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Abstract

correctly predicted as having zero cases.

Background: Mapping malaria risk is an integral component of efficient resource allocation. Routine health facility
data are convenient to collect, but without information on the locations at which transmission occurred, their utility
for predicting variation in risk at a sub-catchment level is presently unclear.

Methods: Using routinely collected health facility level case data in Swaziland between 2011-2013, and fine scale
environmental and ecological variables, this study explores the use of a hierarchical Bayesian modelling framework
for downscaling risk maps from health facility catchment level to a fine scale (1 km x 1 km). Fine scale predictions
were validated using known household locations of cases and a random sample of points to act as pseudo-controls.

Results: Results show that fine-scale predictions were able to discriminate between cases and pseudo-controls with an
AUC value of 0.84. When scaled up to catchment level, predicted numbers of cases per health facility showed broad
correspondence with observed numbers of cases with little bias, with 84 of the 101 health facilities with zero cases

Conclusions: This method holds promise for helping countries in pre-elimination and elimination stages use health
facility level data to produce accurate risk maps at finer scales. Further validation in other transmission settings and an
evaluation of the operational value of the approach is necessary.

Background
Mapping malaria risk is an integral component of effect-
ive and efficient resource allocation. Traditionally, risk
maps have been based on infection prevalence data
collected during cross-sectional surveys such as MIS
(malaria indicator surveys) or national school surveys
[1,2]. In low transmission settings, because there are so
few infections possible to detect in the community, the
sample size requirements for both estimation and
spatial prediction of infection prevalence are very large
making such surveys operationally and financially un-
feasible [3,4]. Furthermore, such surveys are typically
conducted every few years, yet elimination programs
require timely, if not real-time, information on malaria
transmission to ensure they can respond rapidly to
changing epidemiological circumstances.

Using data from Swaziland, Cohen et al. [5] showed
that routine surveillance data can be used to generate fine
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scale risk maps (relative probability of being an incident
case) if the household location of cases is known using
ecological niche modelling. Georeferenced case data is
available in Swaziland due to a strong active surveillance
programme, which aims to follow up and map all cases
to their home [5,6]. In most low transmission settings,
however, household locations of cases is often not known,
with routine malaria surveillance systems reporting only
the numbers of cases confirmed at each health facility.
Typically, this data is aggregated to sub-district or district
level before modelling, making predictions only possible
at this coarse scale [7,8]. A method to predict fine-scale
transmission hotspots to village and sub-village level from
health facility level would give programmes actionable
information to target interventions without having to first
geolocate cases back to household.

Cross-scale prediction - predicting at fine-scales using
data available at coarser scales - is a familiar issue encoun-
tered by ecology researchers [9-11]. One approach, tested
by several researchers is ‘direct prediction’ whereby
data are modelled at coarse scale and inferred statistical
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relationships are then projected onto the fine-scale covari-
ates to produce fine-scale predictions [9,11]. Modelling
data at one scale and predicting at another can, however,
lead to spurious and unreliable predictions. An alternative
approach is termed ‘point sampling’ whereby a defined
number of randomly selected pixels within each coarse
scale unit are selected and modelled with the outcome
[9,12]. While this avoids some of the drawbacks of direct
prediction, the arbitrary nature of selecting pixels within
coarse units may lead to unreliable predictions.

More recently, Keil et al. applied a Hierarchical Bayesian
Modelling (HBM) approach which treated fine-scale pres-
ences/absences of bird species in California as latent, or
unobserved, variables, which were modelled as a function
of observed fine-grain environmental variables and con-
strained by observed coarse-grain presences/absences
using logistic regression [13]. This approach allows fitting
of realistic and multi-scale spatial models with both the
observation and the process components, and also enables
estimation of the uncertainty in the fine scale predictions.
Here, similar modelling methods were applied to predict
malaria risk at fine spatial resolution from routine health
facility level case data in Swaziland with the goal of de-
vising methods that can be applied to other settings
where aggregate health facility data are routinely re-
ported. As health facility case data are influenced by
treatment-seeking behaviour of the population, informa-
tion on treatment-seeking, collected during the most re-
cent Swaziland MIS, are incorporated into the modelling
process.

