitt, pers comm).

Samples from Pakistan and Afghanistan
The samples collected between 2004 and 2006 from
closely linked sites in Pakistan (n = 236) and Afghanistan
(n = 93) 50 km apart were combined because of the similar
demographic settings [24]. A second set of Pakistan sam-
ples (n = 139) was independently collected between 2004
and 2006 in Adizai, Baghicha, and Khagan villages, close
to the North West Frontier Province Peshawar [25], while
60 additional samples were collected in the Ashaghroo
refugee camp, Adizai, Pakistan (Kate Kolaczinski, pers
comm).

Samples from Ecuador
In total, 17 samples were collected in the Sucumbíos
Province in Ecuador in 2009 as a part of the Malaria
transmission and natural resource management in the
Ecuadorian Amazon project (Francisco Morales, pers
comm).

Samples from Venezuela
The Venezuelan samples (n = 130) were from cross-
sectional malaria surveys conducted in ten communities
along the Padamo River, Amazonas State in 1996 and
1997 [12,26].

Samples from Africa and São Tomé
In Sudan, eight samples were collected in the village of
Asar in Gedaref State during a community-based survey
as a part of a P. falciparum artemether-lumefantrine effi-
cacy trial during 2006 (Nahla Gadalla, pers comm). Four
samples from São Tomé were collected in 2000 from



Table 1 Heterozygosity (He) at the two microsatellite loci m1501 and m3502 in every survey

Study site n Year n (%) m1501 MOI n (%) m3502 MOI m1501 +m3502 Ref

He He n (%)

Asia Sri Lanka 386 2002-2006 352 (91.2) 0.85 1.276 357 (92.5) 0.74 1.073 338 (87.6) *and [10]

Nepal 55 2006, 2009-2010 53 (96.4) 0.94 1.189 49 (89.1) 0.80 1.347 47 (85.5) *and [23]

Pak/Afg 329 2001, 2003-2007 315 (95.7) 0.91 1.365 314 (95.4) 0.80 1.650 309
309 (93.9)

*and [24,25]

Korea 58 1996-2000, 2007 58 (100) 0.42 — 58 (100) 0.73 — 58 (100) [6]

India 90 2003-2004 78 (86.7) 0.90 — 79 (87.8) 0.86 — — [17]

Laos 81 2001-2003 81 (100) 0.83 — 74 (91.4) 0.90 — 74 (91.4) [17]

Thailand 92 1992-1998 91 (98.9) 0.89 — 91 (98.9) 0.85 — — [17]

PNG 108 2004-2005 107 (99.1) 0.91 1.907 108 (100) 0.86 1.648 107 (99.1) [18]

South A. Columbia 82 2001-2003 80 (97.6) 0.70 — 82 (100) 0.76 — 80 (97.6) [17]

Venezuela 130 1996-1997 113 (86.9) 0.73 1.416 98 (75.4) 0.57 1.235 97 (74.6) *

Ecuador 17 2009 17 (100) 0.22 1.176 17 (100.0) 0.76 1.176 17 (100.0) *

Africa Sudan 8 2006 7 (87.5) 0.71 1.571 4 (50.0) 1.00 1.235 3 (37.5) *

São Tomé 4 2000 4 (100.0) 0.83 1.250 4 (100.0) 0.83 2.250 4 (100.0) *

n= 1440 1992-2010 1356 (94.2) 1.614 1335 (92.7) 1.490 1134/1258 (90.1)

PNG: Papua New Guinea. Pak/Afg: Pakistan/Afghanistan. South A: South America. The number (and percentage) of samples successfully amplified for each MS
locus and for the two loci combined are shown in every survey. Multiplicty of infection (MOI) is calculated by averaging the number of alleles detected in the
total number of PCR positive samples. Data not available are indicated by “—”. Reference marked as * is this study.
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Riboque (n = 3) and Porto Alegre (n = 1), kindly provided
by Dr João Pinto.

Samples from Sri Lanka
Samples from Sri Lanka were collected 2002–2006 from
multiple sites across Sri Lanka (n = 386) [10].

Published studies
There are published data on allelic polymorphism at the
same MS loci in P. vivax populations in Colombia (n =
82), India (n = 90), Laos (n = 81), and Thailand (n = 92)
previously described by Imwong et al. [17]. Other stud-
ies have described polymorphism in samples from Korea
(n = 58) [6] and Papua New Guinea (PNG) (n = 108)
[18]. The samples from PNG were used only to compare
expected heterozygosity values (He) as the frequency of
the individual alleles is not published [19].

