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Abstract

The present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf)
antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer
CRLI005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of
PfCSP, PfSSP2/TRAP, PfLSAI, PfAMAI and PfMSPI-42 (CSLAM) DNA vaccines in PBS or
formulated with CRLI005, and subsequently boosted with ALVAC-Pf7, a canarypox virus
expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-y ELIspot
and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides.
Antigen-specific and parasite-specific antibody responses were evaluated by ELISA and IFAT,
respectively. Immune responses to all components of the multi-antigen mixture were
demonstrated following immunization with either DNA/PBS or DNA/CRLI1005, and no antigen
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interference was observed in animals receiving CSLAM as compared to PfCSP alone. These data
support the down-selection of the CSLAM antigen combination. CRL1005 formulation had no
apparent effect on vaccine-induced T cell or antibody responses, either before or after viral boost.
In high responder monkeys, CD4+IL-2+ responses were more predominant than CD8+ T cell
responses. Furthermore, CD8+ IFN-y responses were detected only in the presence of detectable
CDA4+ T cell responses. Overall, this study demonstrates the potential for multivalent Pf vaccines
based on rational antigen selection and combination, and suggests that further formulation
development to increase the immunogenicity of DNA encoded antigens is warranted.

Background

Despite intense research efforts, malaria remains a signif-
icant public health problem [1] and is associated with sig-
nificant constraints on economic progress and
productivity [2] in the developing world. Especially with
the spread of drug-resistant Plasmodium parasites and
insecticide-resistant Anopheles vectors, development of an
effective malaria vaccine is considered a public health pri-
ority [3]. Two human models demonstrate the feasibility
of developing a malaria vaccine. Immunization with radi-
ation-attenuated Plasmodium spp. parasites has been
shown to confer sterile protection against sporozoite chal-
lenge in humans [4,5] as well as rodent [6] and non-
human primate [7] models, and natural long-term expo-
sure to the parasite is associated with an age-related
decrease in the incidence, prevalence, and density of infec-
tion [8]. The critical effector mechanism in the radiation-
attenuated sporozoite model is thought to be CD8+ T-cell
responses directed against parasite antigens expressed in
the liver stage [9-11]. In the naturally acquired immunity
model, antibodies directed against blood-stage parasite
antigens are thought to be responsible for protective
immunity [12-14].

Based on these two models, a multi-stage multi-immune
response vaccine against malaria comprising antigens
expressed in the liver stage and targeted by T-cell
responses, as well as antigens expressed in the blood-stage
and targeted by antibody responses, is being developed
[15]. The hypothesis is that by reducing the numbers of
parasites emerging from the liver (T-cell immune
responses directed against those antigens expressed by
irradiated sporozoites in hepatocytes) and priming the
immune system to erythrocytic stage antigens that will be
boosted by infection from natural exposure (antibody
responses directed against parasite proteins expressed on
the surface of merozoites or infected erythrocytes or in
apical organelles), one will reduce the severity and mor-
tality due to Plasmodium falciparum malaria. This "com-
bined stage" approach is designed to prevent infection by
killing the majority of developing parasites in the liver,
and also to prevent severe disease and death should break-
through blood stage infections occur. This vaccine devel-
opment strategy originally called for constructing vaccines

consisting of plasmid cocktails of increasing valency,
beginning with five pre-erythrocytic stage antigens, and
then adding ten or more erythrocytic stage antigens [15].
However, a clinical trial of five pre-erythrocytic stage vac-
cines (PfCSP, PfSSP2/TRAP, PfLSA1, PfLSA3, PfExp1) indi-
cated reduced immunogenicity to components of a
plasmid cocktail in comparison to immune responses to
vaccination with individual components [16]. In that
trial, none of 31 volunteers immunized with the pentava-
lent pre-erythrocytic stage vaccine developed T-cell
responses to more than three of the five antigens, as meas-
ured by IFN-y ELIspot assay and none of the volunteers
were protected against Pf sporozoite challenge [16]. A lack
of protection was also noted in a study combining the
PfCSP recombinant protein vaccine RTS,S vaccine and
recombinant PfSSP2/TRAP [17]. Interference studies sub-
sequently conducted in mice with mammalian codon-
optimized versions of the same five pre-erythrocytic genes
plus four erythrocytic stage genes (PfAMA1, PAMSP1-3D7,
PMSP1-FVO, and PfEBA175) showed significant inhibi-
tion of antigen-specific T-cell and antibody responses
when nine plasmid DNA vaccines were administered as a
single cocktail [18]. In vitro expression studies indicated
that the inhibition was occurring at the level of mRNA
[19]. In a series of plasmid competition experiments, the
nine codon-optimized P. falciparum plasmid DNA vac-
cines were assessed for immunogenicity and multi-anti-
gen compatibility, by being tested individually as the
nine-valent cocktail, and as a series of eight-valent cock-
tails in which each single antigen was removed from the
cocktail in turn to see if the remaining plasmids were
released from an interference effect [ 18]. Those data led to
the down-selection of a five antigen combination of three
pre-erythrocytic stage vaccines encoding the P. falciparum
(3D7 strain) of CSP [20,21], SSP2/TRAP [22,23] and LSA1
[24,25] as well as two erythrocytic stage antigens, AMA1
[26,27], and MSP1-42 [28,29] in which plasmid interfer-
ence appears to be minimized. This antigen combination
has been called CSLAM.

