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Abstract

Background: Insecticide resistance is greatly hampering current efforts to control malaria and therefore alternative
methods are needed. Entomopathogenic fungi have been proposed as an alternative with a special focus on the
cosmopolitan species Beauveria bassiana. However, few studies have analysed the effects of natural variation within
fungal isolates on mosquito survival, and the implications and possible exploitation for malaria control.

Methods: Laboratory bioassays were performed on adult female mosquitoes (Anopheles coluzzii) with spores from
29 isolates of B. bassiana, originating from different parts of the world. In addition, phenotypic characteristics of the

virulence.

fungal isolates such as sporulation, spore size and growth rate were studied to explore their relationship with

Results: All tested isolates of B. bassiana killed An. coluzzii mosquitoes, and the rate at which this happened
differed significantly among the isolates. The risk of mosquitoes dying was around ten times higher when they
were exposed to the most virulent as compared to the least virulent isolate. There was significant variation among
isolates in spore size, growth rate and sporulation, but none of these morphological characteristics were correlated,
and thus predictive, for the ability of the fungal isolate to kill malaria mosquitoes.

Conclusions: This study shows that there is a wide natural variation in virulence of isolates of B. bassiana, and that
selecting an appropriate fungal isolate is highly relevant in killing and thus controlling malaria mosquitoes,
particularly if used as part of an integrated vector management strategy. Also, the wide variation observed in
virulence offers the opportunity to better understand the molecular and genetic mechanisms that drive this
variation and thus to address the potential development of resistance against entomopathogenic fungi.
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Background

Although globally malaria mortality rates have fallen by
45% between 2000 and 2012, malaria is still killing an es-
timated 627,000 people each year [1]. An effective way
to alleviate the burden of malaria is to control its vector
(anopheline mosquitoes) using insecticides. This can be
achieved either through the use of insecticide-treated
bed nets (ITNs) or through indoor residual spraying of
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insecticides (IRS). However, because of rapidly expand-
ing insecticide resistance, there is a need to find alterna-
tives to control the mosquitoes [1]. Entomopathogenic
fungi have been proposed as novel biological control
agent to kill malaria mosquitoes [2-4]. Such fungi have
already been used on a wide scale to control beetles [5],
locusts [6] and other pest insects in agriculture.

Spores of hypocrealean entomopathogenic fungi are able
to infect insects, including mosquitoes, via attachment to
the insect’s epicuticle [7]. Spores will penetrate the insect’s
cuticle by forming a germ tube and appressorium. The latter
structure uses mechanical pressure and produces cuticle-
degrading enzymes for further penetration [8,9]. Once the

© 2014 Valero-Jiménez et al, licensee BioMed Central. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public

Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this

article, unless otherwise stated.


mailto:claudio.valero@wur.nl
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Valero-Jiménez et al. Malaria Journal 2014, 13:479
http://www.malariajournal.com/content/13/1/479

fungal structures reach the haemocoel, they are able to use
the insect nutrients and grow. If the fungi are able to over-
come the host immune defences, the host will die and
saprophytic growth starts subsequently from the dead host.
Finally, sporulation of the fungus takes place a few days later,
depending on environmental conditions [10].

More specifically, the hypocrealean entomopathogenic
fungi Beauveria bassiana and Metarhizium anisopliae
can reduce the lifespan of mosquitoes under laboratory
and field conditions [11], and they are also equally ef-
fective in killing insecticide-resistant mosquitoes [12-14].
Besides the lethal effects, fungal infections reduce rodent
Plasmodium sporozoite levels [15], female fecundity and
feeding propensity [16,17]. Most likely, the latter is the
result of entomopathogenic fungi that reduce the host-
seeking behaviour of mosquitoes by lowering the re-
sponse of olfactory receptor neurons exposed to odour
cues, as demonstrated for Anopheles stephensi [18].

Entomopathogenic fungi kill mosquitoes relatively slowly
compared to insecticides (1-2 weeks vs 1-2 days). This is
potentially beneficial for controlling malaria, because the
Plasmodium development time in the mosquito is about
ten to 14 days [19]. Because of the delayed mortality, fungal
pathogens specifically kill those mosquitoes that are old
enough to transmit the parasite. Therefore, the selective
pressure for survival in mosquitoes is reduced, and thus,
the probability of developing resistance against fungal in-
fections is much lower [20].

