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Abstract

Background: The association between malaria and meteorological factors is complex due to the lagged and
non-linear pattern. Without fully considering these characteristics, existing studies usually concluded inconsistent
findings. Investigating the lagged correlation pattern between malaria and climatic variables may improve the
understanding of the association and generate possible better prediction models. This is especially beneficial to the
south-west China, which is a high-incidence area in China.

Methods: Thirty counties in south-west China were selected, and corresponding weekly malaria cases and four
weekly meteorological variables were collected from 2004 to 2009. The Multilevel Distributed Lag Non-linear Model
(MDLNM) was used to study the temporal lagged correlation between weekly malaria and weekly meteorological
factors. The counties were divided into two groups, hot and cold weathers, in order to compare the difference
under different climatic conditions and improve reliability and generalizability within similar climatic conditions.

Results: Rainfall was associated with malaria cases in both hot and cold weather counties with a lagged
correlation, and the lag range was relatively longer than those of other meteorological factors. Besides, the lag
range was longer in hot weather counties compared to cold weather counties. Relative humidity was correlated
with malaria cases at early and late lags in hot weather counties.
Minimum temperature had a longer lag range and larger correlation coefficients for hot weather counties
compared to cold weather counties. Maximum temperature was only associated with malaria cases at early lags.

Conclusion: Using weekly malaria cases and meteorological information, this work studied the temporal lagged
association pattern between malaria cases and meteorological information in south-west China. The results suggest
that different meteorological factors show distinct patterns and magnitudes for the lagged correlation, and the
patterns will depend on the climatic condition. Existing inconsistent findings for climatic factors’ lags could be
due to either the invalid assumption of a single fixed lag or the distinct temperature conditions from different
study sites. The lag pattern for meteorological factors should be considered in the development of malaria early
warning system.
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Background
Malaria is an important cause of death and illness in
children and adults in tropical countries. Globally, the
World Health Organization estimates that in 2010, 219
million clinical cases of malaria occurred, and 660,000
people died of malaria [1]. Despite significant reductions
in the overall burden of malaria in the 20th century,
malaria remains a significant public health issue in
China, especially in the southern part of the mainland.
Particularly, Yunnan Province used to be the highest en-
demic province [2]. For south-west China, the majority
of previous studies focused on spatiotemporal pattern
for mortality or morbidity [3-5], or pathogenic classifica-
tions of reported cases [6].
Malaria is transmitted by female mosquitoes of the

genus Anopheles, and the transmission and prevalence
of malaria are influenced by many factors, in which
meteorological factors are considered to play a crucial
role. However, researchers still have a poor under-
standing of the mechanistic link between climate and
malaria risk [7-10]. Many studies were conducted to
explore the link with inconsistent findings reported,
and the nature and extent of the link remains highly
controversial [11-14]. See [7] for a recent review of
existing studies supporting and rebutting the role of
climatic change as a driving force for highland invasion
by malaria. Some existing studies in China made con-
tradictory conclusions [15]. For example, while [16-18]
found that rainfall was closely related to malaria incidence,
[19-21] failed to identify such an association. Similar
inconsistent results were also reported in sub-Saharan
Africa [22].
Biologically speaking, climate is fundamentally associ-

ated to the malaria incidence through its effects on both
the mosquito vector and the development of the malaria
parasite inside the mosquito vector. Two aspects of the
meteorological effects require special attention, the lag
and non-linear characteristics. On the one hand, most
time series studies have provided evidence of an associ-
ation between meteorological variables and malaria,
typically at a single lag of 0, 1 or 2 months [23-27].
However, the single fixed lag assumption was not plaus-
ible for describing population level associations. From
the perspective of biological mechanism, there are sev-
eral periods need to be considered for the lag effect,
such as the time for mosquito to develop, the develop-
ment period of parasites within the mosquito, and the
incubation period of parasites within human body.
Every stage shall show a variation in terms of the time
lag, resulting in a smoothly varied lag distribution at
population level between climatic factors and malaria
cases. On the other hand, the non-linear effect was rec-
ognized in temperature, and substantial existing studies
validated the nonlinear correlation between temperature
and malaria in terms of laboratory and epidemiological
studies [13,18,28-30]. Similar potential non-linear corre-
lations were also proposed to rainfall [30-32].
The association between malaria and meteorological