In contrast to recombinant protein approaches, molecular
vaccines such as plasmid DNA and recombinant attenu-
ated live viruses rely on the mammalian host's cellular
machinery to translate the injected genetic material to
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produce the foreign protein(s) that is expressed in the cor-
rect conformation for recognition by the host immune
system [30]. Thus, molecular vaccines offer the potential
for the construction of multi-antigen immunogens and
for activating all arms of the immune system (both anti-
body and cellular) to confer broad protection against
pathogen challenge. The initial emphasis was on plasmid
DNA vaccines as a core technology, because of their sim-
plicity of design, ease of modification, combination
(potential for multi-antigen vaccination), and manufac-
turing, and potential for generating the CD8+ T-cell
responses required for protection against an intracellular
pathogen such as Plasmodium [31,32]. In the malaria
model, previous studies have established the capacity of
DNA vaccines encoding Plasmodium antigens to induce
CD8+ CTL and IFN-y responses and protection against
sporozoite challenge in mice [15,33-36] and monkeys
[37-39]. Phase I/2a clinical trials have established the
safety, tolerability and immunogenicity of DNA vaccines
encoding malaria parasite antigens in normal healthy
humans [3,16,40-44]. However, in multiple disease sys-
tems including malaria, DNA vaccines on their own,
administered in PBS/saline, have been poorly efficacious
with regard to induction of antibody responses and pro-
tective immunity in non-human primates [38,39] or
humans [16,40-44]. This has led to strategies to enhance
the immunogenicity of plasmid DNA, by codon optimiza-
tion, vaccine/adjuvant formulations, delivery technolo-
gies and heterologous DNA prime/virus boost
immunization regimens [32,45-49]. One potential DNA
immune enhancement strategy is formulation of the DNA
with poloxamers - surface active, water-soluble, non-
ionic triblock copolymers. CRL1005 is a nonionic triblock
copolymer composed of blocks of polyoxypropylene
(POP) and polyoxyethylene (POE) [50-52] with a POP
core of molecular weight 12 kDa and 5% POE. When for-
mulated with a protein in a vaccine formulation [51,53],
these poloxamers have been shown to have adjuvant
activity. In addition to enhancing protein or inactivated
vaccine-induced antibody responses in rodent models of
influenza, CRL1005-formulated plasmid DNA vaccines
have been shown to significantly enhance the level of
antigen-specific immune responses in SIV non-human
primate models after adenovirus boosting [49,50,53]. It is
believed that the adjuvant properties of CRL1005 are
related to its ability to aggregate into surface-activated par-
ticle but the immunological mechanism is unclear. Exper-
imental data suggest that CRL1005-mediated immune
enhancement may occur via induction of antibody and IL-
2 dominated Th-1 cellular responses, as evidenced in a
murine influenza model [54], or induction of IFN-y CD8+
T cells as evidenced in a SIV non-human primate model
[53].
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Studies in animal models of various infectious diseases
including HIV [55], influenza [56], tuberculosis [57], as
well as malaria [47], have established that heterologous
prime/boost strategies comprising, for example, priming
with plasmid DNA and boosting with recombinant virus,
are far more effective than homologous immunization
regimens. In particular, priming with plasmid DNA and
boosting with recombinant pox was shown to be immu-
nogenic and protective in the Plasmodium yoelii rodent
model [34] as well as the Plasmodium knowlesi non-human
primate model [39]. Accordingly, using a DNA prime/
poxvirus boost immunization regimen to maximize the
potential for enhancing the immunogenicity and protec-
tive efficacy of DNA-based vaccines, the ability of the pen-
tavalent CSLAM vaccine cocktail to induce antigen-
specific T-cell and antibody responses was evaluated in
rhesus monkeys, in comparison with PfCSP alone, both in
the absence or presence of the poloxamer CRL1005 aim-
ing to enhance the immunogenicity of plasmid DNA.

Materials and methods

Plasmid DNA vaccines

The plasmid DNA (pDNA) vaccines used in this study, in
the VR1020 backbone [58], have been described previ-
ously [18]. The PfCSP (VCL-2571), PfSSP2/TRAP (VCL-
2576), and PfAMA1 (VCL-2577) vaccines encoded full-
length proteins; the PfLSA1 vaccine (VCL-2559) encoded
the C-terminal 281 amino acid residues (representing
65% of the nonrepeat region of full length PfLSA1); and
the PfMSP1 vaccine (VCL-2574) encoded the 42-kDa frag-
ment of the PAMSP1 protein. All vaccines were based on
the 3D7 strain of P. falciparum, and the coding sequence
for each antigen was modified for mammalian codon
usage in order to improve expression of the encoded anti-
gen [59]. Expression of the encoded protein was con-
firmed in vitro by transient transfection of VM92
melanoma cells (kindly provided by Vical Inc.) using
Lipofectamine, as described by the manufacturer (Life
Technologies, Gaithersburg, MD). Protein expression was
quantitated as a chemiluminescent signal by using anti-
gen-specific monoclonal or polyclonal antibodies and a
commercially obtained chemiluminescence-linked West-
ern blot kit (Western-Light, Tropix, Bedford, Mass.)
according to the manufacturer's directions. Chemilumi-
nescent signals were detected by exposure of the processed
membrane to auto radiographic film (Hyperfilm-ECL;
Amersham Life Sciences Inc., Cleveland, Ohio). Plasmid
DNA for immunization was produced by Vical Inc.,
checked for physical integrity, expression activity, concen-
tration, and endotoxin levels, and resuspended in phos-
phate-buffered saline (PBS) at a concentration of 2.5 mg
of pDNA/ml (500 pg of each plasmid DNA vaccine). In
the PfCSP alone group, 2 mg of plasmid VR1020 without
antigen insert was added to 500 pg PfCSP DNA to main-
tain the total DNA concentration at 2.5 mg/ml.
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CRL1005 formulation

The poloxamer-based vaccine formulation consisted of
the non-ionic block copolymer, CRL1005 (CytRx Corpo-
ration, Los Angeles, CA) and a cationic surfactant, benza-
lkonium chloride (BAK, BTC 50 NF, Stepan Company,
Northfield, IL), formulated with pDNA in PBS. To make
the formulation, the required concentration of pDNA (to
produce a final concentration of 5 mg/ml) in PBS was
stirred on ice and the required amount of CRL1005 (to
produce a final concentration of 7.5 mg/ml) was added
using a positive displacement pipette. The solution was
stirred on ice until the poloxamer dissolved and then the
required concentration of benzalkonium chloride dis-
solved in PBS was added (to produce a final concentration
of 0.3 mM). The solution was then cycled through the
cloud point (4 to 25°C) several times to ensure homoge-
neity, diluted with PBS to a final pDNA concentration of
2.5 mg/ml, and then filter sterilized at 4 °C and stored fro-
zen (-30°C). Prior to injection, the vaccine formulation
was thawed at ambient temperature, stored at room tem-
perature, and administered within 6 hours of preparation.

Recombinant Poxvirus

ALVAC-Pf7 (virus # vCP1305, stock # N37) is a highly
attenuated canary poxvirus with seven P. falciparum genes
(native codon sequence) inserted into its genome: PfCSP
and PfSSP2/TRAP (sporozoite stage); PfLSA1 (liver stage);
PfAMA1, PfMSP1, and PfSERA (blood stage), and Pfs25
(sexual stage). The recombinant virus was produced by
Virogenetics Corporation (Troy, NY).

Recombinant proteins

Recombinant PfCSP [60], P/LSA1 (D. Lanar, WRAIR),
PfAMAL1 [61], and PMSP1-42 (A. Saul, MVDB) were well
characterized Pf antigens (3D7 strain) manufactured at
research grade. The recombinant proteins were used at a
final concentration of 10 pg/ml as antigen for in vitro ELIs-
pot and intracellular cytokine staining assays, and at a
final concentration of 1 pug/ml as capture antigen for anti-
body ELISAs. The endotoxin levels were <5 EU/ml for
recombinant P/AMAL1, and PfMSP1; 13 EU/ml for PfCSP;
and 74 EU/ml for PfLSA1, as indicated by the LAL testing
(Cambrex BioScience Walkersville, Inc, MD).

