Zenonos et al. Malaria Journal 2014, 13:93
http://www.malariajournal.com/content/13/1/93

MALARIA
JOURNAL

RESEARCH Open Access

Towards a comprehensive Plasmodium falciparum
merozoite cell surface and secreted recombinant
protein library

Zenon A Zenonos'?, Julian C Rayner® and Gavin J Wright'*"

Abstract

Background: Plasmodium falciparum is the aetiological agent for malaria, a deadly infectious disease for which no
vaccine has yet been licensed. The proteins displayed on the merozoite cell surface have long been considered
attractive vaccine targets because of their direct exposure to host antibodies; however, progress in understanding
the functional role of these targets has been hindered by technical challenges associated with expressing these
proteins in a functionally active recombinant form. To address this, a method that enables the systematic
expression of functional extracellular Plasmodium proteins was previously developed, and used to create a library of
42 merozoite proteins.

Methods: To compile a more comprehensive library of recombinant proteins representing the repertoire of

P. falciparum merozoite extracellular proteins for systematic vaccine and functional studies, genome-wide expression
profiling was used to identify additional candidates. Candidate proteins were recombinantly produced and their
integrity and expression levels were tested by Western blotting and ELISA.

Results: Twenty-five additional genes that were upregulated during late schizogony, and predicted to encode
secreted and cell surface proteins, were identified and expressed as soluble recombinant proteins. A band
consistent with the entire ectodomain was observed by immunoblotting for the majority of the proteins and their
expression levels were quantified. By using sera from malaria-exposed immune adults, the immunoreactivity of 20
recombinant proteins was assessed, and most of the merozoite ligands were found to carry heat-labile epitopes. To
facilitate systematic comparative studies across the entire library, multiple Plasmodium proteins were simultaneously
purified using a custom-made platform.

Conclusions: A library of recombinant P. falciparum secreted and cell surface proteins was expanded by 20
additional proteins, which were shown to express at usable levels and contain conformational epitopes. This
resource of extracellular P. falciparum merozoite proteins, which now contains 62 full-length ectodomains, will be a
valuable tool in elucidating the function of these proteins during the blood stages of infection, and facilitate the
comparative assessment of blood stage vaccine candidates.
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Background

Plasmodium falciparum is the aetiological agent of the
most deadly form of malaria, an infectious tropical disease
that accounts for up to one million deaths annually [1,2].
The vast majority of malaria fatalities (85-90%) occur in
sub-Saharan Africa, primarily in pregnant women and chil-
dren under the age of five [2,3]. While anti-malarial drugs
exist, the emergence of drug-resistant parasite strains re-
mains a global health concern and no vaccine has been
licensed to date.

The asexual blood stages of malaria are initiated when
a form of the parasite, called a merozoite, invades, repli-
cates and synchronously ruptures host erythrocytes [4]
releasing up to 32 progeny merozoites that can invade
new erythrocytes. This cyclical phase causes the recur-
rent fevers and chills that are characteristic of malaria
infection [5]. Merozoites are ovoid cells containing api-
cally located secretory organelles that release proteins
which are required for the invasion of new erythrocytes
[6,7]. While erythrocyte invasion is a rapid process, the
brief extracellular exposure of merozoites outside of their
intra-erythrocytic niche places them in direct contact with
host antibodies, which contribute to naturally acquired
immunity to malaria [8,9]; therefore, merozoite cell sur-
face and secreted proteins have long been considered at-
tractive targets for rational vaccine development.

The publication of the P. falciparum genome project
in 2002 [10] identified the full complement of parasite
proteins but progress in understanding the function of
these proteins, including those displayed on the merozoite
cell surface, has been hindered by the technical difficulties
in expressing Plasmodium proteins in a functionally active
form [11]. Although the reasons why Plasmodium pro-
teins are difficult to express in heterologous expression
systems are not clear, several protein characteristics, such
as high molecular mass (>60 kDa), presence of export
motifs, and atypical signal peptide sequences negatively
impact recombinant expression [12]. In addition, the re-
markably high (~80%) A + T content of parasite genes
can result in long stretches of repetitive amino acids [13],
and codons that are not frequently used by organisms
popular for heterologous protein expression. Extracellular
vaccine candidates, in particular, present an additional
challenge because they often require structurally critical
disulfide bonds for correct folding and contain transmem-
brane domains that make them difficult to solubilize in
detergents that retain their native conformation [14-16].