Beauveria bassiana is a cosmopolitan fungus from
which more than thousand isolates have been collected
from different locations and different points in time
worldwide [21]. Phylogenetic analysis has revealed at
least 18 different clades (S A Rehner, pers comm). How-
ever, to date it is not clear how much these fungal isolates
vary in their ability to kill mosquitoes. The majority of
mosquito control studies has focused on one isolate,
namely IMI 391510 [12,17,22,23] (except Blanford et al.
[15]). It is important to study the natural variation of viru-
lence against mosquitoes because this has an impact on
the choices for selecting the optimal fungal agents for
controlling malaria vectors and other mosquitoes and
their diseases. The natural occurring variation in virulence
can also be used to uncover the mechanisms that under-
pin it, which will allow the estimation of the potential for
resistance development in the vector. For example, the
whole genome of isolates with contrasting variation in
virulence could be sequenced, and pairwise polymor-
phisms, deletions and Single Nucleotide Polymorphisms
(SNPs) in structural and regulatory parts of genes could
be analysed. Furthermore, transcriptome analysis of con-
trasting isolates could be performed, and linking the
DNA-sequence variation to variation in gene expression
could provide unique data on the fungal genes involved in
insect infection and the molecular genetic mechanisms
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which influence virulence. This, in turn, will increase the
potential for the development of entomopathogenic fungi
as a biological control method against mosquitoes.

On the other hand, previous studies have shown that
morphological and physiological characteristics of fungi
are related to their virulence, such as hyphal growth
rate, conidial viability, conidia production, conidia size,
enzyme secretion among other factors [24-28]. For in-
stance, fungal isolates with rapid germination and high
hyphal growth rate could be desirable because such
fungi could infect the host more rapidly [24]. Such char-
acteristics could be used as criteria for isolate selection
in addition to their virulence towards mosquitoes.

Therefore, in the current study, the virulence of 29
isolates of B. bassiana was evaluated on the malaria
mosquito Anopheles coluzzii (formerly: Anopheles gam-
biae sensu stricto). Phenotypic characteristics of the fun-
gal isolates such as sporulation, spore size and growth
rate were measured and their correlation with virulence
analyzed.

Methods

Mosquito rearing

Anopheles coluzzii mosquitoes used in the experiments
originated from Suakoko, Liberia (courtesy of the late
Prof M Coluzzi). Larvae were reared in plastic trays of
10 x 25 x 8 cm, filled with 1 1 of tap water at densities of
approximately 0.3 larvae/cm?. Larvae were fed on Tetra-
min°® fish food (Tetra A G, Melle, Germany) daily, using
0.1 mg/larva for first instar larvae and 0.3 mg/larva for
the other three larval stages. Pupae were collected daily
and transferred to holding cages of 30 x 30 x 30 cm in
which adults were maintained in climate controlled
rooms (27 + 1°C, 80 + 10% RH and a 12 hr L:D) and fed
ad libitum on a 6% glucose solution.

Production of Beauveria bassiana
All isolates of B. bassiana used in this study were ob-
tained from the USDA-ARS Collection of Entomopatho-
genic Fungal Cultures (ARSEF) (Table 1) except for
isolate IMI 391510, which was kindly provided by the
Bioprocess Engineering Department (Wageningen Uni-
versity, The Netherlands). Isolates were selected ran-
domly from the ARSEF collection taking into account a
wide geographical distribution as well as a broad array
of hosts, including isolates that were found in soil. Ini-
tially the fungi were grown on Sabouraud Dextrose Agar
with 1% yeast extract (SDAY) for 14 days at 27°C and
spores were harvested with a 0.05% Tween 80 solution
to make a spore suspension and kept at -80°C until
used.