Synthetic peptides and peptide pools

A series of 15-mer synthetic peptides, with 10-mer over-
laps, derived from PfCSP (total 64 peptides), PfSSP2/
TRAP (total 138 peptides) and PfLSA1 (total 114 pep-
tides) were synthesized by Mimotopes (Melbourne, Aus-
tralia) at > 80% purity. Individual peptides were
resuspended in DMSO at a concentration of 20 mg/ml
and pooled sequentially according to antigen sequence,
with 22 peptides or less per pool. Peptides were used at a
final concentration of 4 pg/ml for in vitro T cell assays. The
final DMSO concentration did not exceed 0.55%.

http://www.malariajournal.com/content/6/1/135

Immunization regimen

A total of 20 rhesus monkeys (Macaca mulatta), aged 5 to
10 years and between 3 and 10 kg in weight were screened
for anti-PfCSP antibody negativity by ELISA and rand-
omized into four groups with five monkeys per group. At
weeks 0, 4, and 8, monkeys were immunized with 500 pug
PfCSP plasmid DNA either in PBS (monkey RZc7, RHc7,
RLw6, RSf7, Rli6) or CRL-1005 (monkey RLf7, RUm®,
ROr6, RAs6, RDr6), or 500 pg of each CSLAM plasmid
DNA either in PBS (monkey RDc7, RCf7, RWa7, RYi6,
RVi6) or formulated in CRL1005 (PH1019, ROk6, ROa7,
RQk6, RBsG) in a total volume of 1 ml, administered
intramuscularly in single sites in the rectus femoris muscle
using a 22-gauge needle. Subsequent immunizations were
administered to the same muscle on alternating sides of
the animal. Twelve weeks after the last pDNA immuniza-
tion, animals were boosted by intramuscular administra-
tion of 2 x 108 pfu of ALVAC-Pf7. All immunizations were
carried out at the Emory Vaccine Center at the Yerkes
National Primate Research Center, Emory University, GA.
All experiments were conducted in compliance with the
Animal Welfare Act and with Emory University Institu-
tional Animal Care and Use Committee approvals in
accordance with the principles set forth in the "Guide for
the Care and Use of Laboratory Animals", Institute of Lab-
oratory Animal Resources, National Research Council,
and National Academy Press, 1996. Sera and peripheral
blood mononuclear cells were collected pre-immuniza-
tion and at 4 weeks post each immunization for assess-
ment of immunogenicity. The animals were monitored
and evaluated daily for general behaviour, level of activity,
and visible side effects or adverse reactions. The injection
sites were examined closely by the veterinary clinician
each time the animals were sedated for designated bleed-
ings and injections. Close observations included analysis
of skin for warmth, erythema and edema/swelling, and
muscle induration. The clinical veterinarian examining
the animals and injection sites was blinded to which vac-
cine formulation had been given. Analysis of hematology
and clinical chemistry of the different animals was per-
formed on blood samples drawn at pre-bleed, immuniza-
tion and boosting time points. Hematology analysis
consisted of an evaluation of white blood cells, erythro-
cytes, hemoglobin, hematocrit, mean corpuscular volume
and platelets values. Analysis of clinical chemistry con-
sisted of glucose, blood urea nitrogen, creatinine, protein,
albumin, alkaline phosphatase, serum glutamic pyruvic
transaminase, serum glutamic oxaloacetic transaminase,
amylase and creatine phosphokinase determinations.

IFN-y ELIspot assay

The assay for rhesus IFN-y was modified from a previously
described method [62]. In brief, 96-well PVDF plates (Mil-
lipore Corporation, Bedford, MA) were coated with 100
pl/well of anti-human IFN-y mAb (clone GZ-4, Bend-
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erMedSystems, Burlingame, CA) at a concentration of 5
pg/ml in 1x PBS and incubated overnight at 4°C. Plates
were washed six times with RPMI 1640 medium and
blocked with 200 pl/well of 10% FCS-RPMI 1640
medium (R10) for at least 2 hrat 37°C. After blocking, the
plates were washed once with R10, and 100 ul of 2 x 10¢
PBMC (200,000 cells/well) and 100 ul of stimulant in
R10 were added per well, in quadruplicate. Plates were
incubated for 18 hrs at 37°C in an atmosphere of 5%
CO,. Plates were then washed six times with 1x PBS in the
presence of 0.5% Tween 20 (PBS-T) 100 pl/well of 1 pg/
ml biotinylated anti-IFN-y (clone 7-B6-1, MabTech, Swe-
den) added per well, and the plates incubated for 1 hr at
37°C. Plates were washed six times with 1x PBS-T, and
100 pl/well streptavidin-alkaline phosphatase conjugate
(MabTech, Sweden) was added at 1:1000 dilutions in
PBS. After 1 hr incubation at room temperature, plates
were washed six times with 1x PBS-T followed by three
times with PBS, and developed with AP conjugate sub-
strate kit, (BioRad Laboratories, Hercules, CA) according
to the manufacturer's instructions. After 15 min, the plates
were rinsed extensively with dH,O to stop the colorimet-
ric reaction, dried and stored in the dark. The IFN-y spot-
forming cells (SFC) were numerated using a high-resolu-
tion automated ELIspot reader (Carl Zeiss Vision, Ger-
many). Responses were expressed as the mean number of
SFC per million cells in quadruplicate wells. Responses, to
both protein and peptide pools, were classified as positive
if (1) the net SFC (mean SFC in experiment antigen wells
- mean SFC in medium wells) was > 25 SFC per million
PBMC, and (2) the stimulation index (ratio of mean SFC
in experimental peptide wells to mean SFC in medium
wells) was > 2. In some cases, responses in cells collected
before immunization to a specific immunogen met the
criteria of positivity as defined above. In that case,
responders post immunization were classified as positive
if the magnitude of net ELIspot was > 2-fold that of the
pre-immunization response.

