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Abstract

Background: Molecular markers, particularly those associated with drug resistance, are
important surveillance tools that can inform policy choice. People infected with falciparum malaria
often contain several genetically-distinct clones of the parasite; genotyping the patients' blood
reveals whether or not the marker is present (i.e. its prevalence), but does not reveal its frequency.
For example a person with four malaria clones may contain both mutant and wildtype forms of a
marker but it is not possible to distinguish the relative frequencies of the mutant and wildtypes i.e.
[:3,2:2 or 3:1.

Methods: An appropriate method for obtaining frequencies from prevalence data is by Maximum
Likelihood analysis. A computer programme has been developed that allows the frequency of
markers, and haplotypes defined by up to three codons, to be estimated from blood phenotype
data.

Results: The programme has been fully documented [see Additional File ] and provided with a
user-friendly interface suitable for large scale analyses. It returns accurate frequencies and 95%
confidence intervals from simulated dataset sets and has been extensively tested on field data sets.

Conclusion: The programme is included [see Additional File 2] and/or may be freely downloaded
from [1]. It can then be used to extract molecular marker and haplotype frequencies from their
prevalence in human blood samples. This should enhance the use of frequency data to inform
antimalarial drug policy choice.

Background report, the prevalence of the marker i.e. the proportion of

The identification of molecular markers (mutations) asso-
ciated with drug resistance in P. falciparum, and the ability
to detect these markers in the blood of infected people,
means that large-scale population surveys can be used to
infer the likely efficacy of antimalarial drug treatment
regimes [2]. This allows their use in large scale surveil-
lance surveys [3]. These surveys measure, and generally

patient blood samples in which the marker is detected.
This is clinically-useful information (it is related to a
patient's probability of failing drug treatment) but it is less
appropriate as a public health surveillance tool. It is the
frequency of the drug resistant mutation, defined as the
proportion of parasite clones in which the marker is
present, and the rate at which it is increasing which deter-
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mines the likely time before a drug becomes ineffective
and requires replacement. Prevalence and frequency may
differ markedly because several parasites clones often
simultaneously co-infect the same patient: for example if
patients have three clones (a 'multiplicity of infection'
(MOTI) of three) the frequency of the mutation among the
parasites may be 10% but among patients its prevalence
will be almost three times higher = 3 x 10% = 30%
because each clone has a chance of bearing the marker
(the true value, assuming statistical independence of
clones, is actually 1-(1-0.1)A3 = 0.27 = 27%).

This has several consequences: (a) Prevalences depend on
MOI so, unlike frequency, they are not directly compara-
ble across regions with different epidemiology (Figure 1);
(b) Prevalences have different dynamics compared to fre-
quency: they increase rapidly in the early spread of resist-
ance but less slowly at later times (Figure 1); (c) The
selection coefficient driving resistance is a key population
genetic measurement but can only be estimated from a
time series of frequency data [4].

A further drawback of using prevalences is that they do
not measure the frequencies with which combinations of
alleles, (haplotypes) occur together in the same parasite.
It is these haplotype frequencies that most directly meas-
ure the probability that a parasite is genetically resistant.
For example, mutations in codons 51, 59 and 108 in dhfr
all affect a parasite's ability to survive treatment with anti-
folate drugs (reviewed in [5]), and the probability that
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How prevalence depends on frequency and multiplic-
ity of infection (MOI). The marker has a 10% selective
advantage over the wildtype form and its frequency is
increasing over time. The corresponding prevalence of the
marker is shown over the same time scale assuming each
human in the population contains either 2, 3, or 5 malaria
clones (MOI = 2,3,5).
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parasites will survive in a mixed infection depends on
whether these mutations are present in the same genome
or not. The prevalences of mutations at each codon can-
not be directly translated into haplotype frequencies. For
example, a patient may be infected by two malaria clones
and genotyping reveals the presence of only mutants at
position 108 and the presence of both mutant and
wildtype at positions 51 and 59; consequently, it is impos-
sible from these data to distinguish whether the clones are
(i) mutant at 108 in one clonal haplotype and mutant at
108+51+59 in the other haplotype, or (ii) mutant at
108+51 in one clone haplotype and mutant at 108+59 in
the other haplotype. The situation becomes even more
complex as MOI increases.

