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Abstract
Background: Enolase (2-Phospho-D-glycerate hydrolase; EC 4.2.1.11) is one of the glycolytic
enzymes, whose levels are highly elevated in malaria parasite infected red blood cells. In several
organisms, enolases have been shown to have diverse non glycolytic (moonlighting) biological
functions. As functional diversity of a protein would require diverse sub-cellular localization, the
possibility of involvement of Plasmodium enolase in moonlighting functions was examined by
investigating its sub-cellular distribution in the murine malarial parasite, Plasmodium yoelii.

Methods: Cellular extracts of P. yoelii were fractionated in to soluble (cytosolic) and particulate
(membranes, nuclear and cytoskeletal) fractions and were analysed by one and two-dimensional gel
electrophoresis. These were probed by Western blotting using antibodies raised against
recombinant Plasmodium falciparum enolase. Immunofluorescence assay was used for in situ
localization. Fe+3 based metal affinity chromatography was used to isolate the phospho-proteome
fraction from P. yoelii extracts.

Results: Apart from the expected presence of enolase in cytosol, this enzyme was also found to
be associated with membranes, nuclei and cytoskeletal fractions. Nuclear presence was also
confirmed by in situ immunofluorescence. Five different post translationally modified isoforms of
enolase could be identified, of which at least three were due to the phosphorylation of the native
form. in situ phosphorylation of enolase was also evident from the presence of enolase in purified
phosphor-proteome of P. yoelli. Different sub-cellular fractions showed different isoform profiles.

Conclusion: Association of enolase with nuclei, cell membranes and cytoskeletal elements
suggests non-glycolytic functions for this enzyme in P. yoelii. Sub-cellular fraction specific isoform
profiles indicate the importance of post-translational modifications in diverse localization of enolase
in P. yoelii. Further, it is suggested that post-translational modifications of enolase may govern the
recruitment of enolase for non-glycolytic functions.

Background
Enolase (EC 4.2.1.11) catalyzes the inter-conversion of 2-
phosphoglycerate and phosphoenol pyruvate during glyc-
olysis and gluconeogenesis. For many years enolase was

regarded as a soluble glycolytic enzyme, exclusively
present in cytosol. However, several recent studies have
shown that enolase is a multifaceted protein with diverse
biological functions and sub-cellular localizations [1,2]. It
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acts as a plasminogen receptor on the cell surface of cer-
tain pathogens [3,4] and has been implicated in nuclear
functions in protozoans [5,6], plants [7] and animal cells
[8,9]. Enolase is also involved in stress response [10,11]
vacuolar fusion processes [12] and molecular chaperon-
ing functions [13,14].

Plasmodium falciparum is the causative agent for the most
fatal forms of malaria. The asexual blood stages of this
parasite, which are responsible for clinical symptoms of
the disease, are bereft of functional tricarboxylicacid cycle
and solely rely on glycolysis for their energy needs. The
infected cells have ~50–100 fold higher glycolytic flux as
compared to uninfected red blood cells (RBCs) [15,16].
The levels of some of the glycolytic enzymes are highly
elevated and enolase is one such enzyme whose activity
levels are ~15–20 fold higher in infected cells [17]. As eno-
lases are known to participate in a host of moonlighting
functions, it is likely that it may be recruited for certain
other biological functions in the parasite. As involvement
of a protein in multiple functions, invariably require its
recruitment to different sub-cellular compartments,
examination of the sub-cellular localization of enolase in
the parasite cells may provide clues to any non-glycolytic
functions it may have. Since Plasmodium yoelii cells can be
obtained easily in large quantities and many of the house
keeping proteins are highly homologous with P. falci-
parum, this murine malarial parasite has served as a good
model system for human malarial parasite. As enolases
from these two organisms are ~90% homologous, anti-
bodies raised against recombinant P. falciparum enolase
could be used to investigate sub-cellular localization of
enolase in P. yoelli.

Materials and methods
Materials
Recombinant P. falciparum enolase (r-Pfen) was purified
and polyclonal antibodies were raised in mice as
described earlier [18]. Rabbit anti-P. falciparum aldolase
antibody was a kind gift from Prof. Victor Nussenzweig,
Department of Pathology, N.Y. University Medical Cen-
tre, New York, USA. All chemicals used were of Analar
grade.