To have sufficient spores for the experiments, all iso-
lates were grown on solid-state fermenters, with a final
yield of around 1-3 g of air-dry spores per isolate. In
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Table 1 Details of the tested Beauveria bassiana isolates against Anopheles coluzzii, including information from which host

insect it was isolated, geographic origins and morphological characteristics

Isolate’ Host insect Geographic origins Size (um) (xSEM) Growth Sporulation
(mm/day) (x 10° conidia/cm?)
(+SEM) (+SEM)

ARSEF 220 Commonwealth of Independent States 257 (+0.02) 222 (+0.01) 342 (+1.79)

ARSEF 502 Lepidoptera; Pyralidae; Ostrinia China 2.75 (0.03) 238 (+0.01) 9.75 (+0.32)
nubilalis

ARSEF 714 Homoptera; Delphacidae; China: Wuhan, Hupei 234 (£0.00) 254 (£0.07) 14.69 (+£2.00)
Nilaparvata lugens

ARSEF 721 Coleoptera; Chrysomelidae; Colombia: Cali, Valle del Cauca 245 (+0.03) 2.14 (+0.02) 475 (£1.63)
Diabrotica sp.

ARSEF 1149 Lepidoptera; Noctuidae; Spain: Cordoba 247 (£0.02) 236 (£0.05) 1652 (£1.07)
Helicoverpa armigera

ARSEF 1514 Diptera; Muscidae; Musca France: Le Trait, Seine-Maritime 252 (£0.03) 1.85 (+0.03) 151 (+0.36)
autumnalis

ARSEF 1520 Hemiptera; Miridae; Lygus sp. France: Prades, Pyrénées-Orientales 245 (+0.01) 241 (+0.02) 6.83 (+0.36)

ARSEF 1816 Coleoptera; Curculionidae; Morocco: Hauteban 249 (+0.02) 245 (+0.01) 31.72 (+9.84)
Sitona discoideus

ARSEF 2075 Coleoptera; Chrysomelidae; Brazil: Ribeira do Pombal, Bahia 2.55 (+0.01) 245 (+0.03) 937 (+2.12)
Ceratoma arcuata

ARSEF 2427 Homoptera; Delphacidae; Indonesia: Cikampek, Java Barat, Java 240 (£0.01) 260 (£0.02) 24.64 (+4.28)
Nilaparvata lugens

ARSEF 2571 Lepidoptera; Lymantriidae; USA: Delaware 2.39 (+0.02) 2.23 (+0.08) 1346 (+1.93)
Lymantria dispar

ARSEF 2597 Lepidoptera; Hyblaeidae; India 2.37 (+0.01) 2.26 (+0.01) 3.02 (+0.31)
Hyblaea puer

ARSEF 2861 Homoptera; Aphididae; USA: Parma, Idaho 238 (+0.01) 2.19 (+0.05) 4.16 (+1.09)
Diuraphis noxia

ARSEF 4135 Coleoptera; Scarabaeidae; Australia: Newtown, Tasmania 247 (+0.01) 2.30 (+0.05) 197 (+062)
Adoryphorus coulonii

ARSEF 4305 Soil Australia: Epping Forest, Tasmania 243 (+0.02) 246 (+0.09) 14.74 (+1.78)

ARSEF 4396 Soil Japan: Sapporo, Hokkaido 237 (+0.02) 2.71 (+0.02) 23.11 (+0.54)

ARSEF 4672 Lepidoptera; Hepialidae; Australia: Plenty, Tasmania 2.23 (+0.01) 208 (+0.02) 1.08 (+0.08)
Oncopera intricata

ARSEF 5078 Lepidoptera; Pyralidae; USA: Grayland, Washington 241 (+0.03) 2.34 (+0.07) 283 (+0.44)
Galleria mellonella

ARSEF 5641 Orthoptera; Acrididae; Ethiopia: Eritrea, Shelsela 2.20 (+0.01) 2.27 (+0.03) 3.03 (+0.96)
Schistocerca gregaria

ARSEF 5642 Orthoptera; Acrididae; Ethiopia: Eritrea, Shelsela 220 (£0.02) 2.16 (£0.03) 5.08 (+0.68)
Schistocerca gregaria

ARSEF 5769 Homoptera; Adelgidae; USA: Lovingston, Virginia 2.23 (+0.01) 1.79 (+0.05) 24.82 (+5.89)
Adelges tsugae

ARSEF 6686 Coleoptera; Scarabaeidae Ethiopia: Tikur Inchini, Western Shoa 246 (£0.01) 204 (£0.03) 4.83 (+1.26)

