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Abstract

Background: Polymorphism in the pfcrt gene underlies Plasmodium falciparum chloroquine resistance (CQR), as
sensitive strains consistently carry lysine (K), while CQR strains carry threonine (T) at the codon 76. Previous
studies have shown that microsatellite (MS) haplotype variation can be used to study the evolution of CQR
polymorphism and to characterize intra- and inter-population dispersal of CQR in Papua New Guinea (PNG).

Methods: Here, following identification of new polymorphic MS in introns 2 and 3 within the pfcrt gene (msint2
and msint3, respectively), locus-by-locus and haplotype heterozygosity (H) analyses were performed to determine
the distribution of this intronic polymorphism among pfcrt chloroquine-sensitive and CQR alleles.

Results: For MS flanking the pfcrt CQR allele, H ranged from 0.07 (B5M77, -18 kb) to 0.094 (9B12, +2 kb)
suggesting that CQ selection pressure was responsible for strong homogenisation of this gene locus. In a survey
of 206 pfcrt-SVMNT allele-containing field samples from malaria-endemic regions of PNG, H for msint2 was 0.201.
This observation suggests that pfcrt msint2 exhibits a higher level of diversity than what is expected from the
analyses of pfert flanking MS. Further analyses showed that one of the three haplotypes present in the early 1980's
samples has become the predominant haplotype (frequency = 0.901) in CQR parasite populations collected after
1995 from three PNG sites, when CQR had spread throughout malaria-endemic regions of PNG. Apparent
localized diversification of pfcrt haplotypes at each site was also observed among samples collected after 1995,
where minor CQR-associated haplotypes were found to be unique to each site.

Conclusion: In this study, a higher level of diversity at MS loci within the pfcrt gene was observed when compared
with the level of diversity at pfcrt flanking MS. While pfcrt (K76T) and its immediate flanking region indicate
homogenisation in PNG CQR parasite populations, pfcrt intronic MS variation provides evidence that the locus is
still evolving. Further studies are needed to determine whether these intronic MS introduce the underlying
genetic mechanisms that may generate pfcrt allelic diversity.
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Background

Plasmodium falciparum chloroquine resistance (CQR) was
first reported in Southeast Asia and South America during
the late 1950's [1]. Since then, CQR parasites have spread
worldwide, with corresponding increases in malaria mor-
bidity and mortality [2]. CQR in Papua New Guinea
(PNG) was first reported in 1976 [3,4]. By the early
1980's, in vivo studies indicated that CQR P. falciparum
was present in ~50% of the children, while in vitro assays
revealed that ~80% of the isolates were CQR [5,6]. Recent
molecular studies have shown that CQR-associated alleles
had spread throughout PNG by the mid 1980's [7,8], and
based on widespread chloroquine (CQ) treatment failure
by the late 1990's [7,9,10], the PNG Ministry of Health
changed its guidelines for malaria treatment in 2000 from
CQ alone to CQ + sulphadoxine-pyrimethamine.

Genetic polymorphism associated with the CQR pheno-
type in P. falciparum has been identified in the P. falci-
parum chloroquine resistance transporter (pfcrt) gene,
located on chromosome 7 [11-13]. The amino acid substi-
tution at pfert codon 76 (K—T) has been shown to have
the strongest association with the CQR phenotype, which
can be both reversible and irreversible by verapamil
[7,11,14-20]. The pfcrt gene encodes an integral mem-
brane protein, which is localized to the parasite digestive
vacuole [11] where haem molecules released during hae-
moglobin digestion are detoxified by the formation of
haemozoin, also known as malaria pigment; CQ is sug-
gested to interfere with this process [21,22]. P. falciparum
CQR is suggested to involve mechanisms whereby pH
sensitive physiologic processes inhibit formation of toxic
CQ:haematin complexes in favor of haemozoin [22], or
CQ efflux reduces drug concentration to the levels that are
no longer parasiticidal [23-25].

In addition to pfert, P. falciparum multidrug resistance
(pfmdr1, chromosome 5) and nine other putative trans-
porter genes have been implicated in CQR [7,26-28]. Pol-
ymorphisms in pfmdrl play a modulatory role in CQR
[29], while those in only one of the other nine transporter
genes (G7, encoding an ATP-binding cassette transporter
[PlasmoDB identifier: PF13-0271]) exhibit significant
association with response to the antimalarial drug artesu-
nate [28].