Methods
Preparation of P. yoelii cells
The mice were infected with P. yoelii strain 17XL and the
parasitaemia was allowed to reach ~30% level. At this
stage, 1–2 ml of blood were collected in equal volume of
anticoagulant containing 136 mM glucose, 42 mM citric
acid and 75 mM sodium citrate. Blood from five animals
was pulled together and RBCs were pelleted at 1500 × g
for 5 minutes and washed three times with phosphate
buffer saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, 1.8 mM KH2PO4, pH 7.4). Infected erythro-

cytes were washed twice in PBS and treated with 0.05%
saponin for 10 min at 4°C to release the parasites from
the host erythrocyte membrane. The parasite pellet was
washed with PBS and stored at -80°C. For the preparation
of merozoites, the following procedure was adopted. P.
yoelii infected blood containing enough mature, seg-
mented schizont-containing erythrocytes was collected
and washed with PBS. It was repeatedly passed through a
25-gauge needle to release merozoites. The suspension
was centrifuged first at 600 × g to pellet out cellular debris.
The supernatant was centrifuged at 8,000 × g for 10 min-
utes to pellet down the merozoites and washed twice with
PBS. Collected merozoites were kept at -80°C till further
use.

Sub-cellular fractionation
The differential detergent fractionation (DDF) method
was used to sequentially solubilize various sub-cellular
components [19]. Parasite cell pellet (~106 cells) was sus-
pended in ice cold Buffer-A (300 mM sucrose, 100 mM
NaCl, 3 mM MgCl2, 5 mM EDTA, 2 mM PMSF, ROCHE
incomplete cocktail protease inhibitor in 10 mM PIPES,
pH 7.2) containing 0.02% digitonin for 10 minutes and
centrifuged at 1,000 × g. The supernatant is the cytosolic
fraction. The pellet was then extracted with ice-cold 1.0 %
(v/v) Triton x-100 in buffer-A for 30 minutes and centri-
fuged at 5,000 × g for 30 minutes. Supernatant obtained
represents the solubilized membrane fraction. The result-
ant pellet was suspended in Buffer-A containing 0.5%
deoxycholate, 1.0% Tween-40 and homogenized in a
Teflon homogenizer (five strokes) and centrifuged at
7,000 × g for 10 minutes. The solubilized component was
the nuclear fraction. Finally, the detergent resistant pellet
(cytoskeletal fraction) was dissolved in 5% (w/v) SDS in
10 mM sodium phosphate pH 7.4.

Proteins from all the solubilized fractions were precipi-
tated using trichloroacetic acid (TCA)-acetone. TCA, ice
cold acetone and aqueous extracts were mixed in a ratio of
1:8:1 and kept at -20°C for one hour and centrifuged at
11,000 × g for 15 min at 4°C. Supernatant was discarded
and the pellet was extensively washed with acetone, air-
dried and stored at -80°C till further use.

Two-dimensional gel electrophoresis (2DIGE)
2DIGE was performed as described in Bio-Rad manual.
For isoelectric focusing, 1 mg of TCA-acetone powder
from different fractions was dissolved in 200 μl of 2 %
CHAPS, 7 M urea, 2 M thiourea, 50 mM DTT (freshly
added), 0.2% IPG buffer, 0.002% bromophenol blue
(rehydration buffer) and IPG strips (pH 4–7; size 11 cms,
Bio Rad) were passively rehydrated for 12–14 hrs. Typi-
cally, focusing was done for 60,000–70,000 V hrs. Second
dimension separation was on a 12 % SDS-PAGE gel and
enolase isoforms were visualized by Western blotting. The
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pI values were determined by taking the IPG strip length
as 11.2 cms and pH gradient of three units (pH 4–7). A
minimum of two independently prepared sub-cellular
fractions were analysed for pI determination. From sam-
ple to sample the relative pattern of various spots
remained unchanged. However, the absolute values of pI
varied within a range of ± 0.1 pH units.

Indirect immunofluorescence assay
Immunofluorescence assay (IFA) was performed as
described earlier [18] using mouse anti-P. falciparum eno-
lase antibodies (1:100) and Alexa Fluor 488-conjugated
anti-mouse IgG (Molecular Probes Inc.). Parasite nuclei
were stained with DAPI (4',6-diamidino-2-phenylindole)
at a final concentration of 1 μg·ml-1. Slides were exam-
ined using an Ultima Confocal System from the Meridian
Instruments.

