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Abstract
Background: There is a renewed political will and financial support to eradicate malaria. Spatially-
explicit risk profiling will play an important role in this endeavour. Patterns of Plasmodium falciparum
infection prevalence were examined among schoolchildren in a highly malaria-endemic area.

Methods: A questionnaire was administered and finger prick blood samples collected from 3,962
children, aged six to 16 years, attending 55 schools in a rural part of western Côte d'Ivoire.
Information was gathered from the questionnaire on children's socioeconomic status and the use
of bed nets for the prevention of malaria. Blood samples were processed with standardized, quality-
controlled methods for diagnosis of Plasmodium spp. infections. Environmental data were obtained
from satellite images and digitized maps. Bayesian variogram models for spatially-explicit risk
modelling of P. falciparum infection prevalence were employed, assuming for stationary and non-
stationary spatial processes.

Findings: The overall prevalence of P. falciparum infection was 64.9%, ranging between 34.0% and
91.9% at the unit of the school. Risk factors for a P. falciparum infection included age, socioeconomic
status, not sleeping under a bed net, distance to health care facilities and a number of environmental
features (i.e. normalized difference vegetation index, rainfall and distance to rivers). After taking
into account spatial correlation only age remained significant. Non-stationary models performed
better than stationary models.

Conclusion: Spatial risk profiling of P. falciparum prevalence data provides a useful tool for
targeting malaria control intervention, and hence will play a role in the quest of local elimination
and ultimate eradication of the disease.
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Background
Malaria remains a leading cause of morbidity and mortal-
ity in tropical and subtropical regions of the world. There
are an estimated three billion people at risk of this disease
and more than half a billion episodes of clinical Plasmo-
dium falciparum occur each year, killing over one million
individuals annually [1,2]. It has been estimated that the
global burden of malaria exceeds 40 million disability-
adjusted life years (DALYs) [2,3] and the disease drains
the social and economic development of affected regions
[4,5]. High-risk groups are children under the age of five
years and pregnant women, with sub-Saharan Africa par-
ticularly affected. Indeed, this part of the world accounts
for a striking 90% of the global burden of malaria [6,7].

Predicting the abundance and spread of malaria in
endemic settings, in order to develop locally-adopted
malaria control strategies to lower the burden of the dis-
ease is a pressing public health issue. Recently, an auda-
cious goal has been announced in Seattle, USA during a
meeting led by the Bill and Melinda Gates Foundation,
namely to eradicate malaria [8]. This goal – so the claim –
has become a realistic hope thanks to new scientific
advances, including the development of novel antimalar-
ial drugs, vaccines and integrated control efforts through
insecticide-treated nets (ITNs), prophylactic treatment
and indoor residual spraying (IRS), in the face of a grow-
ing political will and financial support for malaria control
initiatives [8]. A deeper understanding of the spatial dis-
tribution of malaria is pivotal so that appropriate local
elimination efforts can be designed and rigorous monitor-
ing implemented.

Advances made with geographical information system
(GIS), remote sensing and geostatistical modelling to pre-
dict the spatial and temporal distribution of malaria and
Anopheles vectors have opened new avenues in this field of
research. In particular, modelling disease and disease-
related data within a Bayesian framework allows fitting of
complex models in quite a flexible way. Additionally,
Bayesian approaches provide computational advantages
over traditional frequentist approaches via implementa-
tion of Markov chain Monte Carlo (MCMC) simulation
[9-11]. Recent studies made use of the advantages offered
by Bayesian methods for spatially-explicit modelling of
malaria [12-18].

In Côte d'Ivoire, malaria is one of the primary public
health concerns. This is illustrated by a study carried out
in the savannah zone that documented malaria being
responsible for at least 60% of the consultations in hospi-
tals and 46% in paediatric clinics [19]. In 2005, Côte
d'Ivoire ranked at position 13 among countries with the
highest rates of under-five mortality and estimates at the
time suggested that only 4% of children under five years

of age slept under an ITN [20]. In the present study, small-
scale patterns and spatial risk factors of the prevalence of
P. falciparum among schoolchildren in a rural part of west-
ern Côte d'Ivoire were explored, using Bayesian geostatis-
tical models.

Methods
Study area, population and ethical clearance
The study area is the region of Man, located in western
Côte d'Ivoire. It is a mountainous region with tropical cli-
mate, including rains during eight to nine months of the
year, and a dry period between November and February.
The landscape is characterized in the north by rounded
mountains with altitudes ranging from 200 to 1,300 m
above sea level and small valleys, whereas the southern
part is a river-draining plain [21]. The field work was car-
ried out between October 2001 and February 2002.