Methods

Case data

Data were extracted from the Swaziland Malaria Surveil-
lance Database System, which includes information on
the number of RDT and microscopy confirmed malaria
cases identified at each of the 165 georeferenced public
health facilities that offer malaria diagnosis, as well as
active case investigation of all confirmed malaria cases
contacted and followed-up. Active case investigation
data includes the GPS location of case households and
information on travel history from the four weeks prior
to permit classification of whether infections were locally
acquired or imported. As there appear to be different
drivers of transmission between seasons [14], for the
purpose of this study only local cases presenting during
high season (January 1 to April 30) between 2011-2013
that received an investigation were included in the ana-
lyses. A case is classified as local if the case resides in, or
travels to, a receptive area of Swaziland (determined by
historical transmission records and historical vector
surveillance records) and has not reported any travel
to a high endemic area. Details of this surveillance system
employed are reported elsewhere [5,14]. Data from each
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facility were used to generate maps, while the active inves-
tigation data were used to examine map accuracies.

Ecological/environmental covariates

Long-term minimum, maximum and mean land surface
temperature and precipitation data were extracted from
the WorldClim datasets [15]. Enhanced Vegetation Index
(EVI), Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI), derived
from MODIS data at 250 m resolution, were extracted
from Google Earth Engine [16]. As the case data span
three years, mean EVI and NDVI were calculated for the
month of January in the years 2011 to 2013. January was
chosen as this represents the month with the highest
rainfall. The Shuttle Radar Topography Mission (SRTM)
digital elevation model at 90 m resolution was used to
estimate altitude [17]. Topographic Wetness Index (T'WI)
was calculated using methods described elsewhere [18].
Land cover data were obtained using the most recent
(2009) datasets generated by the GlobCover project at
300 m resolution [19]. To ensure that the land cover
classes used for modelling were the same as those used
for country wide prediction, the land cover classes were
reclassified into six groups (1 - cultivated terrestrial areas
and managed lands; 2 — woody trees; 3 — shrub; 4 —
herbaceous; 5 - artificial and bare areas; 6 water bodies).
Data on population density, available for the year 2010,
were downloaded from the Worldpop project (www.
worldpop.org.uk) at ~100 m resolution. Distance to near-
est river was calculated with ArcGIS using Digital Chart
of the World data on locations of rivers available online
[20]. All covariate data were resampled to the same extent
at 1 km resolution using the ‘raster’ package in R [21]. Re-
sampling of population data involved summing pixel
values to preserve the same total population. Resampling
of elevation, EVI, NDVI, NDWI, temperature, precipita-
tion and distance to river layers was done using bilinear
interpolation, whereas categorical land cover data were
resampled using the nearest neighbour method. All con-
tinuous covariates were centered around zero and scaled
by dividing by the standard deviation.

Catchment areas

As health facility catchment area boundaries are not
available, these were estimated using travel times gener-
ated using a travel model which accounts for slope, land
cover and road and river layers to generate a travel time
surface. Full details of this approach are found elsewhere
[22]. Briefly, Tobler’s hiking function [23] was used to
calculate walking speed as a function of slope (Table 1).
The speed at which at individual can walk was also as-
sumed to be influenced by land cover type, with rivers
being impassable by foot. Assuming individuals travel by
road transport when reaching a road, travel speed along
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Table 1 Data used to estimate travel time to public
health facilities in Swaziland

Data layer Category Speed (km/h)
Land cover Tree cover, broad leaved 5
deciduous or evergreen
Tree cover, needle leaved, 5
deciduous or evergreen
Tree cover, other 2
Shrub cover 5
Herbaceous cover 3
Sparse herbaceous 4
Cultivated and managed areas 5
Bare areas/desert 2
Water bodies/rivers 0
Digital elevation (slope) 0° (flat) 5.00
5° 3.71
-5° 5.27
Roads Motorway/trunk 80
Primary/secondary 60
Tertiary/unclassified 10

roads was assigned according to road type (Table 1).
Slope was calculated using the SRTM digital elevation
model with land cover type calculated using GlobCover
data and locations of rivers via the Digital Chart of the
World data. Road data were obtained via the Open
Street Map project [24] as this appeared to provide the
most comprehensive data. Using satellite imagery to
guide classification, Open Street Map road classes were
reclassified into three groups which were assigned dif-
ferent travel speeds: a) motorways and trunk roads; b)
primary and secondary roads; and c) tertiary and unclassi-
fied roads (Table 1). Using the gdistance package [25] in R
(see Additional file 1 for example code) catchment areas
were derived by identifying, for each pixel, the closest
health facility offering malaria diagnosis by travel time
(Figure 1B). If more than one health facility was present
in a single 1 km x 1 km pixel, case data from the corre-
sponding health facilities were merged (summed) before
analysis.