factors is complex due to the above two characteristics.
Existing inconsistent findings may be due to two reasons.
On the one hand, regional variations makes distinct re-
gions have different association patterns. On the other
hand, invalid statistical assumptions result either from the
misspecification of the single fixed lag or from the invalid
assumption of the linear relationship.
At present, there are few studies regarding the pattern

of delayed effect for meteorological factors after account-
ing for the nonlinearity. Besides, the comprehensive lag
pattern for meteorological factors have not been examined
in China. [33] investigated the lag pattern for rainfall in
Anhui Province in China using monthly data. However, it
is not satisfying, since monthly data was relatively coarse
for the lag pattern, and other crucial meteorological vari-
ables were not included in the analysis.
The purpose of this work is to explore the lag associ-

ation between meteorological variables and malaria in
south-west China. Specifically, a Multilevel Distributed
Lag Non-linear Model (MDLNM) was used to study the
temporal lagged correlation between weekly malaria cases
and weekly meteorological factors using the data from
2004 to 2009 in 30 counties in south-east China. Using
these more reasonable models a better understanding can
be obtained for the association between climatic variables
and malaria transmission, testing the biological hypothesis
in terms of epidemiological level. Also, the result may
have the potential to improve forecasting of changes in
malaria incidence, which would shed light to public health
authorities on how to effectively distribute resources for
malaria control programmes.
Methods
Study sites
South-west China (21°14′to 34°31′N, 97°35′to 110°19′E)
consists of four provinces, Sichuan, Chongqing, Yunnan
and Guizhou. The area has a population of 189,977,077
(sixth national census in 2010) and encompasses 1,137,570
square kilometres. There are 483 counties (county-level
cities and districts). 30 counties were selected as the study
sites based on availabilities of malaria and meteorological
data. The malaria data covered the 483 counties while
only 131 counties had the daily meteorological record; the
detailed description of these datasets is in the next section.
The set of counties with both malaria and meteorological
data were sorted by the average annual incidences, and
the top 30 counties were included in the analysis. See
Figure 1 for a map of the 483 counties in south-west
China and the selected 30 counties.



Figure 1 The map of the 483 counties in south-west China and the selected 30 counties. The gray-colored counties are the 30 top
incidence counties with both malaria and meteorological data.
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Data collection and management
Meteorological data were collected from the publicly
available Chinese Meteorological Data Sharing Service
System [34]. This system was constructed by Chinese Na-
tional Meteorological Information Centre. There are 836
meteorological monitoring stations with the daily record
in the whole China, 131 in the Southwest. Approximately
3–4 counties (438/131) share one monitoring station to
monitor the daily meteorological information, and no
counties have two monitoring stations. The monitoring
station should suffice to represent the county where it is.
This assumption has been made substantially in existing
studies, both for malaria [4,16-18,20,27,35] and other
mosquito-borne diseases [36]. As mentioned in the last
section, those monitoring stations located in the high
incidences counties and corresponding counties were
used. Four weekly meteorological data from July 2003 to
December 2009 were obtained for the 30 selected counties.
They are rainfall, mean relative humidity, mean minimum
temperature and mean maximum temperature. Rainfall
and temperatures variables are in the unit of millimetres
(mm) and centigrade (°C) respectively.
Weekly malaria cases in the 30 counties were obtained

from 2004 to 2009 from Chinese Centre for Disease
Control and Prevention (CCDC). At the county level, it
is not unreasonable to assume that malaria heterogeneity
is not great, which is a usual assumption from existing
studies [5,37,38]. In addition, as the interest is on the ef-
fect of climatic variables, the heterogeneity caused by
other factors should not influence the result, unless
other factors are related to the meteorological variables.
The malaria data collection was facilitated by Chinese
Information System for Infectious Diseases Control and
Prevention (CISIDCP). CISIDCP was established on the
basis of individual cases and public health emergencies.
A Virtual Private Network (VPN) was constructed, and
information of individual cases is directly reported to
the national database through the internet. This system
covers all health data sources and will report new malaria
cases to CCDC within 24 hours [39]. Although malaria
cases observed in the 30 counties including Plasmodium
vivax and Plasmodium falciparum, most data did not sep-
arate different parasites. Population data for every county
from 2004 to 2009 were retrieved from the National
Bureau of Statistics of China.