The study protocol was approved by the institutional
research commission of the Swiss Tropical Institute
(Basel, Switzerland) and the Centre Suisse de Recherches
Scientifiques (Abidjan, Côte d'Ivoire). The study was
given ethical clearance from the Ministry of Health in
Côte d'Ivoire. All children attending grades three to five
from 57 schools in the rural parts of the study area were
invited to participate.

School surveys
The education officers were contacted and the aims and
procedures of the study were explained. After receipt of
their approval, the education officers informed teachers
who provided the research team with copies of the class
lists, which included information of the children's name,
sex and age. First, a questionnaire was administered and
schoolchildren were interviewed for assets on ownership
and household characteristics, and perceived symptoms
and diseases with a recall period of one month. The ques-
tionnaire included 17 morbidity indicators (e.g. abdomi-
nal pain, fever, etc.) and 12 household assets (e.g. radio,
TV, etc.). An asset-based approach was used to stratify
schoolchildren into five socioeconomic groups [22,23].
An additional question was included to inquire whether
children slept under a bed net.

Second, a cross-sectional survey was carried out, to collect
finger prick blood samples from previously interviewed
children. Two drops of blood were placed on a micro-
scope slide and thin and thick blood films were prepared.
Slides were air-dried, transferred to a laboratory in the
town of Man and stained with Giemsa. The slides were
then forwarded to a reference laboratory in Abidjan and
analysed by experienced laboratory technicians for spe-
cies-specific density of Plasmodium, assuming a standard
white blood cell (WBC) count of 8,000 per μl of blood by
light microscopy. A random sample of 10% of the slides
Page 2 of 10
(page number not for citation purposes)



Malaria Journal 2008, 7:111 http://www.malariajournal.com/content/7/1/111
were re-examined by the senior microscopist for quality
control purposes. Since more than 95% of the cases were
P. falciparum infections, subsequent spatial analyses was
restricted on this malaria parasite.

Environmental data
Geographical coordinates of each school were collected
using a hand-held Magellan 320 global positioning sys-
tem (GPS; Thales Navigation; Santa Clara, CA, USA).
Streets and rivers were digitized with the aid of readily
available ground maps. Normalized difference vegetation
index (NDVI) and land surface temperature (LST) were
downloaded at 1 × 1 km spatial resolution from Moderate
Resolution Imaging Spectroradiometer (MODIS) from
the USGS EROS Data Centre. Rainfall estimate (RFE) data
with an 8 × 8 km spatial resolution from Meteosat 7 satel-
lite were obtained from the Africa Data Dissemination
Service (ADDS). NDVI, LST and RFE were downloaded for
the period of September, 2001 to August, 2002 and proc-
essed as detailed elsewhere [21]. Distances from schools
to the nearest healthcare facility and rivers were calcu-
lated.

Data management and statistical analysis
Data were entered twice and validated with EpiInfo ver-
sion 6.4 (Centers for Disease Control and Prevention;
Atlanta, GA, USA). Geographical data were displayed in
ArcView GIS version 3.2 (Environmental Systems
Research Institute, Inc.; Redlands, CA, USA). Schoolchil-
dren were subdivided into two age groups; (i) six to 10
years, and (ii) 11 to 16 years.

All covariates were fitted into bivariate logistic regression
models on the P. falciparum infection status variable using
STATA version 9.2 (Stata Corporation; College Station,
TX, USA). Covariates with a significance level <0.15 were
built into (i) a stationary, and (ii) a non-stationary Baye-
sian logistic regression model for P. falciparum infection,
using WinBUGS version 1.4 (Imperial College & Medical
Research Council; London, UK). The stationary geostatis-
tical model assumed that spatial correlation is a function
of distance only, whereas the non-stationary geostatistical
model assumed that spatial correlation is a function of the
distance and location [16,24]. Spatial heterogeneity was
taken into account by introducing location-specific ran-
dom effects, which model a latent spatial process.

Model specification

Let Yij be the P. falciparum infection status of schoolchild j

in school i. It is assumed that Yij arises from a Bernoulli

distribution, Yij ~Be(Pij), with probability Pij. The covari-

ates Xij and school-specific random effect φi were modelled

on the , that is log it (Pij), where β is

the vector of regression coefficients.