To understand further the population genetics of CQR P.
falciparum in PNG, samples collected from six different
provinces in the early 1980's and after 1995, in both com-
munity and clinical settings, were analysed. P. falciparum
samples were classified by genotyping pfcrt codons 72-76
(CVMNK represents chloroquine-sensitive [CQS] allele,
SVMNT and CVIET CQR alleles), and were further ana-
lysed for pfcrt single nucleotide polymorphisms (SNPs) at
codons 220 (A—S), 271 (Q—E), 326 (N>D), 356 (I-L),
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and 371 (R—I) [11,30], as well as 152 (T—A) and 163
(S—R), which have been recently implicated in parasite's
resistance to amantadine and modification of verapamil-
reversible CQR phenotype [30]. A series of four microsat-
ellite (MS) loci and the cg2 o repeat region flanking the
pfert locus (-18 kb upstream to +19 kb downstream), and
recently discovered MS loci within the pfcrt gene [31] were
analysed to investigate the diversity and distribution of
CQS and CQR alleles. MS markers occurring at regular 2-
3 kb intervals in the P. falciparum genome [32] have been
recently used to analyse both intra- and inter-population
relationships among drug-resistant P. falciparum strains,
based on the extent of linkage disequilibrium (LD) and its
decay rates [33-35]. In this study, these same approaches
were used to provide new insight into the dispersal and
continuing evolution of CQR P. falciparum strains in PNG.

Methods

Collection of samples

Samples were collected from both placental tissues and
whole blood. Seven placental tissues samples were
obtained from pregnant women living in the Eastern
Highlands (n = 1), East Sepik (n = 3), Manus (n = 1),
Milne Bay (n = 1), and Morobe (n = 1) provinces of PNG
between 1982 and 1984 [36]. Clinical data were not avail-
able for these placental samples. Peripheral blood sam-
ples were collected into K+-EDTA containing Vacutainer
tubes from individuals living in three malaria-holoen-
demic regions of PNG [37,38]. These samples were col-
lected from the Dreikikir region of East Sepik Province
(ESP) in 1996 (n = 31), the Liksul region of Madang Prov-
ince in 1996 (n = 22), and the Wosera region of ESP. The
Wosera samples were collected in 1998 (n = 65) and 2002
(n = 182) during community surveys, and between 2001
and 2003 (n = 980) from symptomatic (e.g., fever, parasi-
taemia) patients at the local health centers. Study proto-
cols were reviewed and approved by the Medical Research
Advisory Committee, Department of Health PNG, and the
University Hospitals of Cleveland Institutional Review
Board.

Genomic DNA preparation and parasite reference strains
DNA was extracted from the placental tissue samples by a
standard phenol/chloroform extraction method [36], and
from the whole blood (200 pl) using the QIAamp 96
Blood Kit (QIAGEN, Valencia, CA). For MS allele analy-
ses, genomic DNA preparations of six P. falciparum labo-
ratory-adapted strains (HB3, 3D7, Dd2, K1, 7G8, and
PNG1917) were used as references.

PCR amplification and genotyping of pfcrt codons

Polymerase Chain Reactions (PCR) to amplify pfert
codons 72-76, 220, 271, 326, 356, and 371 were per-
formed as previously described [7]. PCR to amplify the
codons 152 and 163 were performed using the primers
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and conditions described in Additional File 1. PCR prod-
ucts were genotyped for the above polymorphic codons
using ligase detection reaction-fluorescent microsphere
assay (LDR-FMA) as recently described [39-41]. The allele-
specific probes used in LDR-FMA are provided in Addi-
tional File 2.