Amplification and fragment analysis of the Plasmodium
vivax samples
The 543 P. vivax samples analysed were available either
as blood spots on filter paper, as DNA already extracted
from filter paper (using the Chelex-100 method [27]
with modifications detailed in [28]) or as a blood smear
on glass slides. The blood smear samples were a subset
of the Nepalese samples and the method of DNA extrac-
tion is described in [23]. Sample size of the individual lo-
cations, year of collection, number of amplified samples,
and percentage of polyclonal samples per locus are
shown in Table 1.
The two MS, m1501 and m3502, were amplified by a
semi-nested PCR and analysed on an ABI 3730XL genetic
analyzer (Applied Biosystems, Foster City, CA, USA) using
primers described by Imwong et al. [17], using a proced-
ure described previously [10]. The length of the PCR frag-
ment was determined by reference to the Genescan 500
Liz size standard (Applied Biosystems), using Genemapper
vs. 4.1 (Applied Biosystems). Repetition of PCR was per-
formed with 2 μl DNA template in the primary PCR
whenever a sample was negative at one of the loci. If a
sample was PCR negative at both loci, the sample was ex-
cluded from further analysis. Limited volumes of DNA in
some individual samples from Venezuela, São Tomé,
Sudan, and Pakistan prevented repeat analysis of a subset
of these samples.
Determining whether a sample was mono- or polyclonal

was based on analysis of electropherograms obtained by
Genemapper. Polyclonality of samples was determined
when > one peak was seen in the electropherogram. The
existence of more than one peak indicates the presence of
multiple genotypes or clones within an infection. Multipli-
city of infection (MOI) among a group of samples was cal-
culated by dividing the total number of clones detected in
all PCR-positive samples by the total number of PCR-
positive samples.
For the estimation of allele frequencies one allele was

counted per sample. This was to avoid oversampling of
rare alleles. In the case of mixed infections, the ‘major’
allele was counted. The relative size of the peaks was
used to establish major versus minor alleles; if one allele
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peak was twice the height of the other allele(s) then a
major allele was assigned. If peaks were of equivalent
size or minor peak greater than 50% of the major, the al-
lele was chosen by computer randomization.
PCR fragment-length measurements were calibrated

against known repeat number by sequencing a subset of
11 Pakistan samples on an ABI Prism 377 (Perkin-Elmer)
using ExoSAP-IT PCR Clean-up Kit (GE Healthcare) and
the Big Dye terminator reaction mix (Perkin-Elmer), and
using the m1501 and m3502 primers. After sequencing,
the individual haplotypes were aligned with the published
sequence of the Sal-1 strain (GenBank accession number:
AAKM01000015) and analysed by use of the DNASTAR-
Lasergene software. There was good concordance between
estimations of repeat number based on the PCR fragment
size and that confirmed by direct sequencing.

Measures of diversity and population differentiation
The analysis of allelic diversity measured in the P. vivax
study populations used four tests: 1) expected heterozy-
gosity (He), which can be defined as the chance of drawing
two different alleles from a population, ranging between
0–1. It was calculated as He = [n/(n-1)][1-∑pi2], where n is
the number of samples and pi is the frequency of the ith al-
lele. The estimation of He for each of the two loci in P.
vivax in PNG was taken from the original publication
[18]; 2) computation of FST pairwise population genetic
distances; 3) analysis of molecular variance (AMOVA) at-
tributes the proportion of the total genetic variance which
is found within populations (countries), between popula-
tions within groups (continents), and among groups; and,
4) isolation by distance (IBD) was used to test for any cor-
relation between FST estimates and geographic distances
using Mantel’s test [29]. The calculations were performed
by plotting pairwise FST/(1-FST) against the natural loga-
rithm of the geographical distance (in km). Evaluation of
IBD was performed by showing R squared (R2), indicating
the percentage of the variance explained by the model, the
correlation coefficient r as a measure of the degree of lin-
ear relationship between two variables and the P-value.
The calculations in all tests were performed by including
both mono- and polyclonal samples.
The software used for the calculations of He was Excel

add-in MS Toolkit® software, whereas the program FSTAT
was used to perform the pairwise FST estimates and IBD
calculations with 10,000 permutations [29]. Lastly, linkage
equilibrium (LD) and AMOVA calculations were per-
formed in Arlequin software version 3.11 [30], and sig-
nificance of the AMOVA results was assessed by a
randomization test with 10,000 permutations.