Intracellular cytokine staining

All reagents for the intracellular cytokine staining were
purchased from Becton Dickinson ImmunoCytometry
Systems (San Jose, CA). A total of 0.5-1.0 x 10° PBMC in
100 pl R10 medium were plated per well in U-bottomed
96-well plates, in the presence of 1 pg/ml anti-human
CD28 (Clone CD28.2) and 1 pg/ml anti-human CD49d
(clone 9F10) antibodies with or without 100 pl antigen
(total 200 pl/well). GolgiPlug was added at 1 pl/well at 2
hrs after the start of incubation, and the plates were then
incubated an additional 14 hrs at 37°C in an atmosphere
of 5%CO,. Plates were spun at 1,200 rpm for 5 min, the
supernatant flicked, the cell pellet resuspended by gentle
vortexing, and the cells washed twice in FACS buffer. The
cells were stained with 20 pl anti-CD4-PerCP-Cy5.5
(clone L200), and 5 pl anti-CD8-PE-Cy7 (clone RPA-T8)
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in a final volume of 100 pl FACS buffer for 45 min on ice
in the dark. After the surface staining, cells were washed
with FACS buffer twice, gently resuspended, and permea-
bilized in 100 pl CytoFix/CytoPerm buffer for 20 min.
Cells were washed again and then stained with anti-IFN-y-
FITC (clone B27) and anti-IL2-APC (clone MQ1-17H12)
for 45 min on ice in the dark. Cells were washed twice
with CytoPerm wash buffer, resuspended in 200 pl of
FACS buffer, and stored at 4°C prior to analysis. Samples
were analysed using the FACSCalibur™ flow cytometer
(Becton Dickinson Immunocytometry Systems, San Jose,
CA) and CellQuest software. The expression level of intra-
cellular cytokines was presented as the percentage of
stained cells in gated cell populations of either CD4+ or
CD8+ cells, corrected for background responses in the
absence of antigen. The non-specific background was typ-
ically less than 0.05%.

Antibody assays

Pre- and post-immunization serum samples were serially
diluted two-fold and assayed in parallel for anti-Plasmo-
dium antibodies. Parasite-specific antibodies were assayed
by the indirect fluorescent-antibody test (IFAT) [63]
against air-dried P. falciparum (strain NF54 ~ 3D7 clone)
sporozoites or parasitized erythrocytes. IFAT results were
reported as the endpoint dilution, representing the last
serum dilution at which fluorescence was scored as posi-
tive. Antigen-specific antibodies were assayed by the
enzyme-linked immunosorbent assay (ELISA) [63,64]
against recombinant PfCSP (0.5 pg/ml), PfSSP2/TRAP
(1.0 pg/ml), PLSA1 (1 pg/ml), PfAMA1(1 pg/ml), or
PMSP1 (1 pg/ml) proteins. ELISA results were reported as
OD 0.5 units, representing the reciprocal of the serum
dilution at which the mean OD reading was 0.5. ELISA
responses were classified as positive if (1) titer of OD 0.5
units was > 25 and (2) the seroconversion index (ratio of
titer post-immunization to titer pre-immunization) was >
4.

Statistical analysis

Experimental outcomes were presented as direct results of
ELIspot assays (IFN-y spot forming cells/million spleno-
cytes), FACS analysis (% responding cells), ELISA (anti-
body titers) or IFAT (antibody titers). Comparison of
ELISA data and intracellular cytokine expression were
done by 2-tailed student t test. ELIspot data are reported
as mean +/- standard deviation of quadruplicate wells.
Responses to all individual antigens, either recombinant
proteins (PfCSP, PfLSA1, PfAMA1, and PfMSP1) or pep-
tide pools (i.e. three PfCSP pools, seven PfSSP2/TRAP-
pools, six PfLSA1 pools), were analysed with an analysis
of variance for a repeated measures design with one
between-subjects factor (vaccine group at four levels), and
one within-subjects factor (time at six levels). All pair-wise
comparisons of means were made with Fisher's LSD (Least
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Significant Difference) test. The sums of the peptide pools
were analysed with the same methods. The recombinant
proteins were analysed with the same methods except for
the addition of one between-subjects factor (called r-pro-
tein with 4 and 5 levels, respectively, for analyses with and
without PfSSP2/TRAP). Fisher's exact test was used infor-
mally to conduct pair-wise vaccine group comparisons of
positive responder rates. Trends over time were examined
with graphs, but no formal statistical tests of significance
were conducted to test for significant trend components
(i.e. linear, quadratic or cubic components). The p-value
considered significant was p < 0.05.

Results

Clinical evaluation

Animals were evaluated daily for general behaviour and
the presence of any adverse reactions or clinical abnor-
malities, as described in Material and Methods. No unu-
sual behaviour or adverse reactions were observed
throughout the course of the trial. Haematology and clin-
ical chemistry values remained within the normal range.

Antigen-specific and parasite-specific antibody responses

The induction of parasite-specific and antigen-specific
antibody responses post vaccination was assessed by IFAT
against air-dried Pf sporozoites or parasitized erythro-
cytes, and by ELISA against each vaccine antigen compo-
nent, respectively. IFAT responses were evaluated pre-
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immunization, after the 3™d DNA immunization, and after
virus boost. Positive IFAT responses against Pf sporozoites
were detected post DNA immunization in 5/5 animals in
the CSLAM/PBS immunized group but 0/5 in the PfCSP/
PBS immunized group (data not presented). The titer of
IFAT increased approximately five-fold after virus boost
(mean, 160 versus 30). No blood-stage parasite specific
antibodies were detected by IFAT at any time point.

To determine whether co-immunization of PfCSP with
four additional antigens, PfSSP2/TRAP, PfLSA1, PfAMA1
and PMMSP1 in PBS (i.e. the other antigens of the CSLAM/
PBS cocktail), adversely affected the PfCSP-antigen spe-
cific antibody responses, the frequency of positive
responders and the magnitude of ELISA responses were
compared between PfCSP/PBS immunized and CSLAM/
PBS immunized animals. No antigen-specific antibodies
were detected after the first DNA immunization. In mon-
keys immunized with PfCSP/PBS alone, anti-PfCSP anti-
bodies could not be detected until after third DNA
immunization, when only1/5 monkeys met the criteria of
positivity and remained positive after virus boost (Figure
1). In monkeys immunized with CSLAM/PBS, however,
anti-PfCSP antibodies were detected in 1/5 monkeys after
the 2nd immunization, 3/5 monkeys after 314 DNA immu-
nization, and 5/5 monkeys after virus boost. The anti-
PfCSP antibody response was significantly higher in the
CSLAM/PBS immunized responder monkeys as compared

CSP Vaccine CSLAM Vaccine
CSP CSP SSP2/TRAP LSA1 AMA1 MSP1
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Figure |

Antigen-specific antibody responses against pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfLSAI and blood
stage antigens PFAMAI and PfMSPI. Sera from monkeys immunized with either CSP/PBS or CSLAM/PBS were assayed
against PfCSP, PfSSP2/TRAP, PfLSAI, PFAMAI or PfMSPI capture antigens by ELISA. Data are presented as the geometric
means of titers at OD 0.5 units from individual monkeys per group. ELISA responses were classified as positive if (1) ODO0.5
unit titer was > 10; and (2) the seroconversion index (ratio of titer post-immunization to titer pre-immunization) was > 4. Pre-
immun = preimmunization; 4wksDNA_| = 4 wks post |5t DNA immunization; 4wksDNA_2 = 4 wks post 2"d DNA immuniza-
tion; 4wksDNA_3 = 4 wks post 314 DNA immunization; 4wksVirus = 4 wks post ALVAC-Pf7 boost; 12 wksVirus = 12 wks post