PCR amplification and genotyping of cg2 @ repeat region
and MS loci

Amplification and genotyping of MS flanking pfcrt
(B5M77, 2E10, 9B12, and 2H4), cg2 ® repeat region, and
a putatively neutral locus PfPK2 (chromosome 12) were
performed using semi-nested PCR strategies as previously
described [8,42]. Pfert intronic MS msint1, also known as
B5M47 [13], and the newly discovered intronic MS
msint2 and msint3 were amplified using nested PCR strat-
egies; primer sequences and conditions for these amplifi-
cations are provided in Additional File 1. For each MS,
one of the nest-2 amplification primers was 5' end-labeled
with Cy5. PCR products were mixed 3:1 (vol/vol) with
denaturing loading dye buffer (formamide 10 ml,
bromophenol blue 10 mg, 0.5 M EDTA [pH 8.0] 200 pl)
and denatured at 95°C for 10 min. Denatured products
were run on a 6% denaturing polyacrylamide gel (6.3 M
urea/32% formamide) for 3 h in a Gibco BRL sequencing
apparatus (model S2, Gibco BRL Life Technologies) at
1900 V. The Cy5-labeled amplicons were visualized on
the Storm 860 scanner using the software ImageQuant
v5.2 (Molecular Dynamics, Sunnyvale, CA). Alleles
present in the field samples were compared with those
present in the six reference strains, and were numerically
designated from 1 to 10, corresponding to their relative
electrophoretic mobility positions on the gel (1 = slowest,
largest product; 10 = fastest, smallest product). Base pair
sizes of msint2 and msint3 PCR products were deter-
mined for some of the reference strains (3D7 = 222 and
200; K1 =190 and 184; PNG1917 =217 and 147, respec-
tively) (Su X-Z, personal communication). However, in
this study, numbers from 1 to 10 were used to designate
the alleles [8]. ImageQuant was used to score multiple
alleles per locus if the minor fluorescent peaks were >25%
of the height of the predominant peak present at each
locus. Haplotypes were constructed using the predomi-
nant allele observed at each locus.

Statistical analysis

The population genetics software Arlequin v3.0 [43] was
used to compute the heterozygosity (H) at each locus
(value + SD), full-length haplotype diversity (value + SE),
and genetic differentiation (F,;), which measures variation
between population groups, and LD between loci. H and
F,, values measure from 0 to 1, where 0 means that there
is no difference between individuals or groups, and 1
means that all individuals are unique and population
groups are distinct from each other.
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Results

A total of 1287 samples were analysed in this study. Seven
of these were placental samples, collected from the East-
ern Highlands (n = 1), East Sepik (n = 3), Manus (n = 1),
Milne Bay (n = 1), and Morobe (n = 1) provinces between
1982 and 1984. From our more recent field studies, 1280
blood samples were collected from the Dreikikir (n = 31),
Liksul (n = 22), and Wosera (n = 1227) regions between
1996 and 2003. The P. falciparum infection status of each
sample was diagnosed by genotyping pfcrt codons 72-76
using LDR-FMA. All samples from the early 1980's,
Dreikikir, and Liksul surveys were P. falciparum-infected.
Of the samples collected from the Wosera, 166 samples
from community surveys and 595 samples from health
center surveys were P. falciparum-infected. Prevalence of
genotypically CQS (CVMNK) and CQR (SVMNT and/or
CVIET) P. falciparum at each sample collection site is sum-
marized in Table 1. Of all samples (n = 1287), 8.9% were
infected with CQS parasites, 47.9% with CQR parasites,
and 6.9% with mixed infections, while 36.2% were not
infected with P. falciparum. Interestingly, the CQR-associ-
ated pfcrt allele CVIET was observed in the Wosera com-
munity samples (0.006, n = 1/166) and clinical samples
(0.013, n = 8/595) collected after 2001. Previous studies
did not observe the CVIET allele in any of the PNG P. fal-
ciparum-infected samples [7,8].

Pfcrt-SVMNT allele carrying samples in both the early
1980's and post-1995 groups were further analysed for
SNPs at codons 220, 271, 326, 356, and 371, as well as
recently reported SNPs at codons 152 and 163 in exon-3
[30] by LDR-FMA. In this expanded SNP analysis of pfcrt-
SVMNT allele, S,,,Q,71D5,4L556R5,, was the predominant
haplotype (>0.900). No polymorphism at codons 152
and 163 was observed in any of the samples. There was
some variation to the S,,,Q,71D3,6L356R37; haplotype in
the post-1995 samples, with 220A (0.044, n = 8/181),
271E (0.011, n = 2/176), 326N (0.006, n = 1/149), 3561
(0.092, n = 18/195), and 3711 (0.059, n = 11/185). Since
minor alleles at one or more positions were present as
mixed infections, 220_271_326_356_371 minor haplo-
types could not be inferred.