ARSEF 6907 Isoptera; Rhinotermitidae; USA: Lake Charles, Louisiana 1.95 (+0.01) 245 (+0.05) 1029 (+1.51)
Coptotermes formosanus

ARSEF 8028 Hemiptera: Anthocoridae, Denmark: Bakkegdrden, Copenhagen, 226 (£0.01) 1.77 (0.03) 0.74 (+0.08)
Anthocoris nemorum Tastrup, Zealand

ARSEF 8034 Lepidoptera; Pyralidae; Denmark: Bakkegdrden, Copenhagen, 262 (+0.05) 1.77 (+0.06) 097 (+0.28)
Galleria mellonella Tastrup, Zealand

ARSEF 8414 Coleoptera; Cerambycidae, China: Wuhe, Anhui 2.28 (+0.02) 2.27 (+0.10) 8.78 (+0.82)
Anoplophora glabripennis

ARSEF 8854 Coleoptera; Scarabaeidae. Australia: Condong, New South Wales 248 (£0.03) 2.86 (£0.07) 1344 (£3.37)
Rhopaea magnicornis

ARSEF 9595 Hymenoptera; Apoidea China: Guizhou Province 2.55 (+0.02) 165 (+0.10) 0.35 (+0.07)

IMI 391510 Coleoptera: Chrysomelidae USA 234 (+001) 237 (+0.07) 6.82 (+0.34)

'ARSEF: USDA-ARS Collection of Entomopathogenic Fungal Cultures, USA. IMI: CABI Bioscience, UK.
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brief, 50 g hemp was weighed and 200 ml of distilled
water was added, mixed and sterilized for 30 min at 121°C.
Then 10 g of peptone and yeast extract were added and
sterilized again. Once this mixture was cold, 200 ml of a
pre-autoclaved solution of glucose (36.5 w/w%) was added.
This mixture was inoculated with 1 ml of spore suspension
(1 x 10® spores/ml). It was incubated overnight at room
temperature on a roller-bank. Then, the hemp was trans-
ferred into a 0.2 1 glass tube (4.6 cm diameter; 30 cm
height) and placed in a climate chamber set at 25°C. After
21 days, spores were dried for four days by blowing dry air
through the glass tube that contained the mixture. Spores
were then harvested with sieves of various sizes (125 pm-
1 mm), and stored in 50 ml tubes. The spores were kept at
4°C in the dark prior to use.

Bioassays

The virulence of 29 isolates of B. bassiana was checked
by doing seven bioassays. Between three and six isolates
were simultaneously compared in each bioassay. The
seventh bioassay included four randomly chosen isolates
to check for temporal experimental variation. In every
bioassay, fungal spores of each isolate were suspended in
Shellsol T oil (Shell, The Netherlands) and standardized
to 1 x 10 spores/ml by adjusting spore concentration
after counting the suspension with a Biirker-Tiirk count-
ing chamber. Spore viability was checked on SDAY plates
after 18—20 hrs at 27°C, and spores with a detectable germ
tube were considered viable. Of the standardized spore so-
lution, 0.9 ml was applied to an A4-sized proofing paper
one day before exposure. Coated papers were left to dry in
a fume hood [29]. These papers were then placed in PVC
tubes (15 ¢cm height and 8 cm diameter) and sealed with
cling film on both ends. For each isolate tested, three PVC
tubes (replicates) were prepared in this way. As a control,
papers were coated with Shellsol T® oil only. Thirty
An. coluzzii female mosquitoes (3—-5 days old) were
transferred with an aspirator to each PVC tube with
the coated papers and exposed for three hours. After
this, mosquitoes were transferred to plastic buckets
(25 cm height and 20 cm diameter), which were sealed
with a nylon sock. All buckets were kept in a climate con-
trolled chamber (27 +1°C, 80+ 10% RH, 12 h L:D), and
daily mortality was checked for 14 days. Mosquitoes were
fed ad libitum with a 6% glucose solution on a cotton
plug. Fungal infection of dead mosquitoes was checked by
dipping them for 5 sec in 70% ethanol, incubating them
on moist filter paper in sealed petri dishes at 25°C for
five to seven days, and inspecting them for visible fun-
gal growth.