Despite these challenges, recombinant expression of
Plasmodium proteins has been attempted in a number
of expression systems [12,17] ranging from bacteria [18],
yeast [14,19], Dictyostelium discoideum [20], plants and
algae [21,22] to mammalian cells [23,24] and cell-free
systems [13]. Among them, Escherichia coli is the most
popular [17], but the systematic expression of functional
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P. falciparum proteins remains difficult, with success
rates as low as just 6% [25], and often requires subse-
quent laborious and complex refolding procedures with
uncertain outcomes [26]. Consequently, the functional
characterization of extracellular parasite proteins has typ-
ically been restricted to smaller subfragments that can be
expressed rather than the full-length protein or entire
ectodomain, which is more likely to be representative of
the native protein.

The development of a standardized method to express
large panels of P. falciparum cell surface and secreted pro-
teins in their native conformation would enable compre-
hensive protein libraries to be systematically screened in
parallel so that direct comparisons between antigens can be
made in functional assays such as vaccine screening and
immuno-epidemiology studies. To achieve this, Crosnier
and colleagues recently developed a method of expressing
the entire ectodomains of functional recombinant Plasmo-
dium proteins and used it to compile a large library of 42
proteins [27]. Working towards a comprehensive library of
cell surface and secreted P. falciparum merozoite proteins,
this manuscript describes the identification and characteri-
zation of an additional 20 proteins.

Methods

Recombinant protein design and expression

Proteins were expressed essentially as described previously
[27]. Briefly, full-length secreted molecules and the entire
ectodomains of membrane-embedded proteins were identi-
fied using transmembrane [28], GPI-anchor [29], and signal
peptide [30] prediction software. To prevent the inappro-
priate addition of glycans, which are absent from Plasmo-
dium proteins [31], all potential N-linked glycosylation sites
(N-X-S/T, where X is not proline) were systematically
mutated by substituting alanine for serine/threonine at
these sites. Gene constructs were made by gene synthesis
(GeneartAG) using sequences that were codon-optimized
for expression in human cells. Protein coding sequences
were flanked with unique Notl and Ascl restriction sites
and subcloned into a derivative of the pTT3 expression
plasmid between a 5" mouse variable k light chain signal
peptide [32], and a 3’ tag consisting of the rat Cd4 domains
3 and 4 followed by an enzymatic biotinylation sequence
and a hexahistidine tag [33]. Proteins were expressed as
soluble monobiotinylated proteins by transient cotransfec-
tion of HEK293E cells with the BirA biotin ligase [34] and
harvested six days post transfection [35]. All expression
plasmids are openly available from Addgene [36].

Parallel protein purification

His-tagged recombinant merozoite proteins were purified
from spent tissue culture supernatants by using a custom-
built, piston-driven, sample-loading apparatus as described
previously [33]. Briefly, a 96-well His MultiTrap HP filter
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plate (GE Healthcare) was pre-equilibrated with binding
buffer (20 mM sodium phosphate, 40 mM imidazole, 0.5 M
NaCl, pH 7.4) at a flow rate of 1 mL/min. The harvested
tissue culture supernatants (~200 mL for each protein)
were supplemented with imidazole (10 mM) before loading
each well at 1 mL/min. The plate was washed with 1.6 mL
of binding buffer and proteins eluted with 0.2 mL of elution
buffer (20 mM sodium phosphate, 0.4 M imidazole, 0.5 M
NaCl, pH 7.4).

Enzyme-linked immunosorbent assay (ELISA)

ELISAs were performed as previously described [37].
Briefly, purified recombinant biotinylated proteins were
serially diluted in PBS-T (PBS, 0.1% Tween-20) with 2%
BSA, and captured on streptavidin-coated, 96-well plates
(NUNC) for one hour before washing and incubating
with the anti-Cd4 monoclonal antibody OX68 (1 pg/mL
in PBS-T, 2% BSA) for another hour. Plates were washed
and incubated with an anti-mouse IgG (Sigma) secondary
antibody conjugated to alkaline phosphatase for one hour
before further washes and incubation with p-nitrophenyl
phosphate (Substrate 104; Sigma) at 1 mg/mL. Absorbance
was measured at 405 nm on a PHERAstar plus (BMG Lab-
tech). Concentrations were calculated by comparison to
known standards.

Western blotting

Each purified recombinant protein was resolved by SDS-
PAGE under reducing conditions before blotting onto
Hybond-P PVDF membrane (GE Healthcare) for one
hour at 30 V. Membranes were blocked with 2% BSA, in
PBS-T and incubated with 0.02 pg/mL of streptavidin-
HRP (Jackson Immunoresearch) diluted in PBS-T, 0.2%
BSA and detected with the Supersignal West pico chemilu-
minescent substrate (Pierce).