The spatial correlation was introduced on the φi's by

assuming that φ = (φ1, φ1, ... φN)T has a multivariate normal

distribution, φ ~MVN(0, Σ), with variance-covariance

matrix Σ. An isotropic spatial process, i.e. Σmn = σ2 exp (-

udmn), was also assumed, where dmn is the Euclidean dis-

tance between schools m and n, σ2 is the geographic vari-
ability known as the sill, and u is a smoothing parameter
that controls the rate of correlation decay with increasing
distance. To take into account non-stationarity, the study
area was partitioned in K subregions, assuming a locally

stationary spatial process ωk in each subregion k = 1, ..., K,

where ωk = (ωk1, ωk2, ..., ωkN)T. In order to separate the

schools into approximately equal numbers, the study area
was subdivided into two subregions on a diagonal from
the north-western corner to the south-eastern corner. Spa-
tial correlation in the study area was then viewed as a mix-
ture of the different spatial processes and the spatial

random effect φi at location i was modelled as a weighted

average of the subregion-specific (independent) station-

ary processes as follows: , with weights aik,

which are decreasing functions of the distance between
location i and the centroids of the subregions k [25].

Assuming ωk ~ MVN(0, Σk) and ,

one has , where Ak = diag{a1k, a2k,

..., ank}. The range is defined as the minimum distance at

which spatial correlation between locations is below 5%.
For an exponential correlation function, it can be calcu-

lated as  meters.

Following a Bayesian model specification, prior distribu-
tions were adopted for the model parameters. Vague Nor-

mal distributions for the β parameters with large variances

(i.e. 10,000), inverse gamma priors for  and uniform

priors for uk, k = 1, ..., K were chosen. MCMC simulation

was employed to estimate the model parameters [26]. A
single chain sampler with a burn-in of 5,000 iterations
was run. Convergence was assessed by inspection of
ergodic averages of selected model parameters.
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Model performance
The deviance information criterion (DIC) was utilized to
assess the model performance [27]. For appraisal of the
predictive ability of models, a training sample from the
current database was used. From the 55 schools, 43
schools (78%) were randomly selected and fitted into the
logistic regression models. The remaining 12 schools were
utilized for validation purposes. 95%, 75%, 50%, 25%
and 1–5% Bayesian credible intervals (BCIs) of the poste-
rior predictive distribution of test locations were calcu-
lated. The model with the highest percentage of locations
within the BCI with the smallest coverage was considered
the best performing one.

Results
Study profile and operational results
In the school year 2001/2002, a total of 5,448 children
were registered on the class lists of grades three to five of
the 57 participating rural schools. Complete question-
naire and parasitological data were obtained from 3,962
schoolchildren (72.7%) in 55 schools (one school failed
to return the questionnaires; no blood samples were col-
lected in another school). All subsequent analyses are
based on this final cohort (Figure 1).

Plasmodium infections
Approximately two-thirds of the study population were
infected with malaria parasites. P. falciparum was the pre-

dominant species (overall prevalence 64.9%), whereas
infections with Plasmodium malariae and Plasmodium ovale
were rare; the respective prevalences were 3.0% and 0.2%.
At the unit of the school, the P. falciparum prevalence
ranged from 34.0% to 91.9% (Figure 2).

Risk profiling and spatial patterns
Results of the bivariate non-spatial analyses considering
demographic, socioeconomic and environmental covari-
ates, distance to health care facilities and use of bed net are
summarized in Table 1. While children aged six to 10
years were at a significantly higher risk of a P. falciparum
infection than their older peers, no difference was found
among boys and girls. Children from the third wealth
quintile (poor) were at a significantly higher risk of having
an infection with P. falciparum compared to the first
wealth quintile (poorest group). Besides age and socioe-
conomic status, not sleeping under a bed net, distance to
health care facilities, and three environmental factors (i.e.
high NDVI, high RFE and attending schools located at a
distance to rivers of 500 m to 1000 m) were risk factors for
a P. falciparum infection.

Spatial analyses
Results of the spatial analyses are summarized in Table 2.
Only age was a significant risk factor for P. falciparum prev-
alence, both in the stationary and the non-stationary
logistic regression model, whereas NDVI was 'borderline'
significant. In general, for all indicators, odds ratios (ORs)
were comparable between the stationary and the non-sta-
tionary logistic regression model. The range where spatial
correlation became insignificant was similar between the
stationary and the non-stationary model. The non-sta-
tionary model revealed that location only had a minor
leverage on the range of spatial correlation. The geograph-
ical variability was 0.3 with the stationary model, whereas
in the non-stationary model there was some difference in
the geographical variability between the two subregions.