Treatment-seeking

As not all individuals with malaria seek treatment at
public health facilities, modelling the raw case data could
lead to spurious estimates of associations between risk
and covariates. Such a phenomenon is analogous to the
species modelling problem where certain environmental
conditions, that may be related to species occurrence, in-
fluence the detectability of that species [26]. From a mal-
aria perspective, this requires a step that accounts for the
fact that not all individuals seek treatment for malaria and
that this phenomenon may vary as a function of travel

Page 3 of 9

time to health facility. To model the relationship between
treatment-seeking at a public facility and travel time to
health facility, treatment-seeking data from the 2010
Swaziland MIS were used. Typically, data on where indi-
viduals with reported fever in the previous two weeks
seek treatment is used to assess malaria treatment-
seeking behaviour [22]. However, only 88 individuals
from the Swaziland MIS reported having had fever in
the previous two weeks limiting the use of this informa-
tion. Instead, data from a total of 2,377 heads of house-
holds were available on the response to the question on
the source, if any, of treatment sought should they, or
members of their family, display signs or symptoms of
malaria. Answers were recorded as 1 if the individual
responded that they would visit a public facility and 0 if
they would visit a private facility, traditional healer, or
would not seek treatment. Using GPS coordinates for
households collected during the MIS, the travel time to
nearest health facility was calculated for each household
using the modelled travel time surface, as described above.

Statistical analysis

A hierarchical modelling framework [27,28] was used to
link fine scale covariate data with catchment level case
data, accounting for treatment-seeking. There were 142
catchments indexed by j where j€1:142, and each catch-
ment contains #; pixels of 1 km?. Each pixel is indexed by
k where ke1:n;. There were also 2,377 individuals for
which information on malaria treatment-seeking was
available, indexed by i where i€ 1:2,377.

Cross-scale model

The relationship between travel time (¢;) and the probabil-
ity of a public facility being used (/,) for each individual (i)
was modelled using a logistic regression.

logit(h;) = a+ Byti (1)

This model was then used to predict for each pixel the
probability that an individual would seek treatment for
malaria in a public facility (/) for every k™ 1 km? pixel in
each of the j* catchment in Swaziland. This was multi-
plied by the unobserved or ‘latent’ pixel level probability
of there being a case (pj) to produce the pixel probability
of observing a case (d;), where (p;) was modelled as a
function of the N observed fine-scale environmental co-
variates (X) plus a catchment level random effect (1))
using logistic regression:

dj = ijhjk (2)
Iogit(pjk) = a+ ZN/))NXNJk + u; (3)

The probability of a case being observed within the jth
catchment (P;) was defined as the sum of the expected
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Figure 1 Map of Africa showing the location of Swaziland (inset map). A - Household location of cases occurring between January-April
2011-2013 within Swaziland, B — Locations of health facilities offering malaria diagnosis with modelled catchment areas based on travel time and
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number of observed cases per catchment pixel (k € 1:1))
over the catchment population (M;), where M; equals
the sum of the population within each of the catchment
pixels (m72):

}’I,'
E djxm
—1 KT nj
= kli’ M /

Pp; j = D gy Mk (4)

J
The number of cases per catchment C; was treated as

a random draw from the catchment population M; with
the probability of selecting a case P;:

C; ~ Binomial (M;, P;) (5)

Equations 1-5 allowed calculation of the likelihood of
observing the data (C;) given the model and the input
predictors (£,Xx,x). The model can then be fit either by
numerically maximizing the likelihood, or by Markov
Chain Monte Carlo (MCMC). The latter option was
chosen as it enables estimation of uncertainty about the
relationships represented by S (Equations 1 and 3) and
also the uncertainty about model predictions both at the
pixel scale (pj) and the catchment scale (P;).

To select which covariates to include in the fine-scale
equation, lasso penalization, which shrinks estimates of
those coefficients not associated with the outcome

towards zero, was used [29]. In this way, lasso penalization
acts as a way to select which covariates to retain in the
model. All covariates were included in an initial lasso
regression excluding a catchment level random effect.
Variables with 95% Bayesian credible intervals that did
not cross zero were then included in a standard (non-
lasso) regression model with a catchment level random
effect. Following inclusion of a catchment random ef-
fect, any variables with 95% Bayesian credible intervals
that did not cross zero were retained in the final model.
For model fitting, an MCMC sampler in JAGS [30] was
used to run 2 MCMC chains with 50,000 iterations as
burn-in and 20,000 iterations saved for inference, thinned
every 20 used to store model parameter estimates. Con-
vergence was assessed by visual inspection of trace plots
of chains.