Statistical approaches for estimating gene and haplotype
frequencies in the presence of uncertainty use Maximum
Likelihood methodology and are described in standard
population genetic textbooks such as Hartl & Clark [6])
and in journal reviews such as Williams & Dye [7]). This
approach was used by Hill and Babiker [8] to estimate
MOI in blood samples from Tanzania. If the MOI is
known, then estimation of allele frequencies for resistance
markers in malaria is analogous to that of estimating fre-
quencies from phenotype data in a polyploid organism,
where the MOl is equivalent to the ploidy. Such estimates
have been reported in a study of chloroquine resistance
markers in Tanzania [9] and software for carrying out such
estimation is available at [10].

The problem of estimating haplotype frequencies from
such ambiguous genetic data is somewhat more compli-
cated. An appropriate method is, once again, to use ML
methodology. In essence the ML approach is to initially
guess the frequency of haplotypes, measure how consist-
ent these frequencies are with the observed prevalence of
combinations of mutations in the blood samples, and
continue changing and improving estimated values of
haplotype frequencies until they provide the best match
to the data. This paper describes a freely-available compu-
ter programme that uses these techniques to estimate both
allele and/or haplotype frequencies from prevalence data.
It has two main advantages over existing methodologies.

Firstly, it can simultaneously analyse all the samples in a
dataset irrespective of their levels of MOI/ploidy. Haplo-
types can be directly observed in samples with only a sin-
gle infection i.e. where MOI is 1. Samples with MOI of 2
are diploid (the sample contains two haplotypes) and
haplotype frequencies could be inferred in this subset of
the data using existing software (e.g. [11]) designed to
analyse samples from diploid organisms such as humans,
mice, drosophila (where, obviously, one haplotype comes
from the mother and one from the father). To our knowl-
edge no software exists to infer haplotype frequencies
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where ploidy (MOI) exceeds 2 and our software is explic-
itly designed to allow this. Our software therefore allows
simultaneous analysis of the entire dataset including sam-
ples where MOI exceeds 2.

Secondly, existing methods for estimating frequency at a
single SNP in malaria samples (e.g. [8,9] cited above)
assume perfect information of the constituent haplotypes.
For example, if a sample contains four haplotypes of type
'A' and 1 of type 'B' then these analyses assume the sample
would be correctly genotyped as 'AB'. In practice 'minor
genotypes' are often not detected and the sample would
be misclassified as type 'A'. This non-detection may be due
to the minor clone signal being swamped during PCR
amplification and/or because many genotyping protocols
state that 'minor signals' (e.g. "genotypes returning a sig-
nal less than 20% of the largest peak") be ignored; both
situations result in a 'mixed' genotype infection being
erroneously recorded as single genotype. Our programme
allows this effect to be incorporated into the analysis and
again, to the best of knowledge, is unique in this respect.

The programme is designed to be flexible and could be
used to analyse similar genetic datasets obtained from
other organisms whose samples vary in ploidy. Analysis of
samples containing multiple genotypes of other infec-
tious agents is the obvious example, but whole organisms
which vary in ploidy level could also be analysed using
our approach. However the software was specifically
designed to analyse malaria in blood samples and herein
will only be discussed within this context.

Methods

The programme was written in C for ease of portability
across PC, Macintosh and UNIX computer operating sys-
tems. A comprehensive users' manual accompanies the
programme [see Additional File 1] and gives greater
details of the underlying methodology as well as details
on how to run the programme, interpret the data, and
more general advice on decisions that have to be made is
setting up the analysis. The programme (PC version) and
manual can be freely downloaded from [1] and the basic
format of input and output is shown on Figure 2.

The programme will estimate haplotype frequencies
defined by mutations at up to three codons. This limit was
dictated by the fact that the complexity of the calculations
rises exponentially with the number of codons. For exam-
ple, analysis of haplotypes defined at 3 codons has to con-
sider 33 = 27 blood-sample phenotypes and estimate 23 =
8 haplotype frequencies, while extending the analysis to
haplotypes defined at 5 codons requires considering 35 =
243 blood-sample phenotypes and estimating 25 = 32
haplotype frequencies. A further reason for limiting hap-
lotype definitions to a maximum of three codons is

http://www.malariajournal.com/content/7/1/130

because it is rarely necessary in practice to analyse more
than three codons simultaneously. For example, muta-
tions in dhfr invariably accumulate in sequence, first at
codon 108, then 51 or 59 then at 164 so if analysing the
frequency of haplotypes containing the 164 mutation, it
can be safely assumed that all haplotypes containing the
164 mutation are also mutant at codon 108 (and proba-
bly also mutant at positions 51 at 59), so codon 108 can
be omitted from the analysis. Note also that if a haplotype
of interest is defined at separate, unlinked genes such as
dhfr + dhps (e.g. the dhfr108+51+59 with dhps437+540
'quintuple' mutant haplotype) or crt76+mdr86 haplotype,
it is unnecessary to estimate the frequency of haplotypes
defined by both loci: it is invariably sufficient to estimate
the haplotypes at each locus separately and then assume
linkage equilibrium between the loci (this is discussed in
more detail in the programme user notes).