Stratification by temperature
The 30 counties were divided into 15 hot weather and 15
cold weather counties according to the mean minimum
temperature, in order to examine the differences between
these two groups. Moreover, this approach will lead to
more reliable and precise estimates for a given condition,
making more generalizable results within similar climatic
conditions.
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Multilevel distributed lag non-linear models
The methodology of DLNMs was originally developed
for time series data, and a thorough methodological over-
view was given in [40-42]. Distributed Lag Non-linear
Models (DLNM) represent a modelling framework to de-
scribe simultaneously nonlinear and delayed dependen-
cies. To get the basic idea on DLNM, in this section, the
model included just one meteorological factor, the rainfall.
The extension to the other factors is straightforward and
shall be presented in the next section. The expected num-
ber of cases E(Yit) in week t in county i were modelled by
the Poisson regression,

log E Y itð Þð Þ ¼ log ditð Þ þ βi0

þ
XLmaxr

l¼Lminr

f xi t−lð Þ;r; βrl
� � ð1Þ

Here, dit is the population in county i in week t; βi0 is
the intercept effect for county i; Lmin r and Lmax r represent
the minimum and maximum range for the lag effect; and
xi(t − l),r is the rainfall in county i in week (t − l).
Model (1) involves two basis functions for the non-linear

and lag effects, respectively. One function is f(xi(t− l),r, βrl),
which is the non-linear effect of the rainfall l weeks before.
Many functional forms can be chosen for f(xi(t− l),r, βrl), such
as polynomial function. The other function is to constrain
the parameter βrl. Since there is substantial correlation be-
tween rainfall on weeks close together, the above regres-
sion will have a high degree of collinearity, which will
result in unstable estimates of the individual βrl

' s.To gain
more efficiency and more insight into the distributed ef-
fect of rainfall over time, it is useful to constrain the βrl

' s. If
this is done flexibly, substantial gains in reducing the noise
of the unconstrained distributed lag model can be ob-
tained, with minimal bias [43].
The next section concentrates on the choices of two

basis functions and the range of the lag effect, Lmin r and
Lmax r.

Lag range specification and other implement issues
The ranges of lag effects for the four meteorological var-
iables were chosen according to [44], which gave an ex-
tensive overview of the lag range based on laboratory
findings. 3–10 weeks were considered for temperatures.
For the rainfall, instead of 4–12 weeks in [44], 4–
15 weeks were specified to account for the possibility of
longer range, which were reported in existing studies
[32,45]. Relative humidity adopted the same lag range as
rainfall.
The 3rd-order polynomial was used for both the

non-linear and lag effects of meteorological variables.
This choice was partly due to the flexibility of the 3rd-
order polynomial and partly due to the requirement of
parsimony.
Correlations within one county would be greater over

those between counties due to some unmeasured (or per-
haps unmeasurable) county-specific covariates, and there-
fore βi0 took a multilevel structure random intercept,
which was a normal distribution with a mean of β0 and a
variance of σ2

0.
Including all meteorological variables results in the

final model

log E Y itð Þð Þ ¼ log ditð Þ þ βi0

þ
X15
l¼4

f xi t−lð Þ;r; βrl
� �

þ
X15
l¼4

f xi t−lð Þ;h; βhl
� �

þ
X10
l¼3

f xi t−lð Þ;Tn
; βTnl

� �

þ
X10
l¼3

f xi t−lð Þ;Tx
; βTxl

� �
ð2Þ

βi0eN β0; σ
2
0

� �
;

where xit,h, xit;Tn and xit;Tx denote the average relative
humidity, the average minimum temperature and the
average maximum temperature in county i in week t, re-
spectively. β0 is the average intercept over all counties,
and σ2

0 characterizes the variation of county-specific in-
tercepts around the average intercept.
One consequence of the stratification by temperatures

was that the two groups do not have the same range for
the meteorological factors, especially for the tempera-
tures. Besides, the lag pattern could be distinct at differ-
ent meteorological values. For example, the lag pattern
for weekly rainfall might differ between 13.1 mm weekly
rainfall and 26.1 mm weekly rainfall. To deal with these
two issues, we selected three equally-spaced values on
the highly overlapped intervals for the two groups of
four meteorological variables, to make the two groups
comparable and to reveal the pattern of lag effects over
different meteorological variables. Zero was used for all
four climatic factors as the reference value to report the
result.
Lastly, as sensitivity for the choice of constrained lag

function, we also investigated different functional forms
fit for the lag effect. Particularly, the 4th order polyno-
mial and B-spline were fitted. The results showed no sig-
nificant change. All the implementations above were
accomplished by R. R is a free software programming
language and a software environment for statistical com-
puting and graphics [46]. Specifically, we used two add-
non packages, dlnm [47] and lme4 [48].