Model evaluation

To assess model fit at the catchment scale, predicted
catchment numbers of cases were estimated by multiply-
ing the predicted probability of there being a case (poster-
ior mean) by the population for each pixel. These values
were then multiplied by the posterior mean of the predicted
probability of a case presenting to a public health facility.
Predicted numbers of cases per pixel were then summed
across catchment areas to obtain predicted numbers of
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cases per health facility. These values were then rounded to
the nearest whole number and compared to the observed
numbers of cases at each health facility using scatter plots
as well as by calculating root mean squared error (RMSE)
and mean absolute error (MAE).

To evaluate the accuracy of the pixel scale predictions
from the model, the fine scale predictions (posterior
mean) at cases were compared to a random selection of
pseudo-controls. 10,000 pseudo-controls were selected
by sampling pixels with replacement from throughout
Swaziland with probability proportional to the pixel
population density and the probability of seeking treat-
ment at a public health facility (using model parameters
from Equation 1). Mean prediction values were compared
using box-plots and Area Under the Curve (AUC), which
is the probability that prediction values at a randomly se-
lected case will be higher than at a randomly selected con-
trol. Uncertainty in the fine scale model predictions were
visualized by plotting the lower (2.5%) and upper (97.5%)
prediction interval of the posterior distribution of pj.

Results

Of the 812 cases that occurred between 2011-2013, 471
(58%) received a case investigation. Of those, a total of
221 locally acquired cases occurred between January and
April in the years 2011 to 2013 and were included in the
analysis (Figure 1A). Using modelled catchment areas to
estimate catchment population (Figure 1B), catchment
area incidence estimates suggested a tendency for higher
risk in northern and eastern regions of the country
(Figure 1C).

Of the 2,377 individuals asked about seeking treatment
should they believe they had malaria, 98% answered that
they would seek treatment at a public facility. Despite
these high rates, results from the model showed that the
odds of seeking treatment for malaria at a public facility
were slightly, but significantly, negatively associated with
travel time (centered and scaled) to nearest public health
facility (Odds Ratio 0.99).

In terms of pixel scale relationships between covariates
and risk, following variable selection, the final model
included only mean temperature which showed a positive
association with probability of being a case (OR 8.15) and
distance to health facility which showed a negative rela-
tionship (OR 0.12) (Table 2).

When predictions were scaled up to catchment
level, the predicted numbers of cases per health facil-
ity broadly corresponded with the observed numbers
(Figure 2). The RMSE and the MAE of the observed
versus predicted numbers of cases per health facility
were 1.16 and -0.09 respectively, indicating good
model fit with very little bias. 84 of the 101 (83%)
health facilities with zero cases were correctly predicted to
have zero cases.

Page 5 of 9

Table 2 Model parameters estimated from the final
household and cross-scale models, showing pixel scale
relationships between malaria and covariates

Variable Mean odds ratio BCI
Land surface temperature 8.15 3.86 - 19.31
Travel time to health facility 0.12 001 -0.75

Note that odds ratios refer to centered and scaled covariates. BCl are Bayesian
95% credible intervals.

The mean, 2.5% and 97.5% intervals of the predicted
posterior for each pixel are shown in Figure 3A-C. This
shows that the pixel scale predictions broadly corres-
pond to the coarser scale catchment level data. Figure 3D
shows the value of the catchment level random effect
(intercept) term mapped by catchment area. This shows
that while risk in the majority of the very low risk western
catchment areas was predicted correctly by land surface
temperature and distance to facility alone, risk in other
high and low risk areas of the country, particularly in
the north-east, deviated from these predictions. Figure 4
shows the distribution of prediction values of cases
versus 10,000 pseudo-controls as a box-plot. Prediction
values were noticeably higher at case locations than
control locations. This was reflected in the AUC value
of 0.84 which indicates good discriminative capacity be-
tween cases and controls.