Isolation of P. yoelii phosphoproteome
For the isolation of phosphoproteome, P. yeolii cells were
suspended in the lysis buffer (8 M urea, 50 mM Tris pH
5.5, 150 mM NaCl, 1 μM each of leupeptin and pepstatin-
A, 1 mM PMSF and with the addition of complete mini,
protease inhibitor cocktails EDTA-free, catalog no. 1 836
17, Roche Diagnostics, Germany) (1 ml/gm wet weight of
parasite pellet) and subjected to constant mixing for one
hour at 4°C. The extract was centrifuged at 20,000 × g for
30 minutes to obtain clear supernatant.

An iron affinity resin was prepared by mixing freshly
made 100 mM FeCl3 with Affinity Prosep-chelating resin
(iminodiaceticacid-agarose) (Millipore) and the excess
FeCl3 was removed by extensive washing with lysis buffer.
For capturing phosphoproteome, the Fe+3- beads were
mixed with the clear supernatant and allowed to bind for
one hour at 4°C. The slurry was poured in a column and
lysis buffer was passed till the flow through was free from
the proteins. The bound proteome fraction was eluted
using EDTA in buffer.

Results
Enolase is present in soluble and particulate fractions of P. 
yoelii
The parasite saponin pellet having about 106 cells was
lysed by freeze-thaw followed by sonication and centri-
fuged at 14,000 × g for 30 minutes to obtain soluble
(supernatant) and particulate (pellet) fractions. The pro-
teins were separated by SDS/PAGE (12% gel) and Western
blotting was performed as described earlier [18]. Results
are presented in Figure 1A. Enolase (~50 kDa band) was
found to be present in both (soluble and particulate) frac-
tions. As expected, most of the enolase was present in
cytosol (~85–90%) where it is required for glycolytic func-
tion. However, ~10–15% enolase was associated with par-
ticulate fraction. As most of the enolase is located in

cytosol, there is a possibility of contaminating the partic-
ulate fraction with unbroken cells. To eliminate this pos-
sibility, the blot was also examined for the presence of
another glycolytic enzyme, aldolase (using anti-P. falci-
parum aldolase antibodies). As shown in Figure 1A, aldo-
lase (~40 kDa band) was present only in the soluble
fraction and was completely absent from the particulate
fraction, suggesting that the pellet fraction did not have
any contamination from the cytosolic fraction. Similarly,
an extract prepared from the purified merozoites (an extra
erythrocytic stage), also showed the presence of enolase in
soluble as well as particulate fraction (Figure 1B).

Since the particulate fraction consisted of a variety of sub-
cellular components (cellular membranes, nuclei and
cytoskeletal elements), differential detergent fractionation
(DDF) method was used to selectively solubilize proteins
from various organelles [19]. 100 μg acetone powder
derived from solubilzed membranes, nuclei and cytoskel-
etal elements was analysed by SDS/PAGE. Results pre-
sented in Figure 1C, showed association of enolase with
all the three sub-cellular fractions.

Immunofluorescence assay (IFA) showed nuclear presence 
of enolase in P. yoelii
A smear of infected mouse red blood cells was stained
with DAPI to locate the nuclei of parasite cells and with
anti-recombinant P. falciparum enolase (anti-r-Pfen) anti-
bodies for localization of enolase (Figure 2). An overlay of
the two images clearly showed the presence of enolase in
the nucleus (shown with arrows). In this smear, it was
observed that the presence of enolase is more prominent
in early intra-erythrocytic stages (ring and trophozoite) as
compared to late multi-nuclear schizont stages. The high
specificity of anti-r-Pfen antibodies for parasite enolase is
evident from the fact that none of the uninfected RBCs are
stained with anti-r-Pfen antibodies in this smear.