Isolation by distance (IBD)
To enable calculations of IBD, geographical distances in
km were determined by use of Google Earth [31]. The
samples from India, Korea, Laos, Thailand, Ecuador, and
Sudan were originally collected at one site in each country,
while the remaining samples originated from two to ten
sites per country. To simplify the IBD calculations, one
site was chosen per country. In Sri Lanka, most samples
were collected from the district of Anuradhapura, hence
the site of Anuradhapura General Hospital was chosen.
The majority from the Pakistan/Afghanistan sample col-
lection was from the Peshawar district, hence this site was
chosen. In Colombia, five sites were included in the study,
with ten to 20 samples collected per site [17]. The Tumaco
municipality is located approximately in the middle of the
five districts, and so this was chosen to represent the
Colombian samples. The Gedaref State in Sudan, Riboque
in São Tomé, the Jhapa district in Nepal, the approximate
middle of the DMZ between North and South Korea and
the centre part of Rio Padamo (Venezuela) were chosen to
represent these countries.

Results
In total, 543 samples from Sri Lanka, Nepal, Pakistan and
Afghanistan, Venezuela, Ecuador, Sudan and Sao Tome
were analysed. The number and percentage of samples
successfully amplified at each locus are shown in Table 1.
The rate of success was similar for m1501 (94.2%) and
m3502 (92.7%) (Table 1). Additional MS data on m1501
and m3502 obtained from published studies are also in-
cluded in Table 1 and the He at each locus in every site is
compared. A high He was observed at both loci in all the
sites, with variations among sites being broadly consistent
across the two loci. The South American sites had lower
diversity (He range: m1501 = 0.22-0.73, m3502 = 0.57-0.76)
than Asian (He range: m1501 = 0.42-0.94, m3502 = 0.73-
0.90) and African sites (He range: m1501 = 0.71-0.83,
m3502 = 0.83-1.00).

Standardizing repeat number at microsatellites m1501
and m3502
For the analysis of genetic differentiation between popula-
tions, independently derived data from published studies
of P. vivax in Thailand, Laos, India and Colombia pub-
lished by Imwong et al. [17] and from Korea published by
Honma et al. [6] were incorporated in the analysis. Allele
nomenclature prevented amalgamation of data from a
study in PNG [18] in the meta-analysis. To combine these
data with the data obtained from the present study, frag-
ment sizes were grouped according to the estimated num-
ber of repeats under a common allele name. Additional
files 1 and 2 show how alleles common to different studies
were matched and how the dataset was unified.
A few m1501 alleles from Sri Lanka and Pakistan sam-

ples and m3502 alleles in samples from Laos and Sri
Lanka showed irregular spacing caused by a fragment size
shift of a few nucleotides, presumably caused by insertion/
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deletion within the PCR amplified fragment. These irregu-
lar alleles were classified under the same repeat number as
those of similar size elsewhere but are distinguished in the
Tables by appending ‘a’ and ‘b’ to the repeat number. In
the allele frequency and Fst calculations subgroups a and
b were combined [see Additional files 1 and 2].

Polymorphism at microsatellites m1501 and m3502
The m1501 marker discriminated 29 alleles in the global
dataset while m3502 discriminated 18 alleles. The number
of alleles differed remarkably between populations. Asian
P. vivax populations were highly polymorphic at both loci,
with the exception of the Korean P. vivax population. This
contrasted with the South American P. vivax populations,
which were less diverse. Diversity at m1501 was highest in
Pakistan where 27 alleles were detected among 315 sam-
ples, while only two were seen in Ecuador (n = 17) and
three in Korea (n = 58) [see Additional file 1]. For the
m3502 marker, again, the highest diversity was found in
Figure 1 Allelic diversity at the MS m1501 (A) and m3502 (B) in P. viv
Ecuador) and Asia (India, Laos, Thailand, Korea, Nepal, Pakistan and S
fragment size according to the number of repeats. In brackets are mention
Pakistan, while the lowest diversity was observed in the
African and Korean samples where only three alleles
and four alleles per site were detected, respectively [see
Additional file 2]. For both markers, the most common
alleles had a repeat size ranging from three to six re-
peats. This was true among all study populations except
Korea, where a 13-repeat m3502 allele, named 216,
comprised 39.7% of the 58 samples.
Alleles with long fragment lengths, above 12 repeats for

m1501 and 10 repeats for m3502, were detected more
commonly in Asian than elsewhere (Figure 1A and B). In
general, the maximum number of repeats seen in South
America and Africa was 17 repeats for m1501 and 11 re-
peats for m3502 repeats while in Asia, repeat lengths of
up to 31 for m1501 and 19 for m3502 were common. An
exception to this trend was two samples from Venezuela
where long-fragment m1501 alleles of 31 repeats were ob-
served, while a 21-repeat m3502 allele was detected in
Sudan.
ax samples from South America (Columbia, Venezuela and
ri Lanka). The MS alleles are divided into groups of increasing
ed the number of samples included from each continent.