Table 2 Spearman correlation coefficients between
meteorological variables

Minimum
temperature

Maximum
temperature

Rainfall Relative
humidity

Minimum
temperature

1 0.782 0.304 0.278

Maximum
temperature

0.782 1 −0.039 −0.132

Rainfall 0.304 −0.039 1 0.585

Relative
humidity

0.278 −0.132 0.585 1
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Results
Descriptive analysis
A total of 21,944 malaria cases were reported in the se-
lected 30 counties in south-west China from 2004 to
2009. Table 1 presents the descriptive analysis for the 30
counties, while Table 2 shows the Spearman correlation
between meteorological variables. Minimum temperature
was positively correlated with the remaining climatic
factors, with the greatest correlation with maximum
temperature (r = 0.782). Maximum temperature showed
a weak correlation with rainfall and relative humidity.
Finally, rainfall and relative humidity had a relatively
Table 1 Characteristics of the 30 study counties

County Cases Annualized average
incidences (/100000)

Minimum
temperature⋆ (°C)

Maximum
temperature⋆ (°C)

Rain⋆⋆ (mm) Relative
humidity⋆ (%)

Group

Ruili 3,442 348.204 17.1 (12.4, 21.8) 27.9 (25.3, 30.5) 26.53 (0, 43.03) 73.0 (67, 80) Hot

Tengchong 9,255 246.049 16.1 (11.2, 21.1) 26.8 (23.3, 30.5) 17.80 (1, 24.7) 65.0 (54, 77) Hot

Gongshan 300 136.897 2.5 (−3.1, 8.8) 13.4 (8.8, 18.5) 12.29 (2, 17.63) 69.6 (61, 80) Cold

Fugong 455 80.657 7.5 (1.3, 14) 19.9 (15.8, 24.2) 16.59 (2, 27.85) 67.6 (58, 78) Cold

Mengla 1,203 79.980 18.1 (14.1, 22.1) 29.4 (27.4, 32) 28.02 (0, 41.83) 80.6 (77, 85) Hot

Cangyuan 859 65.931 14.9 (9.8, 20.1) 27.2 (24.7, 29.8) 23.63 (0, 37.93) 72.4 (65, 81) Hot

Menglian 735 55.274 15.4 (10.7, 20.3) 27.6 (25.4, 30) 32.56 (0, 51.6) 75.3 (70, 82) Hot

Jinping 966 47.375 13.8 (10.1, 18.1) 21.1 (17.4, 25.6) 28.95 (2.25, 40.35) 84.8 (81, 91) Hot

Longyang 1,976 37.041 11.8 (6.2, 17.6) 23.1 (19.9, 26.4) 17.94 (0.08, 27.23) 73.1 (66, 81) Cold

Congjiang 688 34.928 15.9 (9.8, 22.6) 24.5 (17.9, 32.1) 22.03 (0.7, 33.8) 78.6 (73, 84) Hot

Jiangcheng 142 22.283 15.6 (11.7, 19.8) 25.5 (23.1, 28.6) 41.89 (0.38, 69.28) 79.2 (76, 84) Hot

Menghai 420 21.036 18.4 (14.5, 22.5) 30.2 (27.9, 32.8) 23.17 (0, 38.63) 77.4 (72, 84) Hot

Weixi 174 18.725 1.7 (−4.9, 9.4) 14.1 (10, 18.5) 11.76 (0, 17.93) 65.9 (58, 74) Cold

Shuangjiang 113 10.580 13.7 (9, 18.7) 25.0 (22.7, 27.7) 21.22 (0.08, 32.63) 67.6 (59, 77) Hot

Simao 119 8.132 15.4 (11.5, 19.4) 25.5 (23.2, 28.2) 27.18 (0, 43.8) 75.9 (71, 83) Hot

Mojiang 173 7.565 19.5 (15.1, 24) 31.1 (27.5, 35.2) 15.40 (0, 21.4) 66.6 (59, 75) Hot

Jingdong 166 7.382 14.3 (9.3, 19.8) 26.7 (23.7, 30.2) 22.21 (0.38, 31.23) 74.7 (70, 82) Hot