Immunogenicity study

Proteins were heat treated at 80°C for 10 minutes or left
untreated and immobilized on streptavidin-coated, 96-well
plates (NUNC), at concentrations sufficient for complete
saturation of the available binding surface/well (as deter-
mined by ELISA). Following three washes in PBS-T, plates
were incubated with pooled sera from malaria-exposed
Malawian adults or malaria-naive UK individuals at a
1:1,000 dilution in PBS-T, 2% BSA followed by an alkaline
phosphatase-conjugated anti-human IgG secondary anti-
body (Sigma) and detected as above.

Results

Identification of candidate Plasmodium falciparum
merozoite cell surface and secreted proteins

With the aim of expanding an existing recombinant P. fal-
ciparum merozoite cell surface and secreted protein library,
publicly available, genome-wide transcription microarray
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data of P. falciparum intra-erythrocytic stages were ana-
lysed [38,39]. To compile a list of merozoite extracellular
proteins with possible roles in erythrocyte invasion, the
transcription profiles of four well-established P. falciparum
merozoite ligands (RH5, AMA1, EBA140, EBA175) that
have all been previously implicated in erythrocyte invasion
were examined [11,38-41]. It was observed that they all
follow a similar expression pattern, passing through a
minimum 20 + 6 hours post invasion and peaking at ap-
proximately 42 + 6 hours after invasion [38,39]. Of the
465 candidate blood stage genes that showed similar ex-
pression time windows, 207 encoded a predicted signal
peptide and/or a single transmembrane domain/GPI an-
chor [28-30], suggesting they are likely cell surface or
secreted proteins. Multi-pass membrane proteins were
excluded from this list because these proteins are unlikely
to be expressed in a soluble, secreted form. Within the
207 candidates, 31 were already represented in the exist-
ing merozoite library [27] and another 120 were excluded
because of their predicted function (e g, involvement in
lipid metabolism or nuclear localization) or protein do-
main content (e g, RNA or DNA binding motif) following
gene ontology analysis using PlasmoDB [42], and protein
domain mapping using Pfam [43]; also, 42 proteins were
excluded due to their large size (>1,400 amino acids). In
total, this bioinformatics analysis identified 14 putative
secreted or membrane-tethered merozoite proteins. To
this list, other members of the MSP3 [44,45], MSP7-like
[46-48] and SERA paralogous protein families [49] were
added, which were not present in the existing P. falciparum
merozoite recombinant protein library [27]. Finally, the
available literature was scanned to identify an additional
seven merozoite cell surface and secreted proteins [50,51].
In total, 25 putative merozoite secreted or cell surface
proteins were chosen for recombinant expression, two
of which contained putative GPI anchors, and 23 con-
tained no predicted membrane anchor (Table 1).

To design the expression constructs, the entire predicted
extracellular domain was selected between the signal se-
quence and the GPI-anchor, if present. Any predicted
N-linked glycosylation sites were systematically removed
by substituting alanine for serine/threonine at these sites.
Expression constructs were made by gene synthesis and
codon optimized for expression in human cells. All ex-
pression plasmids are publicly available through Addgene,
a not-for-profit, open access plasmid repository [36].

Expression and purification of an expanded Plasmodium
falciparum merozoite protein library

All proteins were expressed in HEK293E cells as soluble fu-
sion proteins that contained a C-terminal rat Cd4(d3 + 4)-
hexahistidine tag for purification and could be optionally
monobiotinylated by cotransfecting a secreted version of
the E. coli BirA enzyme [33]. To purify many proteins in



Zenonos et al. Malaria Journal 2014, 13:93
http://www.malariajournal.com/content/13/1/93

Page 4 of 8

Table 1 The putative merozoite cell surface and secreted proteins that were chosen for recombinant expression

No Name Accession number Type Region targeted for Exp. levels
recombinant expression

¥ rhoptry-associated membrane antigen (RAMA) MAL7P1.208 GPI Y17-5840 Medium
2 Prohibitin, putative PFO8_0006 Secreted L20-F272 Low

3¢ Conserved Plasmodium protein, unknown function PF10_0166 Secreted Y25-E310 High