While performing the amplification of exon-3 region to
genotype codons 152 and 163, significant variation in the
size of the PCR products was observed when run on a 2%
agarose gel (Figure 1). To understand what might be con-
tributing to this size variation, simple sequence repeats in
the 3D7 chromosome 7 published sequence were located
(GenBank accession number AL844506). An (AT),
repeat was found in intron-2 (nucleotide coordinates,
309138-309183), and an A,, repeat was located in
intron-3 (nucleotide coordinates, 309439-309478). Due
to their intronic locations within the pfcrt gene, the MS
were named msint2 and msint3 (Additional File 3). Next,
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Table I: Prevalence of pfcrt alleles (codons 72-76) in malaria-endemic regions of PNG

Early 1980's? Post-1995

Community Clinical

Allele n=7 Liksulb Dreikikirc Woserad Wosera®

n=22 n=3lI n=166 n =595
CVMNK 0.143 0.045 0.484 0.241 0.097
SVMNT 0.857 0.955 0516 0.572 0.791
CVIET 0 0 0 0.006f 0.013
CVMNK + SYMNT 0 0 0 0.181 0.086
CVMNK + CVIET 0 0 0 0 0.002
SVMNT + CVIET 0 0 0 0 0.012

a, b, c Samples with mixed infections were not included.

a Samples were collected from the Eastern Highlands (n = 1), East Sepik (n = 3), Manus (n = I), Milne Bay (n = 1), and Morobe (n = |) provinces of

PNG between 1982 and 1984 and were previously reported [8].
b, c Samples were collected in 1996 and were previously reported [7].

d Samples were collected in 1998 and 2002. The 1998 samples were previously reported [7].

e Samples were collected between 2001 and 2003 in local health centers.
f Allele found only in samples taken from the 2002 group.

to determine if one or both of these MS contributed to the
size variation observed for the exon-3 containing PCR
products, primers were designed to amplify these
sequences using nested strategies. When these products
were run on a polyacrylamide gel, it was found that both
msint2 and msint3 simple sequence repeats displayed size
variations.

In the samples carrying the CQS-associated CVMNK
allele, eight different msint2 alleles were observed (pre-
dominant alleles #7 [0.266] and #3 [0.241]). Eight differ-
ent alleles of msint3 were also observed in these samples
(predominant alleles #8 [0.395] and #6 [0.296]). In the
samples carrying the CQR-associated SVMNT allele, eight
msint2 alleles (predominant allele #3 [0.889]) and five
msint3 alleles (predominant allele #8 [0.954]) were
observed. In the samples carrying the CQR-associated
CVIET allele, three msint2 alleles (predominant allele #2
[0.5]) and two msint3 alleles (predominant allele #8
[0.833]) were observed. Allele frequencies for both MS in
each subset of samples are presented in Additional File 4.

To analyse the levels of diversity at MS loci across the 40
kb region containing pfcrt-SVMNT alleles, heterozygosity
(H) values were calculated for each individual locus. H
ranged from O to 0.781 (Table 2), with the highest value
observed at the 2H4 locus (0.71 to 0.781) positioned 19
kb downstream from pfcrt. Elevated H was also observed
at the PfPK2 locus (0.617 to 0.769), which has been pre-
viously analysed in broad P. falciparum population sur-
veys as a neutral marker under no apparent selection
pressure [33,44]. H observed at the MS loci in the CQS
(pfert-CVMNK) samples ranged from 0.642 to 0.903. Con-
sistent with observations documenting reduced variation

around P. falciparum genes associated with antimalarial
drug resistance [45], the lowest values were observed for
markers in the closest proximity to pfert (B5M77 to cg2;
Figure 2). In contrast, elevated values were observed for
the marker within pfcrt (msint2; Figure 2). Across the 40
kb region where pfcrt resides, significant LD (p < 0.05) was
observed for eight of the pairwise comparisons (B5M77-
B5M47, 2E10-B5M47, B5M77-pfert codon 371, 2E10-
9B12, B5M47-9B12, B5M47-2H4, cg2m-2H4, B5M47-
PfPK2) in the CQR samples, and for four of the pairwise
comparisons (pfcrt codon 220-pfert codon 356, 2E10-
9B12, msint2-2H4, msint2-PfPK2) in the CQS samples.
After a correction for multiple comparisons, significant
LD was observed for two pairwise comparisons (B5M47-
2H4, cg2m-2H4; p < 0.0014) in the CQR samples, and for
one pairwise comparison (pfcrt codon 220-pfert codon
356; p < 0.0009) in the CQS samples.