Table 2 Genetic differentiation between P. vivax
populations measured by pairwise FST
m1501 Africa South America Asia

Africa (11) ** NS

South America (210) 0.1824 **

Asia (1028) 0.0446 0.0869

m3502 Africa South America Asia

Africa (8) ** NS

South America (197) 0.1050 **

Asia (1022) 0.0049 0.0752

The pairwise significance after standard Bonferroni corrections are listed as:
“**” significance at the 1% nominal level while “NS” stands for non-significant.
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Pairwise differentiation between Plasmodium vivax
populations
Plasmodium vivax populations in South America
(Venezuela, Colombia and Ecuador) showed evidence of
population structure. FST using the m1501 marker re-
vealed a significant difference between Colombia and the
two other South American countries (FST = 0.05-0.21),
while FST using the m3502 marker, found significant dif-
ferences between Venezuela and the two other South
American countries (FST = 0.26-0.27) [see Additional
file 3]. Generally, P. vivax populations from these three
countries were significantly different from all the Asian
countries, with few exceptions. Low, but significant pair-
wise FST estimates were found among the Asian countries;
0.02-0.31 (m1501) and 0.02-0.14 (m3502). The analysis of
IBD was done by using pairwise genetic and geographic
distances. Evidence for IBD was found for both loci by
Mantel’s test; m1501: (R2 = 6.35, r = 0.0789, P = 0.04), and
m3502: (R2 = 7.99, r = 0.0285, P = 0.02).
FST estimates using the two loci combined were slightly

higher and pairwise estimates between P. vivax popula-
tions from Korea, Nepal, Pakistan, Sri Lanka, Venezuela,
Ecuador, Sudan, and São Tomé, revealed FST between
0.01-0.40 [see Additional file 4]. The highest difference
was found between the P. vivax populations in Ecuador
and Sudan and the lowest between P. vivax populations
from Nepal and Sri Lanka. The two-locus haplotypes were
often not specific to a single sample set from one country,
but present in more than one P. vivax population as for
instance the ‘107-142’ haplotype seen in Nepal, Pakistan
and Sri Lanka [see Additional file 5].

The allelic diversity within and between Plasmodium vivax
populations
The allelic diversity within the different P. vivax popula-
tions was estimated by He. The average He per locus was
0.90 (m1501) and 0.84 (m3502). The He varied consider-
ably from site to site, but was generally lowest in the three
South American countries (He = 0.22-0.76) and highest in
the Asian populations (He = 0.80-0.94) with the exception
of Korea, which possessed very low He values of 0.42
(m1501) and 0.73 (m3502) (Table 1 and Additional file 6).
The AMOVA analysis found the bulk (~89%) of genetic
variance occurs within the 14 P. vivax populations [see
Additional file 7], ~9% of the variance occurs between
populations within continents, and only about 4% of the
variance occurs between the continents [see Additional
file 7].
Comparison of the three continents (South America,

Asia and Africa) showed that the South American P. vivax
population was distinct from the two other continents,
with low but significant FST estimates (m1501 = 0.09-0.18,
m3502 = 0.08-0.11) (Table 2). This may be attributable to
the lower diversity found in South America where the
m1501 marker possessed the lowest He values (n = 210,
He = 0.71), thereafter Africa (n = 11, He = 0.84) whereas
Asia had the most diverse P. vivax populations in this
study (n = 1,028, He = 0.92). The same ranking was seen
using the m3502 marker: South America (n = 197, He =
0.76), Africa (n = 8, He = 0.86) and Asia (n = 1,022, He =
0.84).

Discussion
The main objective of the current study was to evaluate
the global genetic diversity of P. vivax populations by
examining the two MS, m1501 and m3502 in P. vivax sam-
ples collected from Ecuador, Venezuela, Sri Lanka,
Afghanistan, Pakistan, Nepal, São Tomé, and Sudan (n =
543). Although some of these counties were represented by
a large P. vivax sample set, the limited available sample set
from Ecuador (n = 17), São Tomé (n = 4) and Sudan (n =
8) means caution should be applied to the interpretation of
the results regarding these sites. Furthermore, there is a
significant time interval between the collection of the
Venezuelan samples in 1996–1997 and the other South
American samples some years later. Where possible, the
resulting data were compared with published data from
studies of the same markers in Colombia, India, Laos,
Thailand, PNG, and Korea (n = 897).
The geographical genetic diversity of the P. vivax pop-