Dechang 86 7.335 12.9 (8.1, 17.9) 24.3 (19.9, 29.1) 18.39 (0, 28.1) 59.3 (50, 71) Cold

Gejiu 156 5.535 16.1 (12.3, 20.1) 24.8 (21.8, 28.6) 15.90 (0, 21.18) 68.3 (63, 75) Hot

Dushan 102 4.984 12.7 (6.7, 19.3) 20.0 (14.4, 26.7) 23.94 (1.5, 32.68) 79.4 (73, 88) Cold

Changshun 53 3.598 13.0 (7.3, 19.1) 21.2 (15.3, 28.1) 22.30 (1.48, 29.1) 77.5 (72, 84) Cold

Liping 75 2.522 13.1 (6.2, 20.5) 21.0 (14.2, 28.8) 23.68 (1.9, 33.33) 81.3 (74, 90) Cold

Wenshan 64 2.325 12.8 (8.8, 17.5) 22.4 (19.5, 26.7) 17.64 (0.5, 26.03) 78.3 (74, 85) Cold

Wangmo 29 1.609 16.5 (11.5, 22) 25.6 (20.5, 32) 22.43 (0.5, 26.43) 73.2 (67, 80) Hot

Guangnan 74 1.575 13.6 (8.6, 18.8) 23.5 (19.7, 28.6) 16.98 (0.5, 23.8) 76.8 (72, 84) Cold

Weishan 28 1.482 11.1 (6.2, 15.9) 21.6 (18.3, 25.3) 20.37 (0, 33.28) 66.2 (55, 78) Cold

Nanhua 19 1.318 12.0 (7, 16.9) 22.4 (19.1, 26) 15.66 (0, 24.08) 68.2 (59, 80) Cold

Weng’an 32 1.263 12.9 (6.6, 19.6) 20.2 (13, 28.2) 19.65 (2.6, 27.85) 77.1 (71, 85) Cold

Eshan 11 1.156 11.8 (7.3, 16.7) 22.6 (19.6, 26.3) 16.23 (0, 23.63) 72.6 (67, 81) Cold

Huili 29 1.089 10.6 (4.9, 16.7) 22.6 (18.8, 26.6) 21.53 (0, 27.95) 68.0 (60, 77) Cold

⋆: weekly mean, and the two values in the parenthesis are 25% and 75% percentiles, respectively.
⋆⋆: weekly total, and the two values in the parenthesis are 25% and 75% percentiles, respectively.
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strong correlation (r = 0.585). In this part, the result of
the test of significance was omitted, as the huge sample
size will always lead to a small P value, which is non-
informative [49]. Figure 2 demonstrates the comparison
of meteorological variables between hot and cold wea-
ther counties. While temperatures present a distinctive
difference between the two groups, rainfall and relative
humidity show similar distributions.
Based on Figure 2, three common values for each me-

teorological variable were selected, to make the hot and
cold weather groups comparable. Take the minimum
temperature for example, 11.72°C was the 25% percentile
for the weekly mean minimum temperature in hot wea-
ther counties, and 16.8°C was the 75% percentile for the
weekly mean minimum temperature in cold weather
counties. These two values shall be used and their mean
value (14.26°C) to report the lag pattern in the next section,
as both groups covered these values. Similar manipulations
Figure 2 The box plot comparison of meteorological variables betwe
the boxes is the median value; the bottom and top of the boxes indicates
times the height of the box; and dots with numbers represent value of ou
were also implemented for the other three meteoro-
logical variables.

Multilevel distributed lag non-linear models
Figure 3 shows the estimates of distributed lag between
rainfall and malaria cases. First, the distributed lag
curves have the same overall trend, an inverse-U shape,
with the estimated relative risk increasing at the first half
and decreasing at the second half. For the hot weather
counties, the correlation gets significant at approxi-
mately the 7th week, peaking during the 11-12th weeks
and ending with a non-significant correlation at the last
week. Besides, the range of significant correlations in
cold weather counties is pronounced shorter than that
of hot weather counties. Unlike the hot weather coun-
ties, the lag range increases with the increase of rainfall
in cold weather counties. Furthermore, at each rainfall
value, the hot weather counties present higher relative
en hot and cold weather counties. The dark line in the middle of
the 25th and 75th percentile respectively; whiskers represents 1.5
tlier cases.
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Figure 3 The estimates of distributed lag between rainfall and malaria cases. The red line is the estimated distributed lag, with shaded
bands indicating its 95% confidence interval. A & B show the scenario for 0.1 mm weekly rainfall; C & D show the scenario for 13.1 mm weekly
rainfall, and E & F show the scenario for 26.1 mm weekly rainfall. A, C and E are in the hot weather counties, while B, D, F are in cold
weather counties.
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risks verses those of cold weather counties. In addition,
in both hot and cold weather counties the relative risk
increases with the increase of rainfall, and the magnitude
of the increasing trend is greater at the lower rainfall, al-
most 100 times from 0.1 mm to 13.1 mm, while increas-
ing little from 13.1 mm to 26.1 mm.
Figure 4 gives estimates of distributed lag relationship