F, values were then calculated for each MS locus between
the geographically distinct sample collection sites to test
for population subdivision, as might be expected between
locations that are separated by distance and other geo-
graphic factors that would reduce mixing of parasite pop-
ulations by limiting human and/or mosquito travel.
Results from these analyses (summarized in Table 3)
showed similar F,, values for each pairwise comparison.
Though locus-by-locus comparisons did show some sig-
nificant F, values, overall there is no clear-cut genetic var-
iability among the three locations, suggesting no
subdivision among CQR P. falciparum populations at
these locations.

Further, to examine the CQR parasite population structure

and distribution among various locations, msint2_msint3
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Agarose gel showing PCR products with size variability. PCR products for pfcrt codons 152—163 genotyping assay
showing size variation between samples. Lanes 2, 4, 6, 8, and 10 contain PNG samples collected from the Wosera in 2002. The
other lanes contain laboratory-adapted strains, lane 1-Dd2, 3-7G8, 5-PNG1917, 7-PNG1905, and 9-K 1.

haplotypes in single infection samples were analysed
(Table 4). In the early 1980's samples, three haplotypes
were observed in the SVMNT samples (n = 6) (haplotype
diversity, 0.467 + 0.426), with the predominant haplo-
type being 3_8 (0.667). It was of interest to note that the
other two haplotypes (8_3 and 3_2) observed in these
early samples were not observed in the later samples.
Among the post-1995 SVMNT samples (n = 203), 11 hap-
lotypes were observed (haplotype diversity, 0.103 +
0.140), and the predominant haplotype was again 3_8
(from 0.667 to 0.955). In this intronic haplotype data
analysis, it was observed that while the two predominant

haplotypes (3_8 and 7_8) were present at all study sites,
other low frequency haplotypes were segregated and were
unique to each study site (Table 4). In the CVIET samples
(n = 6), three haplotypes were present (haplotype diver-
sity, 0.533 + 0.468), with the predominant haplotype
being 2_8 (0.5). Although this intronic haplotype was
also observed in association with the SVMNT allele in the
Wosera community survey samples (0.011), the other two
haplotypes (1_8 [0.333] and 8_7 [0.167]) were unique to
the CVIET samples; the 3_8 and 7_8 haplotypes that were
predominant among the SVMNT samples were not
observed in the CVIET samples. Finally, the intronic MS

Table 2: Heterozygosity (* standard deviation) of MS loci associated with pfcrt-SVMNT2 allele in post-1995 samples.

Locus© Distance from pfert Liksul Dreikikir Woserab
n=2I n=16 n=169

B5M77 -18 kb 0 342 +.140 .060 £ .026
2EI0 -5 kb 0 154 +.126 .049 +.024
msint|d 0 kb - - 051 +.034¢
msint2 0 kb .091 +.081 380 +.134 .196 £.039
msint3 0 kb 0 314 +.138 .056 +.024
9B12 +2 kb 181 +.104 275 +.145 .045 +.030
cg2 +7 kb 450 +.128 275 +.148 220 £ .042
2H4 +19 kb .710 = .060 781 £.102 .746 £ .020
PfPK2 - 617 +.063 .769 + .083 744 + 019

a 21/22 infections in Liksul, 16/31 in Dreikikir, and 169/761 in Wosera carried the pfcrt-SVMNT allele.

b Wosera group contains both clinical and community samples.

c PCR for Liksul samples was 100% for all loci except cg2 (.905). Frequency of amplification for each locus for Dreikikir and Wosera, respectively,
were B5M77, 0.875, 0.970; 2E10, 0.813, 0.941; 9B12, 0.813, 0.941; cg2, 0.813, 0.976; 2H4, 0.875, 0.935; and PfPK2, 0.813, 0.935.

d MS also known as B5SM47.

e Value based only on 78 of the 82 clinical samples and no community samples.
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haplotypes associated with the post-1995 CVMNK sam-
ples were examined, and a total of 27 haplotypes in 54
samples were found (haplotype diversity, 0.772 + 0.519),
showing a much higher level of diversity than that
observed among the SVMNT samples (Figure 2).