Different isoforms of enolase are associated with various 
sub-cellular fractions
Using the differential detergent solubilization (DDF)
method, the acetone powder was prepared from cytosol,
membrane, nuclear and cytoskeletal fractions (full pro-
tein complement). These fractions were analysed by 2-
dimensional gel electrophoresis (2-DIGE) and probed
with anti-r-Pfen antibodies to identify if there are multiple
isoforms of enolase in P. yoelii. About 0.8–0.9 mg of ace-
tone powder was used for each analysis. Western blots of
2-DIGE from four different sub-cellular fractions are pre-
sented in Figure 3A. At least five different isoforms of eno-
lase with pI~5.9, 6.1, 6.3, 6.5 and 6.7 are observed.
Different sub-cellular fractions showed differences in the
type of isoforms present and their relative abundances.
The cytosolic fraction had four different spots (pI~5.9,
6.1, 6.3 & 6.5) with the isoform at pI~6.3 being the most
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abundant and the form with pI~5.9 being the least. In this
fraction, an extra spot at pI~6.5 (and possibly also at 6.3)
was observed which has greater electrophoretic mobility.
Membrane fraction showed two forms with pI~6.3 and
6.5, whereas the nuclear fraction had a single isoform with
a pI~6.7. The cytoskeletal fraction had four isoforms
(pI~6.1, 6.3, 6.5 and 6.7), present in almost equal abun-
dance.

In order to examine whether any of these isoforms have
arisen due to phosphorylation of native enolase, cytosolic
fraction was treated with alkaline phosphatase and ana-
lysed. This sample gave a single spot at pI~6.5, suggesting
that indeed the isoforms with pI~5.9, 6.1 and 6.3 arose

due to phosphorylation of native enolase. Further evi-
dence for in vivo phosphorylation of enolase was obtained
by pulling out the phosphoproteome fraction from P. yoe-
lli cellular extract using Fe+3-immobilized metal ion chro-
matography (IMAC) [20]. If the enolase was
phosphorylated inside the cell, IMAC eluted fraction
would contain enolase. Figure 3B shows a silver stained
gel of P. yoelii whole cell extract (lane 1) and EDTA eluted
phopho-proteome from Fe+3-beads (lane 2). A blot of this
gel was probed with anti-r-Pfen antibodies (Figure 3C).
The results showed high enrichment of enolase in metal
affinity column eluted sample, supporting the view that a
major fraction of the enolase is indeed phosphorylated
inside the cell.

Discussion
In this study, two different experimental approaches were
employed, namely (i) biochemical sub-cellular fractiona-
tion followed by Western blot analysis and (ii) in situ loca-
tion by immunofluorescence to investigate the sub-
cellular distribution of enolase in P. yoelii. An interesting
early result in this study was the observation of the pres-
ence of enolase in the particulate fraction (Figure 1). Since
glycolysis occurs in cytosol and intra-erythrocytic stages of
Plasmodium are known to have high glycolytic flux
[15,16], it was expected that major fraction of enolase will
be present in cytosol. Results presented in Figure 1A sug-
gest that ~85–90% of enolase is cytosolic and ~10–15% is
associated with particulate fraction. In cases where a pro-
tein is highly abundant in a specific sub-cellular compart-
ment (cytosol here), one needs to demonstrate that the
particulate fraction is not contaminated with cytosol and/
or unbroken cells. The following evidence supports the
view that in case of P. yoelii, enolase is indeed associated
with various components of particulate fraction:

(i) The presence of aldolase (another glycolytic enzyme)
in soluble and particulate fractions was examined. Results
presented in Figure 1A showed that the aldolase was
present in cytosol and completely absent (or undetecta-
ble) in particulate fraction, indicating that particulate frac-
tion is not contaminated with cytosol or unbroken cells;

(ii) in differential detergent solubilization of cellular
membrane, nuclei and cytoskeletal elements, enolase was
present in all three fractions (Figure 1B). It is highly
unlikely that soluble enolase will remain associated in
this multi-step detergent solubilization protocol;

(iii) profiles of various enolase isoforms (in terms of their
pI and relative abundances) associated with each of the
sub-cellular (cytosolic, membrane, nuclear and cytoskele-
tal) fractions is rather unique (Figure 3A). If the presence
of enolase in these fractions was due to cytosolic contam-
ination, one would expect to observe similar profile for all