4 GLURP PF10_0344 Secreted K24-11233 Low

5 MSP3.5 PF10_0350 Secreted A20-F710 High

6% MSP3.6 PF10_0351 Secreted N22-P566 Medium
7* MSRP5 PF13_0191 Secreted N22-1459 Medium
8* MSRP4 MAL13P1.173 Secreted D22-Q309 High

o¥ MSP8 PFE0120c GPI E26-5576 Low

10# Conserved Plasmodium protein, unknown function PF13_0125 Secreted N20-5292 High

" Conserved Plasmodium protein, unknown function PF14_0044 Secreted Q21-K290 N/D

12 Merozoite-associated tryptophan-rich PFAO0135w Secreted 125-K276 High

antigen, putative

13 LCCL domain-containing protein PFAO445w Secreted K22-11029 N/D

14 SERA1 PFB0360c Secreted M1-v997 N/D
15¥ SERA2 PFB0355¢ Secreted E23-V1105 Medium
16 SERA3 PFB0350c Secreted T23-1930 Medium
17 SERA4 PFB0345¢ Secreted S26-\V962 High

18 SERAS PFB0340c Secreted T23-V997 High

19 SERA6 PFB0335¢ Secreted N25-V1031 Low
20¥ SERA7 PFB0330c Secreted Q23-V946 Low
21 SERA9 PFI0135¢ Secreted E23-V932 Medium
Q0¥ Conserved Plasmodium protein, unknown function PFA0210c Secreted Y24-D466 Low

23 Conserved Plasmodium protein, unknown function PFB0475c¢ Secreted L 23-D446 Low

24 Cysteine-rich protective antigen (CyRPA) PFD1130w Secreted D29-E362 High

25 RIPR PFC1045¢ Secreted 120-N1086 Low

Protein sequences from 3D7 reference P. falciparum strain were truncated to remove endogenous signal peptides and sequences corresponding to GPI anchors.
The region of each protein that was targeted for recombinant expression is shown. Expression levels are given as a guide only because of the significant batch-to-batch
variability of transient transfection, and grouped into “high” (between 30 pM and 100 uM after purification), “medium” (1 uM and 30 uM) and “low” (0.01 uM and 1 pM).

No detectable expression (N/D) was obtained for PFA0445w, PF14_0044 and SERA1.
¥Proteins selected from [51].

*Proteins included to complete the set of proteins belonging to the MSP3, MSP7-like and SERA families.
#Proteins chosen from [50]. All other proteins were short-listed from bioinformatic analysis of transcription microarray data [38,39]. GPI, GPl-anchored.

parallel for comparative screening, a custom-built protein
purification system was employed, that enables the simul-
taneous purification of up to 96 His-tagged proteins, even
from large (>50 mL) tissue culture volumes [33].

Following purification, recombinant proteins were quan-
titated by ELISA and while expression levels varied signifi-
cantly between individual proteins, most were purified to
micromolar levels (Table 1). Overall, detectable expression
was obtained for 22 out of 25 (88%) proteins. Both GLURP
and SERAG, although detected by ELISA, were expressed at
levels that were too low to include in further analysis and
three proteins (PF14_0044, PFA0445w, SERA1) remained
undetectable by ELISA despite repeated transfections.

To assess their integrity, the recombinant proteins
were resolved by SDS-PAGE, and the presence of the
C-terminal biotin tag detected by Western blotting
(Figure 1). A band consistent with the full-length ectodo-
main was obtained for 20 out of 25 proteins (80%); in some
cases, smaller bands were also evident, most likely due to
proteolytic processing. For SERA7 and PFO8_0006, bands
of ~30 and ~25 kDa were detected, respectively, suggesting
complete cleavage at the C-terminus of the protein. Col-
lectively, these observations establish the successful expres-
sion of 18/25 (72%) recombinant P. falciparum merozoite
proteins at a size consistent with a full-length recombinant
protein at usable amounts.
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Figure 1 The majority of recombinant merozoite extracellular proteins are expressed at their expected size. One microgram of each purified
biotinylated merozoite protein (as estimated by the absorbance at 280 nm) was resolved under reducing conditions by SDS-PAGE, blotted, and probed
using streptavidin-HRP. The expected molecular mass of each recombinant protein is indicated in brackets above each lane, including the Cd4-6xHis
tag (25 kDa).