between relative humidity and malaria cases. In hot wea-
ther counties, there is a significant positive decreasing
correlation during the 4-5th weeks, while in the middle
the correlation becomes non-significant, and gets signifi-
cant during the 13-15th weeks. By contrast, the association
of relative humidity in cold weather counties is almost not
significant over the whole range.
Figure 5 demonstrates estimates of relationship between

minimum temperature and malaria cases. In the hot wea-
ther counties, minimum temperature shows a constantly
significant association with malaria, usually starting from
the 4th week. In contrast, the cold weather counties show
a limited range for statistically significant association, usu-
ally ending at the 7th week. Besides, at the same minimum
temperature value, the correlation in hot weather counties
is a greater compared to that of cold weather counties.
The 3rd week in hot weather counties shows a statistically
negative correlation, but its 95% confidence interval is
close to 1.
Figure 6 demonstrates estimates of distributed lag be-

tween maximum temperature and malaria cases. The asso-
ciation is similar for hot and cold weather counties, with a
significant association during the 3rd-4th weeks.
In Figures 4, 5, 6, the functional form and magnitude

of effect are almost the same among three categories of
values for the three climatic variables.

Discussion
Like all mosquitoes, anophelines go through four stages
in their life cycle: egg, larva, pupa, and adult [50]. The first
three stages are aquatic and also depend on the tem-
perature. The adult stage is when the female Anopheles
mosquito acts as malaria vector [51]. Once adult mosqui-
toes have emerged, the temperature, humidity, and rains
will determine their chances of survival. To transmit mal-
aria successfully, female Anopheles must survive long
enough after they have become infected to allow the
parasites they harbour to complete their growth cycle
[52]. Furthermore, a better climatic environment will
also shorten the time required for the parasite develop-
ment in the mosquito (the extrinsic incubation period)
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Figure 4 The estimates of distributed lag between relative humidity and malaria cases. The red line is the estimated distributed lag, with
shaded bands indicating its 95% confidence interval. A & B show the scenario for 68.57% weekly mean relative humidity; C & D show the
scenario for 74.57% weekly mean relative humidity, and E & F show the scenario for 80.57% weekly mean relative humidity. A, C and E are in the
hot weather counties, while B, D, F are in cold weather counties.
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[53]. In summary, the meteorological variables can
affect the malaria cases through the effect both on every
stage of mosquitoes and the parasite within mosquitoes.
The results find that different meteorological factors

have distinct patterns and magnitudes for the lagged
correlation. Rainfall is associated with malaria cases in
both hot and cold weather counties with a delayed cor-
relation and a relatively long lag range, suggesting that
rainfall may create collections of water to promote the
whole process for the mosquitoes’ development. Fur-
thermore, the lag is longer in hot weather counties com-
pared to cold weather counties, which is biologically
plausible, as temperature must be warm enough to sup-
port the developments of mosquito and parasites. Be-
sides, although greater rainfall leads to a higher relative
risks for malaria cases in both hot and cold weather
counties, the increase is greatest when the rainfall is
low, while the increase is weaker when the rainfall is
high. The saturation effect may be used to explain this
phenomenon, in the sense that when rainfall is suffi-
cient, additional rainfall contributes little to the devel-
opments of mosquito and parasites.
While relative humidity is not statistically significant in
the cold weather counties, the association is statistically
significant at early and late lags in the hot weather
counties. This could be explained as follows. When the
temperature is not low, the relative humidity primarily
contributes to the mature of parasites and early devel-
opment of mosquitoes, respectively.
Minimum temperature has a longer lag range and larger