Model performance
Comparison of DICs suggested that both the stationary
and the non-stationary model were similar with regard to
their performance. Since the DIC did not give any definite
information on the best-fitting models, further explora-
tion was necessary by data training. Table 3 shows the
results of the model validation. The non-stationary logis-
tic regression model predicted correctly 100% of the test
locations compared to 93% with the stationary logistic
regression model at a 95% BCI. Moreover, the non-sta-
tionary logistic regression model had the highest percent-
age of correctly predicted locations at the smallest BCI,
and hence can be regarded as the best fitting model.

Study profile and compliance.Figure 1
Study profile and compliance.
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Discussion
The purpose of this study was to assess risk factors and
small-scale spatial patterns of P. falciparum infection prev-
alence among schoolchildren in a highly endemic area of
rural western Côte d'Ivoire. The following covariates were
significantly associated with infection: age, socioeco-
nomic status, sleeping under a bed net, distance to health
care facilities and a number of environmental factors.
However, after accounting for spatial correlation, only age
remained a significant risk factor for P. falciparum preva-
lence, whereas NDVI showed only 'borderline' signifi-
cance. The predictive ability of the spatial models was
examined using a training sample of 78% of the schools,
with the non-stationary model performing better than the
stationary one.

There are a number of shortcomings worth discussing.
First, only a single finger prick blood sample was collected
from each child for microscopic examination. Hence it is
conceivable that some infections, particularly those with a
low parasitaemia, were missed [28,29]. Second, it should
be noted that school-aged children in highly malaria-
endemic areas are not at highest risk of disease-associated
morbidity and mortality. The prevalence in children
below the age of five years might have been even higher
than the observed P. falciparum prevalence of 64.9%
among six to 16-year-old children. Third, the parasitolog-
ical survey was carried out over a period of several months
due to the large number of schoolchildren subjected to
interviews and finger prick blood sampling, which might
have introduced a bias in the observed prevalence from

Mean infection prevalence of P. falciparum in 55 rural schools in the Man region, western Côte d'Ivoire during the school year 2001/2002Figure 2
Mean infection prevalence of P. falciparum in 55 rural schools in the Man region, western Côte d'Ivoire during 
the school year 2001/2002. NDVI is displayed in the background.
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one school to another due to seasonality. Fourth, in the
absence of high-resolution data to compute distances to
small standing water bodies that might serve as Anopheles
breeding sites, information from digitized maps was used
to obtain the distance to rivers as an indication for the dis-
tance to breeding sites. The most likely vector in this area
is Anopheles gambiae and, to some extent, Anopheles funes-
tus. The former vector species breeds in transient, sunlit
and generally small pools, whereas the latter has been
associated with larger, semipermanent bodies of water
containing aquatic vegetation and algae [30].

The analysis presented here showed that schoolchildren
from wealthier households were more likely to be infected
with P. falciparum compared to schoolchildren from the
poorest households. This result is surprising given that the
common expectation would be that the poorest of the
poor are at highest risk of malaria [31]. Several studies

have shown that the burden of malaria is elevated among
the poorest population segments, probably because they
are at a higher exposure to malaria vectors and have fewer
means for personal protective measures. For example, a
study carried out in a rural community in Cameroon
found a significant relationship between malaria and low
protective housing conditions, such as living in wooden
plank houses [32]. Surprisingly, no significant association
between the risk of a P. falciparum infection and housing
conditions was evident in the present study. It is conjec-
tured that issues related to exposure were associated to
socioeconomic status, which calls for further investiga-
tion. Previous research conducted in rural Tanzania, for
example, found that lack of access to health care and pre-
ventive measures, including ITNs, was associated with
people's socioeconomic status [31]. Interestingly, the cur-
rent study confirms that children from poorer households
were less likely to sleep under a bed net. Furthermore,

Table 1: Results of the bivariate logistic regression model for P. falciparum infections among 3,962 children from 55 rural schools in the 
Man region, western Côte d'Ivoire.