Algorithm

The programme is initialised internally by generating ran-
dom haplotype frequency estimates and employs a 'hill
climbing' routine to improve these estimates until it
arrives at the ML estimate of haplotype frequencies. The
estimated frequency of each haplotype is then systemati-
cally varied from its ML estimate and its 95% confidence
interval (technically, a 95% support interval) is defined by
the points at which the Log likelihood falls 2 units below
the ML value [8].

The Log Likelihood appropriate for any given combina-
tion of parameter estimates is obtained as follows, using
the haplotype and phenotype coding described in Figure
2. The programme considers each possible MOI in turn
and cycles through all the combinations of the eight hap-
lotypes that can occur within that MOI. For example, if
MOI = 5, one possible combination would be 3 haplo-
types of type [1][1][1] (i.e. mutant at all codons), 1 hap-
lotypes of type [0][1][1] (i.e. wildtype at codon 1, mutant
at codons 2 and 3) and 1 haplotypes of type [1][1][0] (i.e.
mutant at codons 1 and 2, wildtype at codon 1). This
would result in a blood sample phenotypes of [1][2][1]]5]
i.e. wildtype and mutants present at codon 1, only mutant
at codon 2, wildtype and mutants present at codon 3, with
MOI of 5. The probability of getting this combination is
obtained from the multinomial distribution i.e.

5
(3 1 1J3x1y1z (1)

where x, y, z are the current estimates for the frequencies
of haplotypes [1][1][1], [0][1][1] and [1][1][O] respec-
tively and the multinomial coefficient is
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(A)

0223
0124
0221
0001
0212
0114
0221

etc

(B)

Allele[0][0][0] 0.100282 C1 0.053275 to 0.165301
Allele[0][0][1] 0.036462 C1 0.010825 to 0.083509
Allele[0][1][0] 0.000004 CI 0.000000 to 0.017582
Allele[O][1][1] 0.863227 C10.791573 to 0.918791
Allele[1][0][0] 0.000006 CI 0.000000 to 0.017584
Allele[1][0][1] 0.000009 CI 0.000000 to 0.017587
Allele[1][1][0] 0.000005 CI 0.000000 to 0.017583
Allele[1][1][1] 0.000005 CI 0.000000 to 0.017583

Figure 2

Input and output formats for MalHaploFreq. (A) Input file format. Each line corresponds to a single blood sample. The
first three indices are phenotypes at up to three codons where "0" indicates only wildtype is present, "2" mean only mutant are
present,"|" means both wildtype and mutations are present. The fourth index is the multiplicity of infection (MOI). Assuming,
for example, that dhfr is being analysed and that codons 1,2 and 3 represent positions 51, 59 and 108 respectively, then the first
sample has only wildtype at position 51, only mutants at positions 59 and 108, and its MOI = 3. The second sample has only
wildtype at position 51, has both wildtype and mutant and position 59, only mutant at position 108, and its MOl = 4. And so on
throughout the input dataset. Missing data are indicated as '99" in the indices. (B) Output format. The indices represent codon
genotypes, the first corresponding to codon I, the second to codon 2 and the third to codon 3; within these brackets, "0" indi-
cates wiltype and "|" indicates mutant. Assuming, as above, that dhfr is being analysed and that codons 1,2 and 3 represent posi-
tions 51, 59 and 108 respectively, then a haplotype mutant at only position 108 is encoded [0][0][ 1] and its estimated
frequency is 3% with 95% Cl of 1% to 8%. The 'double' mutant haplotype with mutations at positions 59 and 108 is encoded
[OI[1][1] and its estimated frequency is 86% with 95% CI of 79% to 92%. And so on.
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5 ). 5!
3,1,1 ] 3!1!1!

A running total of probabilities of observing the various
blood phenotypes is kept stored in an array prob [p] [g] [z]
[s] where the final index, s, is MOI. So in the above exam-
ple the running total kept in prob[1][2][1][5] would be
incremented by the solution of Equation 1.