correlation coefficients for the hot weather counties com-
pared to cold weather counties. This is contradictory with
some existing studies [44,54], in which they found that
small increases in temperature will have a greater effect
on malaria transmission in areas with lower average tem-
peratures. This may result from the large difference re-
garding prevalence rate between the hot and cold weather
counties, which can be inferred from the incidence. Hot
weather counties have significantly larger incidences than
cold weather counties according to Table 1 and the six
years incidences for the two kinds of counties, with 407/
10,000 and 66/10,000 for the hot and cold weather coun-
ties, respectively. Therefore, more infected persons can
lead the mosquitoes to a greater exposure chance, which
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could compensate the less increase effect from minimum
temperatures in warmer counties. Maximum temperature
is only statistically associated with malaria cases at early
lags, implying that maximum temperature may contribute
to the mature of the parasite.
The lag functional form is relatively stable for all four

meteorological variables within a climatic condition. On
the other hand, in terms of the magnitude, the rainfall
presents a variation among different values while the
other three climatic factors do not show such variation.
This indicates the lag pattern is crucial and greatly deter-
mines the variation of the effect. Also, it reflects the
non-linearity.
Spearman correlation between meteorological vari-

ables shows strong correlation between maximum and
minimum temperatures on the one hand, and between
rainfall and relative humidity on the other hand. This
highlights the importance of including a comprehensive
set of climatic variables in the model to avoid invalid
association.
Existing studies concluded different lags for meteoro-

logical factors, and our work gives two possible reasons.
On the one hand, existing studies usually assume a fixed
lag, and use statistical methods to select the statistically
best lag. This approach omits the variation for the lag
time, leading to imprecise estimates for the lag. On the
other hand, distinct temperature conditions lead to dif-
ferent lag patterns, and therefore existing conclusions
are limited to generalize to similar climatic conditions.
The goal of this study is for scientific understanding, not

predicting, but the results may provide suggestions for fu-
ture predicting model. China is implementing a National
Malaria Elimination Programme, and the southern border
areas will be the one of most hard issue to elimination the
disease, particularly in Yunnan [55]. One measure is to
predict the malaria cases and release early warning signal
when necessary. The results imply that the traditional
moving average or fixed lag methods should be modified
to weight different time intervals to take account of the
biological mechanism.
The nonlinearity was not extensively examined, since

the focus is on the lag pattern. Furthermore, it turned
out that the lag pattern did not vary significantly with
the change of meteorological variables, indicating that
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the lag pattern is relatively stable within a climatic
condition.
This study still has several limitations. First, as with all

observational studies for malaria and meteorological fac-
tors, it is likely that some confounders influence the result
[56]. 30 counties might have different preventive measures
(with different magnitudes) to combat malaria, and they
may also have different behaviours, such as the use of nets.
Including city-specific random effect could not eliminate
the potential bias. Second, the quality and completeness of
the data may change over the six year period [57-59]. The
change mainly occurs in the time dimension, with best
quality in 2009 [59]. Third, the finite and pre-defined lag
ranges for meteorological variables were used. The lag
lengths were chosen mainly according to [44], which gave
both the biological reasoning and the empirical study. Fi-
nally, the lag pattern of P. vivax and P. falciparum malaria
could be different. As with some existing studies [5], sep-
arate analyses by different parasites were not made owing
to a lack of detailed information on P. vivax and P. falcip-
arum in this study. The difference may come from the in-
cubation period, the time between the initial malaria
infection and symptoms. However, the incubation period
generally ranges from 9 to 14 days for P. falciparum and
12 to 18 days for P. vivax [60], and therefore the general
lag pattern should not differentiate greatly. Nonetheless,
further epidemiological researches are warranted to
explore the possible different lag patterns.

Conclusions
Using weekly malaria cases and meteorological informa-
tion, this work studied the temporal lagged association
pattern between malaria cases and meteorological infor-
mation over six years (2004–2009) in 30 counties in
south-west China. The results can be viewed as supple-
mentary information for the existing inconsistent find-
ings on the lag pattern, especially for China, where no
similar study was reported before. Different meteoro-
logical factors show distinct patterns and magnitudes for
the lagged correlation, and the patterns will depend on
the climatic condition. Therefore, existing inconsistent
findings for climatic factors’ lags could be due to either
the invalid assumption of a single fixed lag or the dis-
tinct temperature conditions from different study sites.
The lag pattern for meteorological factors should be
considered in the development of malaria early warning
system, and how to incorporate the lag pattern into pre-
dicting model is an open question.
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