Discussion

Following the discovery of the association between pfcrt
K76T and P. falciparum CQR [11], Wootton et al. evalu-
ated a number of MS loci flanking pfert (+ 100 kb) of 87
laboratory-adapted strains collected from malarious
regions around the world to investigate the impact of CQ
selection pressure on the genetic diversity in this region of
the genome [35]. Results of this study comparing CQS
and CQR-associated alleles showed significant reduction
in MS allelic diversity, increased LD, and uniform haplo-
types for the markers in the closest proximity to the pfcrt
CQR allele [35]. They suggested that CQ was responsible
for selection-driven "sweeps", homogenising genetic
diversity at polymorphic sites in close physical linkage
with CQR-associated alleles (hitchhiking) [35]. Similar
observations have been made using MS flanking the alle-
les associated with pyrimethamine resistance at the dihy-
drofolate reductase gene (chromosome 4) [34,46-49] and
quinine resistance at pfnhe-1, encoding a putative Na(+)/
H(+) exchanger (chromosome 13) [50]. A more recent
study of MS flanking pfcrt, including some of the same
samples analysed here, used these approaches to describe
population subdivision between the early 1980's and late
1990's CQR P. falciparum strains in PNG [8].

With these observations in mind, it was expected that very
low or no heterozygosity would be observed, similar to
that reported by Wootton et al. for msintl (B5M47), at
msint2 and msint3 in CQR P. falciparum strains. Interest-
ingly, this and a previous study [31] found higher levels of
MS variability within the introns of the pfcrt gene than the
variability at MS loci flanking pfcrt (Figure 2; msint2 vs.
2E10 or 9B12, [0.201 vs. 0.051 or 0.094]). As the flanking
and intronic MS sites are similar in their length and nucle-
otide content, two of the features associated with MS var-
iability, it is not clear what genetic factors contribute to
these higher levels of variability in pfcrt introns 2 and 3.

Intronic polymorphisms may provide important insights
into maintenance of the pfcrt gene sequence. In addition
to the MS length polymorphism reported now in pfert
msint2, msint3 and msint4, a review of genomic
sequences currently available at GenBank for P. falciparum
strains 3D7 (GenBank accession number AL844506) and
Dd2 (GenBank accession number AF030694) showed
that simple sequence repeats were present within all pfcrt
introns. A comparison between 3D7 and Dd2 genomic
sequences has shown additional length polymorphism
for simple sequence repeats in introns 7 (T, vs. Ty5), 9
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(AT,gvs. ATs5), 10 (T, vs. T;5), and two in intron-11 (T,
vs. T,5 and T;; vs. T}4). The highly AT-rich and polymor-
phic characteristics of many intronic repeats has been
described for a number of P. falciparum genes [51]. The
high level of intronic diversity has been suggested to result
from slippage of DNA polymerase [32,33]. Alternatively,
repetitive AT-rich sequences that are palindromic have the
potential to form intrastrand base-pairing, resulting in
hairpins that are susceptible to breakage followed by mei-
otic recombination [52]. Events of this nature could con-
tribute to gene conversion where polymorphic exons are
swapped between parental alleles in the formation of new
progeny alleles [53,54]. Further evaluation of pfcrt in lab-
oratory adapted strains and natural P. falciparum isolates
may reveal sequence-based relationships supportive of
the hypothesis that these loci promote recombination/
gene conversion within this genomic region [55].