This is a very flexible approach because it examines each
possible combination of clone haplotypes and works out
the resulting phenotype that would be observed in the
dataset rather than the true phenotype. So if, for example,
minority clones are missed during the genotyping this is
where the effect is incorporated. In the above example,
assume clones present at frequency less than 0.33 in the
sample are missed in the genotyping (this value is user-
defined) then the 'true' phenotype [1][2][1][5] would
actually be observed as [2][2][2][5] because the single
clones with wildtype at codons 1 and 3 are below the
detection limit of 0.33; consequently the value of
prob[2][2][5][5] (rather than [1][2][1][5]) would be
incremented by the solution of Equation 1.

Testing

The programme has been used to estimate one-, two- and
three-codon haplotypes on 16 unpublished datasets col-
lected from Papua New Guinea (PNG) and Tanzania; each
was subject to 7 separate analyses (spread over 4 loci: crt,
mdr, dhfr and dhps), making 112 analyses in total. The pro-
gramme ran smoothly, correctly identified inconsistencies
in the data (e.g. identified samples encoded as having
mixed mutant/wildtype infections in a single-clone infec-
tion) and gave sensible output. More specific and strin-
gent testing was done in three parts.

A routine was built into the programme to simulate a
dataset of the same type and size being analysed. The rou-
tine records exactly how many haplotypes of each type
enter into the simulated dataset, ensuring the 'true’ haplo-
type frequencies are known in the simulated dataset. It
then invokes the main programme to see how well it esti-
mates these 'true' simulated frequencies and whether the
'true’ values fall within the 95% confidence interval. The
user can command the programme to do this numerous
times (e.g. 1,000) to check the programme accuracy: it
prints out 'true’ frequency, estimated frequency with 95%
confidence intervals (CI) and whether the 'true' frequency
falls within the 95% CI. At the end of the process it prints
out how often the 'true' frequencies fall within the 95%
CIL. Obviously if the programme is working well this
should happen about 95% of the time, and this was
observed to be the case.

http://www.malariajournal.com/content/7/1/130

Single codon haplotype frequencies were available for 32
of the PNG/Tanzania analyses (the 16 datasets each ana-
lysed at crt76 and mdr86). These were obtained using a
different algorithm and software (a Bayesian approach
using WinBugs [9]). Both our analyses gave the same
results. Extending the analysis to 2- and 3-codon haplo-
types in MalHaploFreq were consistent with the single
codon results in two important respects. Firstly, if there
was no genetic variation at the additional codons then
only two haplotypes were identified with frequencies
identical to the one-locus results (although CI were slight
larger). Secondly, if genetic variation was present at the
additional codons then summing estimated haplotypes
into two classes, corresponding to the single-codon hap-
lotypes, gave identical frequencies.

The programme has an option to run the analyses numer-
ous times from different starting frequencies. The starting
frequencies used to initialise the program are generated at
random and updated and improved to converge on final
estimates. There is no guarantee that the programme will
always converge on the same set of estimated frequencies,
so it is important that the user can test that this is the case.

Results

Extensive analyses of simulated datasets revealed that the
95% confidence limits were correctly estimated i.e. that
the 'true' frequencies in the simulated datasets fell within
the 95% CI in more than 95% of analyses. In fact around
98% to 99% of true frequencies fell within the 95% CI,
presumably because the approximation used by maxi-
mum likelihood to calculate confidence intervals (i.e. a
drop in 2 log likelihood units) is conservative. The 95% CI
therefore err on the side of caution by being slightly too
wide.

The 112 PNG and Tanzanian analyses were each re-ana-
lysed from 1000 initial haplotype frequency estimates to
check that all 1000 re-analyses converged on the same
estimates of haplotype frequency. There was one instance
(in a three-codon analysis) where there appeared to be
two points of convergence, the analysis converging on a
single peak of lower LL in approximate 10% of the runs
while the remainder converged on a peak of higher LL in
the remaining 90% of cases. The differences in estimated
frequencies were large, one estimated haplotype fre-
quency increasing from 0.37 to 0.5 with a corresponding
fall from 0.47 to 0.33 in the other main haplotype. Such
'false peaks' are rare in ML analyses but do occur. There is
an option built into MalHaploFreq to check convergence
from a user-defined number of different starting frequen-
cies and users are strongly recommended to perform this
check.
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1 «1,2,3 for number of codons to be analysed; set to 4 if require 3 codon dhfr
genotype omitting 'impossible’ clones