Phenotypic characterization of fungal isolates
To determine spore size, isolates were grown on SDAY
petri dishes for 14 days and spores were harvested with
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a 0.05% Tween 80 solution to make a spore suspension.
A 1:50 dilution was made and size was measured for
four replicates per fungal isolate with a Coulter Counter
72 (Beckman Coulter). Linear growth rate was measured
using ‘race tubes’ [30]. The tubes were filled with 23 ml
of SDAY medium. Three tubes were inoculated for each
isolate and growth was measured every week for three
months. To determine sporulation, spores were har-
vested from a 14-day-old culture on SDAY with 0.05%
Tween 80 solution and counted on a haemocytometer
chamber using an optical microscope (400X). Two areas
of 1 mm? were counted for each plate, and three plates
in total were counted for each isolate.

Statistical analysis

Mosquito survival was analysed using Kaplan-Meier sur-
vival analysis in SPSS (v.19) with significant differences
between different isolates estimated using a Log Rank
Test. Differences between the control and the infected
mosquitoes were examined using a Cox Regression ana-
lysis in SPSS. Hazard ratios (HR; the daily chance of
death) in comparison with the isolate IMI391510 were
calculated. One-way ANOVA was conducted in R (2.12.2)
to detect differences in conidia size, sporulation and linear
growth rate, with the sporulation data being Log trans-
formed before analysis. A General Lineal Model was used
to analyse the correlation between phenotypic characteris-
tics of isolates and their virulence on mosquitoes using R
(2.12.2). To further check for any correlation among the
phenotypic characteristics themselves, a Pearson’s Correl-
ation analysis was done. Mosquito survival exposed to the
same fungal isolates at different time points were analysed
using Kaplan-Meier survival analysis in SPSS (v.19) and
significant differences were estimated using a Log Rank
Test.

Results

Bioassays on Anopheles coluzzii

All B. bassiana isolates tested were pathogenic to An. coluz-
zii with mortalities of at least 92.5% by day 14 (Figure 1).
Survival curves for all mosquitoes infected with the fungus
were significantly different from the respective controls for
each of the seven bioassays (Figure 1). Furthermore, 74-
100% of the dead mosquitoes that were exposed to fungus-
coated paper showed evidence of fungal infection in the
form of sporulation after five to seven days. The viability of
fungal conidia of each fungal isolate was always higher than
70% at the start of the experiment. Although all bioassays
were conducted in the same manner, not all controls be-
haved similarly in all bioassays. For unknown reasons, con-
trol mosquitoes from bioassay 1 and 3 had a significantly
higher mortality compared to the controls from the other
five bioassays (F =96.09, d.f. = 6, p <0.001; Figure 1A, 1C).
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Figure 1 Cumulative daily proportional survival of Anopheles coluzzii exposed to spores of different Beauveria bassiana isolates.
Control (dark blue) were exposed to only Shellsol T® oil. Exposures were carried out in seven bioassays (A-G) and 29 isolates were tested in
total. Data show means + SEM from three replicates of 30 female mosquitoes.
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Therefore, these two bioassays were not considered for fur-
ther analysis.

Hazard ratios (HR) were estimated relative to the mor-
tality pattern of the reference isolate, IMI391510. This
isolate was tested in detail during earlier laboratory and
field trials [11,23], and thus constituted a relevant refer-
ence point. Virulence was classified in three groups: (1)
isolates for which the HR was significantly higher than
the HR of the reference isolate (these were termed ‘highly
lethal’ (HL)); (2) isolates that were not significantly differ-
ent compared the reference isolate (these were termed
‘lethal’ (L)); and, (3) fungal isolates that had significantly
lower HR than the reference isolate (these were termed
‘slightly lethal’ (SL)). The majority of the 29 isolates was
classified as lethal, although at least three were HL isolates
and five were SL isolates (Figure 2). Virulence varied
widely, as depicted by the extremes: isolate 8028 was on
average 3.7 times more virulent and isolate 2861 was on
average 2.7 times less virulent than the reference isolate
IMI391510. All of these isolates (8028, IMI391510 and
2861) were tested within the same bioassay (Figure 1F)
removing any possibility of temporal bias.