ALVAC-Pf7 boost.
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with PfCSP/PBS immunized responders after the viral
boost (p = 0.044), but not after DNA immunization (p =
0.20). In the CSLAM/PBS group, anti-Pf/AMA1 and anti-
PfMSP1 antibodies were detected in 0/5 monkeys after the
1st DNA immunization, 3/5 monkeys after 2nd DNA
immunization, 3/5(PfAMA1) or 4/5 (PfMSP1) after the
3rd DNA immunization, and 4/5 (PfAMA1) or 5/5
(PMSP1) monkeys after the viral boost. Anti-PfSSP2/
TRAP antibodies were detected in 2/5 monkeys post-viral
boost only. No anti-PfLSA1 specific antibody responses
were detected at any time point. After virus boosting, anti-
body titers increased approximately 6-fold for PfCSP, 9-
fold for PfAMA1, and 2-fold for PfMSP1 (Figure 1). Over-
all, the most immunogenic antigen with regard to anti-
body response was PfAMAL.

PfCSP-specific ELIspot responses

Overall, antigen-specific IFN-y ELIspot responses were
observed in 18/20 immunized monkeys regardless of
groups and immunogens, and responses were detected as
early as 4 weeks after a single DNA immunization. The
two non-responder monkeys were monkey RCf7
(CSLAM/CRL10005) and monkey RHc7 (CSP/PBS). The
average SFC from positive responders post 15t DNA immu-
nization (mean 102 SFC/million, range 0-273 SFC/mil-
lion) was approximately 5 times higher than the average
SFC response before immunization (20 SFC/million, p <
0.05) (Figure 2). The ELIspot responses plateaued post 2nd
(mean 95, range 0-286 SFC/million) and 3t (mean 83,
range 0-401 SFC/million) DNA immunizations but were
boosted by ALVAC-Pf7 with magnitudes increasing to an
average of 152 SFC/million (range 0-466 SFC/million, p
= 0.005 compared to preimmunization) at 4 weeks post
virus boost. The response then declined at 12 weeks post
viral boost to a level similar to that prior to the boost
(mean 79, range 0-268 SFC/million). A similar pattern of
PfCSP-specific IFN-y ELIspot responses was observed to
synthetic PfCSP peptide pools, although the overall mag-
nitude of SFC to individual peptide pools was not as great
as to the recombinant protein (data not presented). These
data confirm previous studies by us [37], demonstrating
the immunogenicity of PfCSP plasmid DNA in rhesus
monkeys via detection of CTL activity at 3 weeks after the
2nd DNA immunization. In that study, the PfCSP DNA
was native rather than mammalian codon optimized, and
CTL responses could not be detected after a single DNA
immunization. In other studies in the P. knowlesi/rhesus
model, with native P. knowlesi antigens, no response could
be detected even after three DNA immunizations [38,39].

Comparison of PFCSP-specific IFN-y ELIspot responses
between PfCSP and CSLAM groups

To determine whether co-immunization of PfCSP with
PfSSP2/TRAP, PfLSA1, PfAMA1, and PfMSP1 adversely
affected the PfCSP-antigen specific T cell responses, the

http://www.malariajournal.com/content/6/1/135
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Figure 2

Antigen-specific IFN-y responses against pre-erythro-
cytic antigen PfCSP. PBMC from PfCSP or CSLAM immu-
nized monkeys (both PBS and CRL1005 formulations) were
assayed against recombinant PfCSP protein by IFN-y ELIspot.
Results represent the mean net spot-forming cells (SFC) per
million PBMC from all responders (n = 18) (solid circle) or
non-responders (n = 2) (open circle) at the defined time
points. DNA_| = st DNA immunization; DNA_2 = 2nd DNA
immunization; DNA_3 = 3rd DNA immunization; Virus =
ALVAC-Pf7 boost. Net SFC was calculated by correcting the
SFC responses with antigen for background SFC without
antigen. IFN-y ELIspot responses were classified as positive if
(1) the net SFC (mean SFC in experiment antigen wells —
mean SFC in medium wells) was > 25 SFC per million PBMC,
and (2) the stimulation index (ratio of mean SFC in experi-
mental peptide wells to mean SFC in medium wells) was > 2.
(*p < 0.05 and **p < 0.01).

frequency of positive responders and the magnitude of
ELIspot responses were compared between PfCSP/PBS
immunized and CSLAM/PBS immunized animals. There
was no significant difference between the frequency of
PfCSP-specific IFN-y positive responders in monkeys
immunized with PfCSP/PBS alone or with PfCSP in the
pentavalent cocktail CSLAM/PBS at anytime point, as
determined by responses against both recombinant pro-
tein and synthetic peptide immunogens (Table 1). Inter-
estingly, and consistent with the antibody data presented
above, there were more PfCSP responders in the group
immunized with CSLAM/PBS as compared to the group
immunized with PfCSP/PBS alone.

Similarly, there was no significant difference in the mag-
nitude of PfCSP-specific IFN-y ELIspot responses between
the PfCSP/PBS and CSLAM/PBS groups (Figure 3). At four
weeks post 31 DNA immunization, the SFC/million in
responders to recombinant PfCSP protein ranged between
145 and 401 SFC/million (mean 269 SFC/million PBMC)
for the CSLAM/PBS group as compared with a range of
40-102 SFC/million (average 71 SFC/million) for the
PfCSP/PBS group. At 4 wks post viral boost, the magni-
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Table I: Frequency of positive responders to PfCSP in CSP and CSLAM groups

Recombinant Protein

Synthetic Peptide Pools

CSP CSLAM CSP CSLAM
Preimmunization 0/5 0/5 0/5 0/5
4wksDNA _I 2/5 2/5 0/5 0/5
4wksDNA_2 2/5 2/5 0/5 0/5
4 wksDNA_3 2/5 2/5 0/5 0/5
4wksVirus 2/5 3/5 1/5 2/5
12wksVirus 2/5 4/5 2/5 4/5

tude of IFN-y ELIspot forming cells was 246 SFC/million
(range 51-466 SFC/million PBMC) for the CSLAM/PBS
group versus 284 SFC/million (range 162-406 SFC/mil-
lion PBMC) for the PfCSP/PBS group.

These ELIspot data, together with the antibody data
above, demonstrate that co-immunization of PfCSP with
two other pre-erythrocytic stage antigens (PfSSP2/TRAP,
PfLSA1) and two erythrocytic stage antigens (PfAMA1 and
PMSP1) does not adversely affect the immunogenicity of
PfCSP. These data support the down-selection of the
CSLAM antigen combination, as determined by studies in
the P. yoelii model [18].