Indicators P. falciparum infection prevalence

ORa 95% CI P-value (AICb)

Age (years)
6–10 1
11–16 0.70 0.61, 0.8 <0.001

Socioeconomic status
Most poor 1
Very poor 1.04 0.84, 1.28
Poor 1.24 1.01, 1.53
Less poor 0.95 0.77, 1.16
Least poor 0.86 0.70, 1.06 0.011

Sleeping under a bed net 0.79 0.65, 0.98 0.030
Distance to health care facility 1.17 1.09, 1.25 <0.001
NDVI

Mean Ic 0.96 0.91, 1.03 0.333
Mean IId 1.05 0.99, 1.12 0.131 (5139)
Mean IIIe 0.96 0.90, 1.03 0.228
Annual mean 1.20 1.12, 1.29 <0.001 (5110)
Mean of the transmission season 1.19 1.11, 1.27 <0.001 (5114)

RFE
Mean Ic 0.88 0.82, 0.94 <0.001 (5126)
Mean IId 1.04 0.97, 1.11 0.289
Mean IIIe 1.13 1.05, 1.20 <0.001 (5129)
Sum of annual rainfall 1.11 1.04, 1.18 0.003 (5132)
Mean of the transmission seasonf 1.14 1.07, 1.21 <0.001 (5125)

Maximum LST 1.03 0.96, 1.09 0.449
Distance to rivers (categorized)

<500 m 1
500–999 m 1.22 1.03, 1.46
= 1000 m 0.63 0.54, 0.74 <0.001

aOR: odds ratio
bAIC: Akaike information criterion. The smaller the AIC the better the model performance
cMean I: Mean value during the month prior to blood sample collection
dMean II: Mean value during the month of collection and the previous month
eMean III: Mean value during the month of collection and the two previous months
fThe main transmission season of malaria is from June to August
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children who reported sleeping under a bed net were at a
decreased risk of having a P. falciparum infection. Addi-
tionally, it was found that the risk of a P. falciparum infec-
tion was associated with distances to health care facilities.

Nevertheless, after taking into account spatial correlation,
the covariates socioeconomic status, distance to the near-
est health care facility and sleeping under a bed net
showed no significant association anymore, and hence
other factor must explain the observed spatial heterogene-
ity of P. falciparum.

Several environmental factors, namely NDVI, RFE and dis-
tance to rivers, were significantly associated with a P. falci-
parum infection in the bivariate non-spatial models. These
findings are in accordance with previous studies that
showed significant associations between malaria and
NDVI, rainfall and distance to rivers at a broader spatial
scale [33-35]. It is conceivable that these environmental
factors are related to the presence and abundance of
malaria vectors, which is governed by suitable breeding
and resting sites of Anopheles. An interesting observation
in the present study was that children from schools that
were located in close proximity to rivers (<500 m) were at
a lower risk of a P. falciparum infection compared to more
distant schools (between 500 m and 1000 m). Children

Table 2: Multivariate stationary and non-stationary spatial analyses results for P. falciparum infection prevalence for the Man region, 
western Côte d'Ivoire.

Indicator Bayesian logistic regression models

Stationary Non-stationary

ORa 95% BCIb ORa 95% BCIb

Age (years)
6–10 1 1
11–16 0.75 0.65, 0.87 0.75 0.65, 0.87

Socioeconomic status
Most poor 1 1
Very poor 0.90 0.71, 1.13 0.90 0.71, 1.13
Poor 1.21 0.95, 1.51 1.21 0.95, 1.51
Less poor 0.91 0.90, 1.15 0.90 0.71, 1.14
Least poor 0.85 0.66, 1.08 0.84 0.65, 1.08

Sleeping under a bed net 0.92 0.72, 1.15 0.92 0.73, 1.15
Distance to health care facility 1.07 0.87, 1.29 1.04 0.82, 1.27
Annual mean NDVI 1.16 0.98, 1.38 1.17 0.98, 1.40
Mean RFE during transmission season 1.06 0.87, 1.27 1.06 0.87, 1.27
Distance to rivers

<500 m 1 1
500–999 m 1.32 0.87, 1.94 1.27 0.81, 1.89
= 1000 m 0.75 0.48, 1.14 0.72 0.47, 1.09

ρ1
c 0.0014 0.0003, 0.002 0.0015 0.0003, 0.002

ρ2 0.0014 0.0004, 0.002
σ1

2d 0.30 0.17, 0.49 0.23 0.10, 0.48
σ2

2 0.40 0.18, 0.79
DICe 4899.8 4900.1

aOR: odds ratio
bBCI: Bayesian credible interval
cρ: scalar parameter representing the rate of decline of correlation with distance between points
dσ2: estimate of geographic variability
eDIC: deviance information criterion; a composite measure of how well the model does, i.e. a compromise between fit and complexity, with smaller 
DICs indicating better performance of the model

Table 3: Percentage of test locations with P. falciparum 
prevalence falling within selected BCIs. For the model validation 
43 locations were used for model fitting and 12 for prediction.