Isolates 502, 2597, 4305, and 5078 were randomly se-
lected for the seventh bioassay to assess the presence of
temporal variation in virulence. The two replicates of
2597 and 5078 were not significantly different from each
other between the two time points and therefore were
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ARSEF 2597 157 A

ARSEF 714 —A—

ARSEF 502 157 —A——

ARSEF 220 —e—1

ARSEF 1520 e
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ARSEF 1149 e

ARSEF 2427 —eo——4

ARSEF 2075 e

ARSEF 4305 2" — e
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ARSEF 4305 157 ——

ARSEF 5078 2'° ——a—

ARSEF 5078 17 —

ARSEF 2861 — -

0.25 0.5 1 2 4
hazard ratio

Figure 2 Hazard ratios for fungal infection using isolate
IMI391510 as a baseline. Dot symbols represent the isolates that
were not significantly different from the reference isolate IMI391510.
Triangle/square symbols show isolates that were more/less virulent
than the reference isolate. Whiskers represent the 95% Cls. 1% or 2™
indicates the result of the first or second biological replicate of
an isolate.
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classified in the same virulence group (HL and SL, re-
spectively). However, isolates 502 and 4305 showed sig-
nificantly different HR between the temporal replicates
(**=10.33, df = 1, p=0.001; x°=6.56, df = 1, p=
0.010), and thus, their virulence status changed. Isolate
502 was considered HL in the first trial, and then L in
the second trial. The opposite effect was observed for
isolate 4305.

Phenotypic characterization of fungal isolates

Conidia of the 29 isolates of B. bassiana had significant
differences in size, ranging from 1.95 to 2.75 um (F =
67.33, d.f. = 28, p<0.0001, Table 1). Conidia of isolates
502 and 8034 were the largest in size, whereas conidia of
isolate 6907 were the smallest. Sporulation ranged from
3.5 x10° to 3.17 x10” spores/cm? and growth rate from
1.77 to 2.71 mm/day, with isolates differing significantly
for both traits (F=10.08, d.f. = 28, p<0.0001, and F =
11.48, d.f. = 28, p <0.0001, respectively). The isolate that
grew fastest was 4396 and the isolate that produced the
most conidia was 1816. Nevertheless, none of these
phenotypic characteristics of B. bassiana that were stud-
ied were correlated to the ability to kill malaria mosqui-
toes (i.e. virulence): sporulation (F=1.17, d.f. = 28, p=
0.791), growth rate (F=25.47, df. = 28, p=0.195) and
spore size (F=22.74, d.f. = 28, p=0.169). Additionally, a
Pearson’s Correlation analysis was performed to further
check for correlation among the phenotypic characteris-
tics themselves, but none was found, except for a posi-
tive correlation between grow rate and sporulation (r =
0.704, p < 0.001).

Discussion

Under laboratory conditions, all 29 tested isolates of B.
bassiana killed An. coluzzii mosquitoes, although the
rate at which this happened differed significantly among
the isolates. The daily risk of death for mosquitoes when
exposed to the most virulent isolate was around ten
times higher than when exposed to the least virulent iso-
late. This observation is a substantial addition to a previ-
ous smaller scale study which tested six isolates of B.
bassiana and two isolates of Metarhizium anisopliae against
Anopheles stephensi mosquitoes [15]. In that study, of two
isolates of M. anisopliae tested, only one was pathogenic to
mosquitoes. Similarly, from six B. bassiana isolates, one was
not pathogenic whereas the others had different rates of
virulence.