9 « level of precision required for ML estimate
3 « level of precision required for CI estimation
8 «— maximum number of clones in any sample
n « (must be y or n) whether 'minority' genotypes will be missed in typing
0.3 «—the detection limit if minority genotypes are missed e.g. 0.3 means genotypes
present at frequency less than 30% will be missed...
n «—(must be y or n) whether MOI is known for each sample
1 « distribution type to be used if MOI is unknown
y «<— (must be y or n) whether to check hillclimbing always converges on the same
ML 'peak’
n <« (must be y or n) whether to check programme accuracy by simulating datasets
and checking 95% of estimates fall within the 95% CI
H <« (must be H or L in uppercase) If a dataset is simulated should it be for a High or
Low transmission setting?
100 <« required size of dataset for simulations to check programme accuracy
500 <« number of replicates used to check hillclimbing or programme accuracy
0 <« aredundant parameter, set to zero. [This allows later programme versions to
acquire additional information without making previous input files
incompatible]
0 <« aredundant parameter, set to zero.
0 <« aredundant parameter, set to zero.
0 <« aredundant parameter, set to zero
0 <« aredundant parameter, set to zero.
Figure 3
Example parameter file for MalHaploFreq. Parameters required to run MalHaploFreq are read from an external file
'MHFparameters.txt' in the following format. Descriptions for the parameter values are provided to the right of the arrow and

are self-explanatory. The parameter values are to the left of the arrow; for example, the first parameter instructs MalHaploF-
req to investigate haplotypes defined at only a single codon.
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Discussion

The programme appears to perform well in estimating
haplotype frequencies from both field and simulated
datasets. It reads input parameters from a separate file
rather than from a graphical interface and an example of
an input file is provided on Figure 3. The advantage of this
strategy is that analyses can be automated into batch files.
For example part of a DOS batch file may read as follows:

del MHFdatafile.txt

del MHFparameters.txt

copy VillageAdatafile.txt MHFdatafile.txt

copy VillageAparameters.txt MHFparameters. txt
MalHaploFreq.exe > VillageAoutput.txt

The first two lines delete the default data and input
parameter files. The next two lines copy the data for Vil-
lage A into the default MalHaploFreq datafile (see Figure
2) and copy the required parameters for analysing Village
A into the default parameter file (Figure 3). The final line
runs MalHaploFreq.exe and dumps the screen output
(using the '>' command) into an appropriately-named
output file for future reference. A typical project will
require many separate ML analyses, for example, many
villages analysed at several loci with 1, 2, or 3 codons
being analysed. Each analysis can be included in an auto-
mated analysis simply by setting up the data and parame-
ter files required for each analysis and copying, pasting
and editing this blocks of 5 lines into a larger DOS batch
file.

This automation has two large advantages. Firstly, the
analyses can be initially run rapidly with low levels of pre-
cision primarily to check the analyses proceed correctly
and that any inconsistencies in the data identified by the
program can be corrected. Contemporary methodology
(such as genotyping chips) often produces large amounts
of data on different loci and inconsistencies identified in
one analysis can alter results obtained in the other; a com-
mon experience was to find that MOI was originally
encoded as 1, indicating that a single clone was present,
but later analysis of other loci revealed some codons to be
mixed wildtype+mutant indicating that at least 2 clones
must be present. The datasets could then be checked and
revised if required (so that MOI > 1) and the automated
analysis easily repeated. The second advantage comes after
the datasets are cleaned and ready for the definitive anal-
yses. High levels of precision in frequency estimates and
CI require considerable computer time, and there are
associated computer-intensive checks to be made, partic-
ularly checking that the programme convergences on the

http://www.malariajournal.com/content/7/1/130

same solution from numerous starting parameter values
(1000 is recommended). The most convenient way of
running these analyses is to download them onto a spare
computer (typically a laptop) and leave an automated
analysis ruining over the required period (for example, it
required three weeks to perform and check the 112 PNG
and Tanzanian analyses).

Conclusion

The use of molecular markers to track the spread of drug
resistance and to guide policy requires that the frequency
of mutations and haplotypes be calculated rather than
their prevalence. An appropriate method to estimate their
frequencies from blood sample data is by Maximum Like-
lihood techniques. This paper describes a flexible, freely
downloadable computer program which implements this
approach.
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Additional material

Additional File 1

User manual for MalHaploFreq.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-7-130-S1.pdf]

Additional File 2

executable programme compiled for use on DOS or windows

Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
2875-7-130-S2.exe]
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