CSLAM-specific ELIspot responses

Antigen-specific responses to the other components of the
CSLAM vaccine were also assessed. As shown in Figure 4A,
antigen-specific IFN-y ELIspot response to all other com-
ponents of CSLAM/PBS vaccine (PfLSA1 recombinant
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Figure 3

protein and synthetic peptides, PfSSP2/TRAP synthetic
peptide, PfAMA1 recombinant protein, and PfMSP1
recombinant protein) were induced by DNA immuniza-
tion and were boosted by ALVAC-Pf7 (peptide data other
than PfSSP2/TRAP not presented). IFN-y responses to
PfSSP2/TRAP and PfMSP1 were detected in 5/5 CSLAM/
PBS immunized monkeys, and responses to PfCSP,
PfLSA1 and PfAMA1 were detected in 4/5 monkeys. Posi-
tive responses to PfLSA1 and PfAMA1 were observed after
the 1st DNA immunization, as noted for PfCSP, whereas
positive responders to PfSSP2/TRAP and PfMSP1 were
detected only after the 2nd DNA immunization. After the
ALVAC-Pf7 boost, at least 3/5 monkeys met the defined
criteria of positive responses for each immunogen (Figure
4A).

The magnitude of vaccine-induced IFN-y ELIspot
responses in the 5 CSLAM/PBS immunized monkeys to
each of the CSLAM components is shown in Figure 4B.

B
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Magnitude of PfCSP-specific IFN-y responses from PfCSP/PBS and CSLAM/PBS immunized animals. PBMC
were collected at time points as defined in the legend to Figure 2 and assayed against recombinant PfCSP protein by IFN-y ELIs-
pot. Results show the magnitude of SFC from individual monkeys immunized with either (A) PfCSP/PBS or (B) CSLAM/PBS.
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A. Frequency of IFN-y ELIspot responders to all CSLAM antigen components in CSLAM/PBS immunized mon-
keys. Monkeys were immunized with CSLAM/PBS, and PBMC collected at time points as defined in the legend to Figure 2
were assayed against recombinant PfCSP, PfLSA |, PFAMAI or PfMSPI protein and PfSSP2/TRAP peptide pools by IFN-y ELIspot.
B. Magnitude of IFN-y ELIspot responses to all CSLAM antigen components in CSLAM/PBS immunized mon-
keys. Monkeys were immunized with CSLAM/PBS and PBMC collected at defined time points were assayed against recom-
binant PfCSP, PfLSAI, PFAMAI or PfMSPI protein and PfSSP2/TRAP peptide pools by IFN-y ELIspot. Time point number 1, 2, 3,
4, 5, and 6 represent time points pre-immunization, 4 wks post |5t DNA immunization, 4 wks post 2"d DNA immunization, 4
wks post 3r4 DNA immunization, 4 wks post ALVAC-Pf7 boost, and 12 wks post ALVAC-Pf7 boost, for monkeys PH1019,
ROk6, RQké, ROa7 and RBsG, respectively.
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IFN-y responses to individual peptide pools derived from PfCSP, PfSSP2/TRAP or PfLSAI. PBMC from monkey
RBsG (CSLAM/PBS) collected at time points as defined in the legend to Figure 2 were assayed against pools of synthetic pep-
tides spanning the complete sequences of PfCSP, PfSSP2/TRAP or PfLSAI by IFN-y ELIspot.

The most robust response, at 4 weeks post virus boost, was
against PfAMA1 (in 4/5 monkeys); this response was not
significantly different from the anti-PfLSA1 response (p >
0.05) but was significantly higher than the PfCSP- and
PfMSP1-specific responses (p < 0.05). Of the five antigens
tested, PfMSP1 was the least immunogenic for T cell
responses at all time points. For all antigens and all
responder monkeys (with the exception of one PfCSP
immunized monkey), IFN-y ELIspot responses were
boosted byALVAC-Pf7 virus. All boosted responses
decreased within 12 weeks post viral boost to a level sim-
ilar to that prior to the boost.

Consistent with the known genetic restriction of T cell
responses to Plasmodium proteins [65], heterogeneity of
IFN-y responses amongst individual monkeys was noted.
The same monkey did not respond to all antigens, and dif-
ferent monkeys responded to different antigens (Figures
4A and 4B). For example, at four weeks post virus boost,
two monkeys responded to five antigens, one to four anti-
gens, one to two antigens, and one to only one antigen.
The most robust IFN-y responses to all five antigens were
detected in monkey RBsG in the CSLAM/PBS group;
strong responses to recombinant PfCSP, PfAMA1, PfSSP2/
TRAP, and PfLSA1 but not PMSP1, were detected in mon-
key RQk6; monkeys PH1019 and ROKk6 exhibited strong
responses to PAAMA1 but weak response to the other four
antigens; and monkey ROa7 had a poor response to
PMSP1 and no response to the other four antigens.

For those antigens for which synthetic peptides spanning
the complete antigen were available (PfCSP, PfSSP2/
TRAP, and PfLSA1), responses to multiple peptide
epitopes were detected. Representative data for responses
in monkey RBsG, the most reactive monkey in the
CSLAM/PBS group, are presented in Figure 5. Among the
three antigens (and consistent with the recombinant pro-
tein reactivity reported above), the most robust IFN-y
responses were detected to PfLSA1, with positive
responses to five of the six peptide pools. The most N-ter-
minal pool LSA1-1415 (residues 1-84) was the most
immunogenic, with an average of 380 SFC/million PBMC
at 4 wks post ALVAC-Pf7 boost. The magnitude of IFN-y
responses in three of the other four PfLSA1 peptide pools
was comparable, and the least reactive pool was
LSA1-1718 (residues 132-236). Similarly, for PfCSP, the
most immunogenic peptide pool was the most N-termi-
nal pool CSP-2526 (residues 1-184), although the magni-
tude of responses to PfCSP peptide pools was lower than
that for the other two antigens. The frequency and magni-
tude of responses to the PfSSP2/TRAP peptide pools were
variable; the most immunoreactive pool was residues
44-128, with an average of 277 SFC/million PBMC at 4
wks post viral boost.

These data establish that T cell responses to each compo-
nent of the CSLAM/PBS vaccine were detected in rhesus
monkeys following DNA immunization and were
boosted by ALVAC-Pf7.
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Effect of CRL1005 formulation on frequencies of IFN-
v ELIspot responders in (A) PfCSP or (B) CSLAM
immunized monkeys. Monkeys were immunized with
either PfCSP or CSLAM in PBS (open circle) or formulated in
CRLI1005 (solid circle). PBMC were collected at time points
as defined in the legend to Figure 2 and assayed against
recombinant PfCSP, PLSAI, PfAMAI or PfMSPI protein and
PfSSP2/TRAP peptide pools by IFN-y ELIspot. Data represent
the number of animals with responses that met the defined
criteria of positivity (SFC = 25 and SI = 2).