Much progress has been made regarding the feasibility
of using entomopathogenic fungi as a biological control
agent for malaria mosquitoes. However, researchers have
thus far overlooked the potential of selecting the most
suitable isolate from the existing natural variation in
fungal characteristics. From the study by Blanford et al.
[15] onwards, isolate IMI391510 was selected in further
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experiments. This was based on practical considerations
and not necessarily because it was the most virulent to-
wards mosquitoes. For instance, this isolate was already
evaluated and received regulatory approval for the con-
trol of other insects under field conditions. Follow-up
studies mostly focused on isolate IMI391510 only or
other isolates of M. anisopliae. These studies managed
to standardize and improve their application under la-
boratory conditions [29], test it under field conditions
[31], on insecticide-resistance mosquitoes [12-14], and
on different substrates such as cloth, netting, wood, clay
tiles, and mud walls [11,17,32]. In the present study, it
has been shown the potential of selecting the most viru-
lent isolate since this can result in an increased effective-
ness of up to ten-fold. Such selection should be dependent
on the ecological situation at the location of intended use,
as using a highly virulent isolate may potentially lead to an
increased selection pressure that can result in resistance
in mosquitoes [3]. Additionally, genetic diversity of natural
populations of mosquitoes have to be taken into consider-
ation, since some genotypes could be more susceptible to
fungal infection than others, and this could lead to an in-
creased selective pressure as well [33]. Moreover, it has
been shown that there is a dose-dependent effect of spore
concentration [17,29], so when comparing a highly lethal
to a lethal isolate, the highly lethal isolate could have a
similar effect using a lower concentration. Thus, the
amount of spores can potentially be reduced, which
would lower the application costs. Nevertheless, other
factors need to be further considered since virulence is
not the only variable that is important when using a
fungus as biological control agent. Viability and per-
sistence for example, can be limitations in tropical
(malaria-endemic) climates.

It was hypothesized that phenotypic characteristics of
B. bassiana potentially correlate with virulence in mos-
quitoes as previous studies have shown that morpho-
logical and physiological traits of B. bassiana are related
to virulence in other insects [24,25,28]. For example,
fungal isolates with rapid germination and high hyphal
growth rate may be advantageous to use as a biological
control agent, because such fungi could infect the host
more rapidly [24]. Zhang et al. [28] found a positive cor-
relation between growth rate, sporulation and germin-
ation rate of B. bassiana with virulence of red turpentine
beetle larvae. Nevertheless, in the current study no rela-
tionship could be demonstrated between morphological
characteristics and the virulence of B. bassiana isolates
to An. coluzzii. This is consistent with earlier work of
Talaei-Hassanloui et al. [26] who did not find any correl-
ation between radial growth rate, spore size, germination
or pigmentation and virulence on second instar larvae of
Leptinotarsa decemlineata and Plutella xylostella. 1deally,
one would like to be able to predict virulence of a fungus
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from its phenotypic characteristics without conducting
bioassays that require many live insects and relatively long
experimental duration before results are known. However,
no such trend was observed in this study. Therefore, bio-
assays remain the method of choice to unravel fungal viru-
lence, at least for this fungal-insect system and with this
selection of isolates.

The results suggest that other molecular and physio-
logical mechanisms, such as the excretion of chitinases
and the ability to avoid and/or counter the insect im-
mune response, could be related to the variation in fun-
gal virulence. Indeed, the wide variation observed in
virulence offers a unique opportunity to understand the
genetic, molecular and physiological mechanisms that
underpin this variation. In B. bassiana several proteins
have been characterized as relevant for virulence. For in-
stance, proteins of the P450 family have been identified as
important for cuticle degradation [34,35], and Bbslt2, a
novel mitogen-activated protein (MAP) kinase, was identi-
fied to have a crucial role in regulating fungal develop-
ment, growth and pathogenicity [36]. As well as Bbgas1, a
gene encoding a putative transferase (Glycosylphosphati-
dylinositol-Anchored B-1,3-Glucanosyltransferase) is in-
volved in conidial thermotolerance and virulence [37].
Many more genes have also been linked to virulence,
which hint that virulence is a complex process regulated
by several pathways.

Conclusions

The results demonstrate that there is much natural vari-
ation in virulence of fungal isolates of B. bassiana that
can be exploited by choosing the most suitable isolate
for controlling malaria mosquitoes. This notion makes
the use of entomopathogenic fungi an even more viable
option, especially if used as part of an integrated vector
management strategy. In addition, the natural variation
observed in virulence offers the possibility to focus on
the genetic mechanisms that determine this variation
and would help in understanding the fungal mechanisms
of B. bassiana towards malaria mosquitoes, and provide
evidence that this could be an evolution-proof biological
control agent. This is where the current research effort
is focusing.
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