Members of the recombinant merozoite protein

library proteins are immunoreactive and carry

heat-labile epitopes

In nature, protective antibodies largely recognize proteins
in their native conformation; therefore, to examine whether
the recombinant merozoite library proteins were correctly
folded, their immunoreactivity against hyperimmune sera
from adults living in malaria-endemic regions was tested.
All 20 proteins from the library expressed at useable levels
were arrayed on a streptavidin-coated, microtitre plate
and their relative immunoreactivity to pooled sera from
Malawian adults was compared to that from malaria-naive

individuals [52]. All but one (MSRP4) of the proteins were
immunoreactive (Figure 2). Strikingly, strong immunore-
activity was observed for most of the SERA proteins, con-
sistent with previous observations [49].

To demonstrate that serum antibodies were recogniz-
ing conformational epitopes within the protein library,
all recombinant proteins were denatured by heat treat-
ment before being captured via their biotin tag. For 16
of the 20 proteins (all but MSRP4, SERA7, PFA0210c,
and PFB0475c) the immunoreactivity decreased signifi-
cantly when the proteins were heat inactivated, establish-
ing that the antigens contain heat-labile epitopes. These

2.31 m Native protein detected with hyperimmune sera
21 — m Heat inactivated protein detected with hyperimmune sera i
J m Control (native protein probed against non-immune sera) x
J Control (native protein detected with anti-Cd4)
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Figure 2 The merozoite recombinant proteins are immunoreactive against hyperimmune sera. The immunoreactivity of the recombinant
P. falciparum merozoite proteins was tested using pooled sera from malaria-exposed Malawian adults (red bar) or malaria-naive adults (green bar).
The reduced immunoreactivity of immune sera to heat-denatured antigens (blue bar) demonstrates the presence of heat-labile (conformational)
epitopes. All proteins except one (MSRP4) were identified as being immunoreactive as assessed by immunoreactivity >3 SD above negative control
(green bar). AMA-1 and Cd4 were used as the positive and negative control, respectively. Data points are shown as mean +sd,; n=3.
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data show that the merozoite recombinant proteins are
correctly folded and at least in part mimic the native pro-
tein conformation.

Discussion

The technical difficulties in expressing Plasmodium pro-
teins in a recombinant functional form has presented
difficulties both for basic malaria research and vaccine
development [12]. Here, an approach based on a mamma-
lian expression system has been utilized to significantly
expand a recombinant library consisting of recombinant
P. falciparum merozoite extracellular proteins from 42
to 62 members [27]. A high-throughput, custom-made
purification platform was successfully used to purify re-
combinant proteins from large volumes of tissue culture
supernatants to permit systematic comparative studies
of purified antigens [33].

While the overall success rate of expression was high,
consistent with previous experience of the HEK293 system
[27,53-57], a few merozoite proteins still failed to express,
or were expressed at low levels. Although the genes were
codon-optimized for human cells, P. falciparum proteins
are unusual because they are enriched in asparagine, glu-
tamic acid and lysine, and often contain homopolymeric
stretches of amino acids. Indeed, it has been recently dem-
onstrated that the stability of several Plasmodium proteins
depends upon their association with heat shock proteins
which act as molecular chaperones [58]. Therefore, recom-
binant protein expression in the HEK293 system could be
further enhanced by the presence of PfHsp110c, which has
been proposed to be a protein-stabilizing chaperone [58].

Using sera from malaria-immune adults, it has been
shown that the expressed recombinant proteins contained
heat-labile epitopes suggesting that they adopt their native
conformation and are likely to be biochemically active. A
number of proteins (e g, PF10_0166, PFA0135w) showed
little serological response in comparison to the negative
control. While these proteins may not contain epitopes
present in the native protein, the possibility that the native
proteins are poorly immunogenic and do not induce a
strong antibody response in vivo, cannot be excluded. For
example, previous studies reported that only 23% of im-
mune sera examined contained specific serum IgG anti-
bodies against PFA0135w, suggesting that this protein
does not normally elicit strong humoral responses [59].
Interestingly, RIPR, which binds to P/RH5 [60], is also
among the group of generally low responders. P/RH5 is
a high priority vaccine target as it plays an essential and
universal role in erythrocyte invasion [53,57,61-63], yet
it is poorly immunogenic in vivo [61], possibly due to its
late release onto the merozoite surface during erythro-
cyte invasion. RIPR may be similarly masked from the
host immune system, but further work with this antigen
is clearly required.
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Conclusion

A library of recombinant P. falciparum proteins has been
expanded and characterized with the eventual aim of com-
piling a set that is representative of the merozoite surface.
These plasmids, which are freely available to the global re-
search community through Addgene [36], will be a valuable
resource for basic research and aid the efforts to develop an
effective malaria vaccine.
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