Effects of CRL1005 formulation on immunogenicity of
PfCSP and CSLAM vaccines

To investigate the capacity of CEL1000 to enhance the
immunogenicity of plasmid DNA, the frequency and
magnitude of antigen-specific IFN-y T cell responses, and
parasite-specific and antigen-specific antibody responses,
in monkeys administered PfCSP or CSLAM formulated in
CRL1005, were evaluated in comparison with those in
PBS. The frequencies of responders to PfCSP in the PfCSP/
PBS and CSP/CRL1005 immunized monkeys, and the fre-
quencies of responders to each CSLAM antigen in the
CSLAM/PBS and CSLAM/CRL1005 group, are presented
in Figure 6. The respective magnitudes of responses are
presented in Figure 7. Overall, for PfCSP as well as the
other CSLAM antigens, there was no measurable effect of
CRL1005 formulation on enhancement of either fre-

http://www.malariajournal.com/content/6/1/135

quency (Figures 6A and 6B) or magnitude (Figure 7) of
[FN-y responses.

Likewise, there was no apparent effect of CRL1005 formu-
lation on the frequency or magnitude of antibody
responses to PfCSP in PfCSP immunized animals, nor to
any of the CSLAM antigen components in CSLAM immu-
nized monkeys (Additional File 1).

Intracellular IFN-y and IL-2 expression by CD4+ and CD8+
T cells

The ELIspot assay as reported here measures the total
number of cytokine secreting cells within a bulk cell pop-
ulation and does not allow discrimination between the
responding cell phenotype(s). Therefore, to determine the
phenotypes of IFN-y-producing cells, the intracellular
expression of IFN-y and IL-2 for CD4+ and CD8+ T cell
subsets, in CSLAM immunized monkeys was measured.
Based on cell availability, PBMC from three monkeys
(ROa7, RQk6, RBsG), collected at preimmunization and
four weeks post virus boost time points, were analysed
against peptide pools derived from PfCSP, PfSSP2/TRAP
and PfLSA1. Figure 8 shows the result of this analysis from
the monkey RBsG, for PfSSP2/TRAP and PfLSA1. Peptide
pools PfSSP2/TRAP-1011 (residues 396-495), PfSSP2/
TRAP-1213 (residues 484-562), PfLSA1-1415 (residues
1-84) and PfLSA-1516 (residues 44-143) preferentially
induced CD4+ IL-2 responses, with low level CD4+IFN-y
responses. All four pools also induced low level CD8+
IFN-y responses, and two of them induced low level CD8+
IL-2 responses (Figure 8). These data indicate that the
CSLAM DNA vaccines preferentially induce CD4+ T cell
cytokine responses, rather than CD8+ T cell responses,
and that IL-2 responses predominate over IFN-y
responses. The data reported above describing the correla-
tion of summed IFN-y responses to synthetic peptide over-
laps and IFN-y responses to the recombinant protein also
suggested that the IFN-y responses were mediated by
CD4+ T cells, rather than CD8+ T cells. Taken together,
these data indicate that CD4 T cells, rather than CD8+ T
cells, are primarily responsible for the antigen-specific
IFN-y responses detected by ELIspot, at least under the
conditions evaluated herein.

Discussion

A multi-stage multi-immune response vaccine is designed
to prevent Plasmodium infection by killing the majority of
developing parasites in the liver, and also to prevent
severe disease and death should break-through blood
stage infections occur. Recent efforts are aimed at the
induction of robust immune responses directed against
five well characterized P. falciparum antigens: three pre-
erythrocytic stage proteins that are expressed by irradiated
sporozoites in infected hepatocytes (PfCSP, PfSSP2/TRAP,
PfLSA1), and two proteins expressed in the extracellular
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Figure 7

Effects of CRL1005 formulation on the magnitude of IFN-y ELIspot responses in (A) PfCSP/PBS versus PfCSP/
CRL1005 or (B) CSLAM/PBS versus CSLAM/CRL1005 immunized monkeys. Monkeys were immunized with either
PfCSP or CSLAM in PBS (open circle) or formulated in CRLI005 (solid circle). PBMC were collected at time points as defined
in the legend to Figure 2 and assayed against recombinant PfCSP, PfLSAI, PFAMAI or PfMSPI protein and PfSSP2/TRAP peptide
pools by IFN-y ELIspot. Data represent the magnitude of IFN-y responses specific for PfCSP, PfSSP2/TRAP, PLSAI, PfAMAI or
PfMSPI, for each monkey.
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Intracellular IFN-y and IL-2 expression by CD4+ or CD8+ T cells. PBMC from monkey R immunized with CSLAM/PBS,
collected at preimmunization and 4 weeks post virus boost time points, were assayed against PfSSP2/TRAP, or PfLSA| peptide
pools by intracellular cytokine staining. Data represent the percentage of CD4+ or CD8+ IFN-y and IL-2 producing T cells.
Note differences in the y-axis scales between CD4+ and CD8+ responses.

phase of the erythrocytic stage of the life cycle (PfAMA1
and PMSP1). There is evidence that all of these antigens
contribute to the immunity of irradiated sporozoite
immunized volunteers or naturally acquired immunity,
and immunization with each, or with its murine/primate
malaria ortholog, has induced some degree of protection
in various animal models and, in the case of PfCSP, in
humans. Herein, the general safety and immunogenicity
of this pentavalent CSLAM vaccine cocktail has been eval-
uated in rhesus monkeys. Animals were primed with
PfCSP plasmid DNA or CSLAM plasmid DNA vaccines in
PBS or formulated with CRL1005, and boosted with
ALVAC-Pf7. Cell-mediated immune responses were evalu-
ated by IFN-y ELIspot and intracellular cytokine staining,
using recombinant proteins and pools of overlapping syn-
thetic peptides. Antigen-specific and parasite-specific anti-
body responses were evaluated by ELISA and IFAT,
respectively.

Antigen-specific [FN-y ELIspot and ELISA responses were
detected to all CSLAM antigen components following
immunization with either DNA/PBS or DNA/CRL1005.
No antigen interference was observed for the frequency or
magnitude of PfCSP-specific T cell or antibody responses
in animals receiving CSLAM as compared to PfCSP alone.
On the contrary, a trend of enhanced T cell and antibody
responses to PfCSP was noted in the CSLAM immunized

animals. These data support the down-selection of the
CSLAM antigen combination, contrasting with previous
results of multi-antigen plasmid DNA mixtures in vitro
and in vivo in mice [18] and humans [16]. These data sug-
gest that further preclinical and clinical evaluation of
CSLAM based vaccines is warranted.