ulations was shown to be highly diverse, with the major-
ity of the diversity found to be present within the
populations (~89%). In total, 29 m1501 and 18 m3502
alleles were detected with average He estimates per allele
of 0.90 (m1501) and 0.84 (m3502), lowest in the South
American samples and highest in Asia. The He values
found in this study by use of only two MS (He = 0.78-
0.98) were high compared to He estimates reported by
other studies (He = 0.48-0.87), which have analysed sam-
ples from the same three continents including nine to
14 MS [6,17,20,32], and the He estimates of 0.26 to 0.91
reviewed by others [14].
South American and Asian populations were found to

be significantly different from each other by pairwise
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FST, whereas the African population generally could not
be distinguished statistically from most other popula-
tions, most probably this was due to the limited sample
size. The FST estimates ranged from 0.02-0.63 (m1501)
and 0.03-0.28 (m3502) per site, and a Mantel test correl-
ating pairwise genetic and geographic distances between
populations showed evidence for IBD.
The high frequency of alleles with low repeat number

(one to six repeats) was common for all the P. vivax
populations, and the rarer long-repeat fragments were
mainly restricted to Asia. Only a limited number of sam-
ples from Africa were analysed, but these suggest Africa
is intermediate between South American and Asian pop-
ulations. The long repeat-alleles appearing in the Asian
P. vivax populations might relate to factors, such as
higher P. vivax endemicity in Asian countries.
Malaria endemicity is expected to have a significant in-

fluence on genetic diversity and levels of inbreeding/out-
breeding. Among the populations sampled in the present
study, Asian populations were the most diverse, although
a range of He estimates and MOI values were measured
among the individual populations sampled. The maximum
MOI for an individual sample was six clones and this was
found in Pakistan. The mean MOI in Pakistan was 1.55
and rates of heterozygosity were also high. The complexity
of the Pakistan/Afghanistan population is striking, since
these areas are not generally considered highly endemic.
Similar rates of heterozygosity were reported in PNG [33]
and the equivalent mean MOI value there was 1.82. It is
generally accepted that high polyclonality increases the
probability for heterogametic genetic recombination dur-
ing the sexual cycle occurring in the mosquitoes, resulting
in sporozoites with novel genotypes [34]. This may also
promote heterozygosity at MS loci through a process of
strand slippage during recombination. The mutation rate
of MS in the P. vivax genome is unknown, but the high
rates of complexity observed here are fully consistent with
that reported from previous studies of P. vivax [10,32,35].
The above model of polyclonality and diversity is devel-

oped based on extensive and cumulative P. falciparum
research, and is not the complete explanation of the
mechanisms that contribute to P. vivax diversity. Genome
wide analyses of MS diversity have shown P. vivax diver-
sity is significantly greater than P. falciparum [1], but also
that genome-wide SNP diversity is greater among P. vivax
than P. falciparum [1]. The same study showed a longer
time to most recent common ancestor among P. vivax iso-
lates suggesting P. vivax diversity is more ancient. Al-
though just six P. vivax isolates were compared, similar
geographic trends were observed. South American isolates
Brazil 1, Salvador 1 and Peru shared a more recent com-
mon ancestor with each other than with isolates from Asia
(India, Korea) and Africa (Mauritania), which had deep
branch lengths and did not cluster. The data presented in
this study also showed high level of diversity and differen-
tiation between the South American and Asian popula-
tions and the findings indicate that further investigation of
genome-wide diversity among P. vivax populations from
Central and Southeast Asia may reveal even greater levels
of genetic diversity.
A ‘P. falciparum-model’ may not entirely predict and

explain genetic diversity of P. vivax populations. Import-
ant biological differences between P. vivax and P. falcip-
arum may also be at play. In P. vivax, gametocytogenesis
occurs earlier in clinical episodes, and reticulocytes are
essential to both invasion and relapse [36]. Significant
linkage disequilibrium has been observed in the included
sample set from Sri Lanka [10], the Colombian samples
[17], the Korean samples [6], and by others analysing
samples from Sri Lanka [19] and Brazil [35] and these
findings suggest that clonal expansions of specific geno-
types may be epidemiologically significant and further
studies are needed to elucidate the local dynamics of P.
vivax epidemics.
Conclusions
The data presented in this study show the utility of the
MS m1501 and m3502 in studies of P. vivax population
structure, irrespective of geographical origin, although
more markers might be needed in hypo-endemic areas if
distinguishing between individual parasites is a priority.
Ultimately, whole- genome analyses will provide detailed
estimation of the total genetic diversity –the results pre-
sented in this study suggests that the greatest diversity
will be in Southeast Asia.
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