In addition to evaluating pfcrt intronic MS, this study pro-
vides the first evidence of the CQR-associated CVIET allele
in PNG. While CVIET is the predominant CQR-associated
pfert allele in many parts of Southeast Asia [11,35], earlier
studies in PNG [7,8] did not find this allele in any of the
samples. Since the allele is found in nearby Indonesian
regions [56,57], it is likely that this allele has been
imported into PNG. When intronic MS lodi in pfert-
SVMNT and pfert-CVIET samples were compared, signifi-
cant genetic differences were found between the two
groups. The predominant msint2_msint3 haplotype 3_8
associated with pfcrt-SVMNT was not seen in pfcrt-CVIET
samples. The haplotype diversity was significantly higher
in the pfert-CVIET samples (0.533 + 0.468) than in the
pfert-SVMNT samples (0.103 + 0.14). Further, when flank-
ing MS haplotype (from B5M77 to 2H4) diversity was
compared between the two groups of samples from the
Wosera, the extended haplotype diversity was also signifi-
cantly higher in the pfcrt-CVIET samples (0.7 + 0.728)
than in the pfcrt-SVMNT samples (0.06 + 0.077). These
analyses rule out the possibility that the CVIET allele in
PNG has arisen on the genetic background of more prev-
alent SVMNT allele.

Analysis of the diversity at intronic MS provides an "inside
look" at the genetic background of pfcrt from an evolu-
tionary perspective. Among all pfcrt-SVMNT samples, the
predominant msint2 allele #3 and msint3 allele #8
(msint2_msint3 haplotype 3_8) in the early 1980's sam-
ples as well as in the post-1995 samples from three differ-
ent malaria-holoendemic regions were observed. In all
post-1995 samples, one other predominant haplotype
7_8 as well as lower frequency haplotypes, unique to each
location, were observed. These data indicate that during
the early spread of CQR, a predominant msint2_msint3
haplotype swept across PNG under CQ selection, and
now has independently accumulated diversity over time
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Figure 2

Heterozygosity of pfcrt intronic and flanking MS in pfcrt-CVMNK and SVMNT samples. Graphic representation of
heterozygosity values for pfcrt intronic and flanking MS in pfcrt-CVMNK and SVMNT samples from all study sites. Data for
msint| is available only from pfcrt-SVMNT clinical samples collected from the Wosera.

in different regions of PNG. These results are consistent
with the results of a previous study [8], where significantly
higher diversity was observed at the MS loci flanking pfcrt-
SVMNT in the late 1990's samples than in the early 1980's
samples. This suggests that although SVMNT remains the
predominant CQR-associated pfcrt allele in PNG, its
genetic background has accumulated significant diversity
even under drug selection pressure.

Similar to the observations shown here, Vinayak et al. [31]
found that a single major haplotype between pfcrt
msint2_msint4 (AT_TA repeats; frequencies 0.222-0.879)
was distributed across their six Indian sample collection

sites. The frequencies of the minor haplotypes ranged
from 0.02-0.244; 12 of the 32 minor haplotypes were dis-
tributed among sites separated by thousands of kilom-
eters. In PNG, the major pfcrt msint2_msint3 haplotype
(3_8) was present at all three sample collection sites at fre-
quencies ranging from 0.667-0.955, while the 9 minor
haplotypes were unique to each of the sites, and ranged in
frequency from 0.011-0.048 (Table 4). Vinayak et al. [31]
did not evaluate the polymorphism in msint3. Interest-
ingly, when some of the same Indian samples were ana-
lysed for msint2_msint3 haplotypes, it was found that the
same haplotype predominant in PNG (3_8) was also
present in Indian samples at a frequency of 0.917 (n =22/

Table 3: F values to measure genetic diversity between groups of pfcrt-SVMNT samples from post-1995 collections

Locus Liksul-Dreikikir Liksul-Wosera Dreikikir-Wosera
B5M77 0.12* -0.01 0.17*
2EI0 0.04 -0.02 0.04
msint2 0.03 -0.01 0.0l
msint3 0.07 -0.01 0.12
9BI12 -0.04 0.04 0.10
cg2 0.00 0.04 -0.01
2H4 0.07* 0.10* 0.08*
PfPK2 0.07* 0.01 0.03
* indicates that the value is significantly different from zero (p < 0.05).
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Table 4: Intronic haplotype frequencies for pfcrt-SVMNT and CVIET samples?