Discussion
As malaria transmission declines, it becomes increas-
ingly focal. In order to target resources accordingly, an

Predicted numbers of cases (root transformed)
4
|
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Figure 2 Root transformed observed versus predicted numbers
of cases per health facility. Counts were root transformed to aid

visualisation. Points are plotted with transparent colours hence darker
points indicate overlapping points. The blue dashed line corresponds

to a 1:1 relationship.
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Figure 3 Model predictions of the probability of a case occurring in a high season 2011-2013. A - lower 2.5% prediction interval;
B — mean prediction; C — upper 97.5% prediction interval; D — catchment level random effect values.
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Figure 4 Predicted probability (posterior mean) of a case
occurring at control and case locations. Whiskers correspond to
1.5 times the interquartile range.

understanding of transmission risk over fine scales is
required. Traditionally, such risk mapping is done using
cross-sectional infection prevalence surveys, such as mal-
aria indicator surveys. In low transmission settings such
surveys do not produce the number of positives required
for risk mapping or decision making [4]. While a handful
of malaria elimination programmes, such as Swaziland [5]
and the Solomon Islands and Vanuatu [31], map the
households of malaria cases facilitating fine scale risk
mapping, most countries have to rely on health facility
level case data. This paper describes a method that uses
routine health facility malaria case data in conjunction
with freely available remotely sensed data to predict mal-
aria risk, and associated uncertainty, down to a scale of
1 km?,

While this example is restricted to the cross-scale pre-
diction of malaria risk from health facility level data in
Swaziland, this approach holds promise for cross-scale
modelling and prediction of malaria in other transmis-
sion settings. In particular, this method is well suited to
situations where prevalence is low (i.e. <3%) but the
number of cases is still too high to allow follow up and
mapping. The implementation of this approach in other
settings requires several considerations. Firstly, in this
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study, the estimation of catchment boundaries was done
only for those health facilities offering malaria diagnosis.
In settings where this information is not known, catch-
ment boundaries would have to be generated for each
health facility, which could affect predictions. Secondly,
only cases classified as local were used in the modelling
process. If cases are not correctly classified according to
origin of infection (ie. if there is an under or over esti-
mation on the proportion of cases that are imported),
this approach is likely to lead to unreliable predictions.
Thirdly, in Swaziland, catchment areas are reasonably
small, due to the relatively small size of the country and
the high population coverage of the public health
system. How well this method works in settings where
catchment areas are larger, and encompass a wider range
of environmental conditions, is not clear. Fourthly, while
treatment-seeking data are collected as part of MIS or
Demographic Health Surveys, for some countries this in-
formation does not exist. In these settings, a relationship
could be assumed using data from neighbouring countries
or, ideally, a representative survey could be undertaken.
Conducting sensitivity analyses, varying rates of treatment
seeking, could also be a useful tool to assess the impact of
this parameter on model predictions. This was not done
here as it was beyond the scope of the study which focuses
more on showing proof of concept. Fifthly, in settings with
different health systems, for example where surveillance
consists of community- and facility-based case detection
or where the private sector plays a more prominent role,
slightly different models would be required. Finally, the
specific models used should be appropriate for the case
data used. In this study, logistic regression was used to
estimate pixel-level relationships due to the very low
numbers of cases across the country. In other settings,
employing alternative methods, such as zero-inflated,
negative binomial or Poisson regression models, may
be more appropriate.

Though not the main focus of this study, results from
the model suggest that a positive relationship between
temperature and risk of malaria exists at the pixel level.
This fits with our understanding of the disease, as warmer
temperatures are more conducive to parasite develop-
ment. Unusually, the model seemed to suggest that areas
further from health facilities were at reduced risk. This
may be due in part to correlations between distance to
health facility and other variables not included in the
modelling process. For example, imported cases, proxim-
ity to which has been shown to be a risk factor for being a
local case [14], could be less common in more isolated
communities. Equally, population density could be much
lower in more isolated communities which may reduce
transmission potential.

Maps of the catchment level random effect term
show that areas in the north east of the country tended
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to deviate the most from model predictions using
temperature and distance to nearest facility. This suggests
that there are other factors associated with risk in these
areas that are not formally accounted for in the model.
For those areas with positive random effect values (i.e.
higher than expected risk given the environment) this
could be due to presence of imported cases, or areas
missed by IRS or ITN distribution. For those areas with
negative random effect values (i.e. lower than expected
risk given the environment), this could be due to high
coverage of IRS or ITNs, or presence of other interven-
tions not included in the modelling process. Equally,
differences between areas could indicate differences
surveillance capacity at the facility level in terms of
diagnosis and reporting. Irrespective, mapping random
effects is useful as it allows questions and hypotheses
to be raised, other predictor variables to be considered or
dubious data to be identified. Furthermore, it highlights
catchment areas with no cases that may be suitable for
transmission and areas unsuitable for transmission in
which cases occur.