It is noteworthy that this CSLAM antigen combination
comprises antigens from both pre-erythrocytic (n = 3) and
erythrocytic (n = 2) stages of the Plasmodium parasite life
cycle. Thus, studies also demonstrate the potential for a
multi-stage multi-immune response vaccine. The well
established dichotomy of the immune system, whereby
induction of robust T cell responses may be compromised
by the simultaneous induction of robust antibody
responses, and vice versa [66] previously has been a con-
cern.

Amongst the five antigen components of CSLAM, PFAMA1
appeared to be the most immunogenic, as evidenced by
the frequency and magnitude of antigen specific T cell and
antibody responses. PfAMA1 is an antigen expressed by
the blood-stage merozoite (in the micronemes and at the
surface of the merozoite) [20] and pre-erythrocytic (liver)
[67] stages. It is a primary candidate for a blood stage
malaria vaccine designed to induce PAMA1 specific anti-
body responses [68,69]. However, to date, AMA1-specific
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T cell responses have been poorly characterized. These
data suggest that PAMA1 should be considered as a prime
candidate antigen also for vaccines designed to induce T
cell responses, or both antibody and T cell responses.

Antigen-specific cellular immune responses, as measured
by the IFN-y ELIspot, were detected as early as 4 weeks
after the first DNA immunization in nearly half of the
monkeys, regardless of the immunogen. The data also
indicated that DNA induced T cell responses appear ear-
lier than antibodies, since T cell responses to most anti-
gens assayed could be detected after a single DNA
immunization, whereas antibody responses were detected
only after three doses of DNA and then only to some of
the antigens. This report represents the first demonstra-
tion that P. falciparum antigen-specific T cell response can
be induced in rhesus monkeys after single dose of plasmid
DNA, and one of the few reports of the immunogenicity
of a single dose of plasmid DNA in any system [70]. In
previous studies in rhesus monkeys, the earliest time
point at which P. falciparum specific T cell responses could
be detected was three weeks after two DNA immuniza-
tions (500 pg/antigen/dose), where CTL responses against
PfCSP, PfLSA1, PfExp1, and PfLSA1 were detected [37]. In
humans, PfCSP-specific CD8+ CTL responses could be
detected in 0/5 and 2/5 volunteers immunized with 500
ug PfCSP DNA at 2 wks after the 2nd or 3rd immunization,
respectively; and in 4/5 and 2/4 volunteers immunized
with 2500 pg PfCSP DNA at 2 wks after either the 2nd or
3rd immunization [40]. IFN-y ELIspot responses could be
detected in 14/31 volunteers immunized with 3 doses of
500 pg PfCSP DNA (as part of a 5-plasmid mixture of
PfCSP, PfSSP2/TRAP, PfLSA1, PfLSA3 and PfExpl) [16]
and in 9/14 volunteers after either the 2nd or 3 immuni-
zation with 2500 pg PfCSP DNA [41].

In previous studies in the P. knowlesi/thesus model, no T
cell responses could be detected to any of four P. knowlesi
antigens (PkCSP, PkSSP2, PkAMA1, PkMSP1) by IEN-y
ELIspot even after three doses of plasmid DNA [38,39].
This may relate to differences in antigen processing and
presentation and/or host factors. In the SIV/rhesus non-
human primate model, T cell responses were reported in
some of the monkeys after the 2nd DNA immunization
but in most after the 31 dose [71], whereas antibody
responses could be detected after one dose of DNA [72].
In cynomolgus monkeys, Ebola antigen-specific antibody
responses were detected after the 314 DNA immunization
but T cell proliferation was not detected until after a virus
boost [73,74].

First generation DNA vaccines on their own, administered
in PBS, have proved to be suboptimal in several non-
human primate models and human clinical trials, high-
lighting the need for more effective immune enhance-
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ment strategies for plasmid DNA vaccines [45-48,75].
Data in the P. falciparum/rthesus non-human primate
model reported here show that CRL1005 formulation had
no apparent effect on vaccine-induced T cell responses or
antibody responses, either before or after viral boost. A
similar outcome was noted in mice (M. Sedegah, in prep-
aration). These data contrast with results in other systems,
where CRL1005 formulation of inactivated viral vaccines
[50], recombinant protein vaccines [51,53] or plasmid
DNA vaccines [49,54] resulted in a substantial enhance-
ment of antigen-specific immune responses. In a CMV
mouse immunogenicity model, CRL1005 provided resto-
ration of both antibody and IFN-y ELIspot responses in a
multivalent vaccine [49]. It is unclear why CRL1005 does
not have a detectable effect or restoration in the malaria
model, but it is possible that the effect could be antigen
dependent.

The studies also provided preliminary information on the
effector cells and cytokines preferentially induced in the
Plasmodium rhesus model by DNA prime/virus boost
immunization. Data indicated that CD4+IL-2+ responses
were more predominant than CD8+ T cell responses. This
contrasts with results of comprehensive studies in murine
models identifying CD8+ IFN-y as the predominant
immune effector mechanism in irradiated sporozoite and
plasmid DNA vaccine induced protection [76-80]. Since
these data have important implications with regard to the
relevance of the rhesus Macaca mulatta model for evalua-
tion of Plasmodium vaccines [81,82], additional studies are
necessary to elucidate the Plasmodium vaccine-induced
immune effector mechanisms in rhesus. It is important to
note, however, that the results show that Plasmodium anti-
gen specific CD8+ IFN-y responses were detected in rhesus
only in the presence of detectable CD4+ T cell responses,
consistent with the profile of CD4+ T cell dependent
CD8+ Type 1 responses observed in malaria DNA vaccine
studies in humans as measured by T cell depletion and
enrichment ELIspot assays and RT-PCR [44,41,40]. It has
been proposed [41] that CD4+ T cells function in a
bystander helper capacity for CD8+ T cell production of
IFN-y.

In summary, the immunogenicity of the CSLAM pentava-
lent pre-erythrocytic and erythrocytic stage antigen com-
bination has been established in rhesus monkeys by the
induction of both T cell and antibody responses to each
antigen component of the multi-antigen mixture in the
apparent absence of antigen interference. The two most
immunogenic antigens of those tested were PfAMA1 and
PfSSP2/TRAP. Using conventional measures of antibody
and T-cell responses, CRL1005 formulation does not
enhance the immunogenicity of plasmid DNA vaccines,
in the rhesus non-human primate model of malaria. The
presented studies also demonstrate general safety and the
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potential for multi-valent multi-stage and multi-immune
response Pf vaccines based on rational antigen selection
and combination. These results suggest that clinical eval-
uation of the CSLAM antigen combination is warranted,
but that further formulation development to increase the
immunogenicity of DNA encoded antigens may be
required before proceeding to the clinic with DNA-based
vaccines against malaria.
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