Early 1980's Post-1995
Community Clinical
Liksul Dreikikir Wosera Wosera
Haplotype SVMNT SVMNT SVMNT SVMNT SVMNT CVIET
(msint2_msint3) nb=6 n=22 n=2I n =88 n =282 n==6
3.8 0.667 0.955 0.667¢ 0.898 0.951 0
7_8 0 0.045 0.095 0.057 0.037 0
8.3 0.167 0 0 0 0 0
3.2 0.167 0 0 0 0 0
7_4 0 0 0.048 0 0 0
3.3 0 0 0.048 0 0 0
3.6 0 0 0.048 0 0 0
6_6 0 0 0.048 0 0 0
10_8 0 0 0.048 0 0 0
8.8 0 0 0 0.023 0 0
9.8 0 0 0 0.011 0 0
2.8 0 0 0 0.011 0 0.500
48 0 0 0 0 0.012 0
1_8 0 0 0 0 0 0.333
8.7 0 0 0 0 0 0.167

a Total number of samples 215: early 1980's (6), Liksul (21), Dreikikir (16), Wosera community samples (85), Wosera clinical samples (81 SYMNT,

6 CVIET).

b "n" indicates the number of haplotype infections present, which may or may not be equal to the total number of samples due to mixed haplotypes

in some samples. Overall, 225 haplotypes were found in 215 samples.

c Frequencies in bold indicate that the haplotype was also observed in the CQS samples from that region.

24). This observation suggests a relationship between
PNG and Indian CQR P. falciparum strains that should be
further evaluated. Finally, although Vinayak et al. [31]
observed overall reduced msint2_msint4 haplotype diver-
sity in lower malaria transmission areas, in PNG the low-
est msint2_msint3 diversity was observed in the Liksul
region (Madang area), which is known to experience
holoendemic malaria transmission. As malaria ecology is
known to be very different between PNG and India, it is
possible that local factors influencing P. falciparum trans-
mission dynamics contribute to some of the overall differ-
ences in frequency and distribution of intronic MS
polymorphism between these two studies.

Recently, Ariey et al. used msint4 to look at the ancestry of
CQR parasites at 16 survey sites throughout Africa [58]. By
analysing the MS distribution in parasites carrying sensi-
tive and resistant alleles, they reported a significant differ-
ence in the level of variability with 17 MS alleles present
in the sensitive parasites vs. two MS alleles present in the
resistant parasites [58]. Because 123 of the 125 resistant
parasites from wide ranging survey sites carried the same
MS allele, Ariey et al. concluded that Africa was invaded
by a single CQR P. falciparum strain [58]. While it is clear
from Ariey et al. [58] that a single intron-4 MS allele pre-
dominates among African CQR P. falciparum, results
shown here and by Vinayak et al. [31] provide evidence
that multiple intronic MS within pfert are polymorphic,

and they have differing levels of variability. Therefore, to
fully understand the ancestry, dispersal, and population
genetics of CQR P. falciparum in Africa, or throughout the
world, more complete surveillance of pfcrt intronic MS
should be conducted. It would also be interesting to
examine earlier sample sets to determine if parasites with
a single pfcrt intronic MS haplotype invaded Africa, or if
multiple haplotypes occurred and only one became pre-
dominant. Of further interest, given the recent reports that
removal of CQ pressure in Africa is associated with a
return of the wild-type pfcrt allele carrying strains and CQ
sensitivity [59], analysis of polymorphisms in both
intronic and flanking MS may provide useful insight
regarding drug sensitivity distribution patterns.

Conclusion

In conclusion, highly polymorphic MS loci have been
identified within the pfcrt gene. These new markers were
used to reassess the relationships among P. falciparum in
blood samples obtained from the early 1980's through
2003 from malaria-endemic sites in Madang and East
Sepik Provinces of PNG. These results suggest that a single
major haplotype associated with CQR has achieved wide-
spread distribution in PNG, and that this sequence con-
tinues to generate new polymorphism within localized
regions. Although the analysis shown here has focused
largely on MS polymorphism associated with the com-
mon pfcrt-SVMNT allele, for the first time, the identifica-
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tion of the pfcrt-CVIET allele in PNG is reported. These
CVIET parasites contain intronic MS haplotypes that are
not present in the SVMNT parasites, suggesting that the
CVIET parasites may have been imported from neighbor-
ing geographic regions. By using pfcrt intronic MS as CQ
susceptibility markers, the continuing evolution of pfcrt
can be monitored, the geographic and temporal patterns
of CQS and CQR parasite populations can be further ana-
lysed, and relative fitness of CQS and CQR P. falciparum
strains can be evaluated.
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