While the modelling framework has generated encour-
aging results with regard to cross-scale prediction, the
approach outlined here has several important limitations
and considerations for implementation elsewhere. Firstly,
despite finding a relationship between treatment-seeking
in the public sector and travel time to nearest health facil-
ity, overall rates of treatment-seeking in the public sector
was extremely high at 98%. While Swaziland is a small
country and does not have a large private sector, this per-
centage appears high. Unfortunately, the more frequently
used question to assess treatment-seeking behaviour,
where if at all those with a reported fever in the previous
two weeks sought treatment, could not be used due to
small sample sizes.

Secondly, it was assumed that individuals with malaria
seek treatment at their closest health facility by travel
time. While this is likely to be true in many cases, choice
of health facility may be influenced by other factors such
as the type and quality of service provided [32] as well
as the cost of travel [33]. More complex catchment
models, which include competition between different
types of facilities and allow overlapping catchment areas
[34], may improve the predictive accuracy of cross-scale
predictive models. Equally, travel models using local data
on travel preferences may improve predictions.

Thirdly, a relatively simple linear modelling approach
was used to estimate the pixel scale relationships between
malaria risk and covariates. There are several possible im-
provements which could lead to more accurate predic-
tions. For example, generalized additive models, which
would allow for more complex non-linear relationships
could be explored. Similarly, including terms to account
for spatial autocorrelation both at the catchment and/or
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pixel level might lead to more robust estimation of rela-
tionships and could help with predictions. Furthermore, a
consideration of the environmental and ecological condi-
tions at the time point at which the case occurred, or
lagged as appropriate, would likely improve the accuracy
of predictions and would allow time specific predictions
to be made. With the availability of remotely-sensed data
increasing, accessing such data should become progres-
sively straightforward. Additionally, use of techniques such
as lasso regression for covariate selection provide potential
for a more automated modelling approach. While there are
still a number of challenges to overcome, this raises the
possibility of making these types of predictive models ac-
cessible to non-experts within malaria control programmes.
These issues were not explored here due to computational
limits, but are the focus of future studies.

Fourthly, it should be noted that not all cases that
were diagnosed in Swaziland between 2011-2013 received
an investigation, due to either resource constraints or fail-
ure to make contact with the case. The data used to build
and validate these models therefore do not necessarily
represent the full picture of malaria in the country. While
we do not believe this introduced any bias in this case,
such an issue illustrates the benefit of conducting case in-
vestigation at the health facility, which, as of 2014 is done
in Swaziland. This also highlights the fact that in contrast
to higher transmission settings, where predictions can
be validated against gold-standard cross sectional survey
data, a comparison with passively detected geolocated
cases is the only method to validate predictions in this
setting.

Finally, Swaziland is one of only a few programmes to
have information on the household location of cases,
enabling validation of the fine scale risk maps. If this
information is known, there is no need for cross scale
prediction and modelling can be done using the locations
of case households [14]. If this information is not known,
the Bayesian modelling approach described here can
be used to generate estimates of uncertainty in the pre-
dictions. That said, household investigation and active
surveillance should still be encouraged. High rates of
active testing are generally believed to be a requirement
for any elimination programme [35]. Furthermore, visiting
case households provides an opportunity for additional
targeted interventions such as presumptive treatment,
ITN distribution or IRS and allows an assessment of
household risk factors. These results do, however, sug-
gest that programmes can obtain detailed understanding
in the heterogeneity of malaria transmission without these
specific data.

While this paper focusses on the prediction of fine
scale malaria transmission risk from health facility data,
this modelling framework has potential utility in other
multi-scale modelling problems. This could be, for example,
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fine scale prediction of risk from district or school level
disease data. Equally, this method could be used to look at
the impact of fine scale interventions, such as village level
ITN distributions, on catchment level malaria incidence.
Similarly, this approach could be applied to modelling and
predicting other environmentally and ecologically driven
diseases such as Plasmodium vivax [36], schistosomiasis
[28,37], soil-transmitted helminths [38,39] and lymphatic
filariasis [40]. This is particularly true for low transmission
settings, where large scale prevalence surveys become in-
efficient due to very large sample size requirements to find
positives [3].

Conclusions

As malaria transmission declines, interventions need to
be deployed with increasing granularity. Often, however,
the case data used to understand spatial patterns of risk
is only available at the health facility or district level,
limiting decision making to this resolution. Using a novel
modelling framework, this study has shown that it is pos-
sible to combine health facility level case data with fine
scale environmental and climatological data to predict
malaria risk at fine resolution. This information can help
to guide decision making at sub-catchment levels, to en-
sure interventions are targeted in as evidenced based way
possible.
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