BCI Bayesian logistic regression model

Stationary Non-stationary

95% 93% 100%
75% 80% 87%
50% 53% 60%
25% 27% 27%
5% 13% 27%
4% 7% 27%
3% 7% 27%
2% 7% 20%
1% 7% 13%
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from schools with distances <500 m were significantly
more often reporting to sleep under a bed net, suggesting
that the former observation might be partly confounded
by a higher level of bed net coverage and usage due to nui-
sance from mosquitoes near rivers. Children enrolled in
schools located at distances >1000 m of rivers were less
likely to be infected with P. falciparum, which might be
related to the flight range of mosquitoes, which is, on
average, below 1 km [36]. Interestingly, none of the envi-
ronmental covariates showed a statistical significant asso-
ciation to P. falciparum prevalence after accounting for
spatial correlation. Hence, the current results demonstrate
the importance of accounting for spatial correlation when
analysing malaria prevalence data at small spatial scales as
reported here. Indeed, omission of spatial correlation
would have underestimated the standard errors of the cov-
ariate coefficients [37]. Furthermore, in contrast to previ-
ous work focussing on helminth infections in the same
study area [11,21,24,38], no risk map and corresponding
uncertainty map have been presented, since none of the
environmental factors investigated was significant in the
spatially-explicit model. The results therefore suggest that
at small spatial scales, individual-level factors (e.g. age)
determine the spatial distribution of the P. falciparum
infections rather than coarser environmental factors.
These observations suggest that environmental factors are
particularly salient for malaria prediction at larger spatial
scales.

In geostatistical modelling, the standard assumption is
that there is a stationary spatial dependence in the data,
which implies that the spatial correlation is a function of
the distance between points and independent of the loca-
tion. Bayesian non-stationary geostatistical models were
employed before for the prediction of helminth infections
in the same study area [24,38]. Gosoniu and colleagues
were the first to use Bayesian non-stationary geostatistical
models for malaria risk, in their recent research on Mali
[16] and West Africa [39]. The authors' underlying
assumption was that local characteristics related to
human behaviour and environment, including vector
ecology, influenced spatial correlation differently at dif-
ferent locations over large areas, i.e. an entire country. The
results presented here suggest that the use of non-station-
ary models may also be required at a smaller spatial scale
(i.e. at the district level), since the non-stationary model
performed better than the one assuming stationarity. The
current work on P. falciparum can be integrated with our
previous work on helminth infections for mapping P. fal-
ciparum-helminth co-infections using multinomial regres-
sion models for the simultaneous targeting of malaria and
helminthic diseases [11]. School-aged children are at the
highest risk of such co-infections and data suggest that co-
infections with P. falciparum and hookworm have an addi-
tive impact on anaemia, implying that those high-risk

groups would greatly benefit from integrated malaria and
helminth control [40].

Conclusion
An integrated approach that employs different data
sources, GIS and remote sensing technologies and Baye-
sian geostatistical modelling for spatially-explicit risk pro-
filing of P. falciparum infection prevalence in a highly
malaria-endemic part of sub-Saharan Africa was used.
This approach can be readily adapted to other eco-epide-
miological settings for spatial targeting of control inter-
ventions. In particular, it was possible to compare
different geostatistical models with a large set of covari-
ates, including demographic, socioeconomic and envi-
ronmental factors, physical access to health care and bed
net usage. The results suggest that the use of non-station-
ary models might be justified also at small-scale areas,
however further research is necessary to deepen the cur-
rent understanding of the fine-scale spatial heterogeneity
of P. falciparum. Malaria patterns are complex and the risk
of infection is influenced by many other factors that were
not accounted for in this study, including malaria control
interventions and genetic diversity. Specifically, vector
breeding sites at small scale (i.e. abundance of small water
pools) may significantly influence the spatial heterogene-
ity in the study area [41-43]. Further analyses that apply
information derived from land use maps are needed, as
well as models to predict the spatial distribution of P. fal-
ciparum parasitaemia.
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