(A) Western blot analysis of soluble (S) and particulate (P) fractions of P. yoelii cell extractFigure 1
(A) Western blot analysis of soluble (S) and particulate (P) 
fractions of P. yoelii cell extract. The proteins from the two 
fractions were analysed on a 12% SDS-PAGE and the blot 
was probed for the presence of enolase (~50 kDa) and aldo-
lase (~40 kDa). (B) Western blot of soluble (S) and particu-
late (P) fractions of P. yoelii merozoite extract. (C) Western 
blot for the detection of enolase (Pfen) associated with the 
(a) membrane fraction, (b) nuclear fraction and (c) cytoskele-
tal fraction. The proteins in the samples were analysed on a 
12% SDS-PAGE and the blots were probed using r-Pfen anti-
bodies for the presence of enolase (~50 kDa).
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the fractions; (iv) nuclear presence of enolase is also evi-
dent from immuno fluorescence assay (Figure 2). All the
evidence presented here showed diverse localization of
enolase where it may have different physiological (moon-
lighting) functions. Immunofluorescence assay per-
formed for in situ nuclear localization of enolase showed
the presence of variable amounts of enolase in different
stages of the parasite. For instance, ring stage parasite has
lot more nuclear enolase as compared to late multi-
nuclear schizont stage (Figure 2). Similar observations
have been reported for T. gondii [5] and E. tenella [6]. Such
observations of the nuclear presence of enolase, has lead
to the suggestion that it may play a role in gene expression
regulation. In this context, recent report about direct inter-
action of enolase with H3- histone, nucleosome assembly
protein and indirect interaction to many other nuclear
proteins (including histone acetylase like enzymes) in P.
falciparum assumes significance [21].

P. yoelii has a single gene for enolase. Observation of five
different isoforms (pI~5.9, 6.1, 6.3, 6.5 and 6.7) suggests
that four of these variants arose due to post-translational
modifications. Results presented here showed that forms
with pI~5.9, 6.1 and 6.3 arose due to multiple phosphor-
ylations. It is interesting to note that none of these phos-
phorylated forms move to the nucleus. Phosphorylation
of enolase has been widely reported in bacteria [22],
plants [23,24] and animals [25,26]. However, the physio-
logical significance of these modifications is not under-
stood. Enolases are highly conserved proteins across the
species and do not possess any signal sequences for spe-
cific sub-cellular localization. The observation (Figure 3)

of sub-cellular fraction specific isoform profile would sug-
gest that post-translational modifications may regulate
sub-cellular localization of enolase. The nuclear localiza-
tion signal (NLS) in a protein is usually a stretch of basic
aminoacids [27] and no such sequence is present in the
enolase. It is interesting to note that the form which gets
translocated to the Plasmodium nucleus has the most basic
pI (pI~6.7) among all the isoforms.

Conclusion
In summary, in this paper it was demonstrated that in P.
yoelii, a small fraction of enolase is associated with cellular
membranes, cytoskeletal and nuclear fractions where it is
likely to have diverse moonlighting functions. Further, the
enolase undergoes several posttranslational modifica-
tions, three of which are due to protein phosphorylations.
The acidic forms generated due to in situ phosphoryla-
tions, are excluded from nuclear localization. Variable
amounts of enolase detected in nucleus at different life
cycle stages of the parasite, suggests nuclear functions for
enolase. Implicit in the diverse localization of enolase, is
the complexity in its biological functions, which would
make this protein an interesting drug target for malaria.
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Confocal microscopic study of enolase localization in P. yoelii infected mouse red blood cellsFigure 2
Confocal microscopic study of enolase localization in P. yoelii infected mouse red blood cells. Nuclei were stained with DAPI (1 
μg·ml-1) and the presence of enolase was detected by anti-enolase (anti-r-Pfen) antibodies followed by secondary anti-mouse 
IgG labeled with alexa fluor 488. (a) DAPI image, (b) mouse anti-r-Pfen antibody and (c) merged image of (a) and (b). Nuclear 
localization of enolase is marked with arrows.
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(A) Western blot showing different isoforms of enolase associated with different sub-cellular fractions of P. yoeliiFigure 3
(A) Western blot showing different isoforms of enolase associated with different sub-cellular fractions of P. yoelii. 0.8–0.9 mg of 
acetone powder prepared from cytosol, nuclei, membranes or cytoskeletal components were analysed by two dimensional gel 
electrophoresis (2DIGE) and transferred to a nitrocellulose membrane. Blots were probed with anti-r-Pfen antibodies. (B) 
Detection of phosphorylated enolase in P. yoelii cell extract. Fe+3-iminodiaceticacidagarose beads were used to purify phospho-
proteome. Whole cell extract (lane 1) and purified phosphoprotome (lane 2) were analysed on 12% SDS-PAGE and gel was sil-
ver stained. (C) Western blot of gel in (B) probed with anti-r-Pfen antibodies.
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