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Abstract

Background: VAR2CSA is the main candidate for a vaccine against pregnancy-associated malaria,
but vaccine development is complicated by the large size and complex disulfide bonding pattern of
the protein. Recent X-ray crystallographic information suggests that domain boundaries of
VAR2CSA Duffy binding-like (DBL) domains may be larger than previously predicted and include
two additional cysteine residues. This study investigated whether longer constructs would improve
VAR2CSA recombinant protein secretion from Pichia pastoris and if domain boundaries were
applicable across different VAR2CSA alleles.

Methods: VAR2CSA sequences were bioinformatically analysed to identify the predicted Cl | and
C12 cysteine residues at the C-termini of DBL domains and revised N- and C-termimal domain
boundaries were predicted in VAR2CSA. Multiple construct boundaries were systematically
evaluated for protein secretion in P. pastoris and secreted proteins were tested as immunogens.

Results: From a total of 42 different VAR2CSA constructs, |5 proteins (36%) were secreted.
Longer construct boundaries, including the predicted Cl| and CI2 cysteine residues, generally
improved expression of poorly or non-secreted domains and permitted expression of all six
VAR2CSA DBL domains. However, protein secretion was still highly empiric and affected by subtle
differences in domain boundaries and allelic variation between VAR2CSA sequences. Eleven of the
secreted proteins were used to immunize rabbits. Antibodies reacted with CSA-binding infected
erythrocytes, indicating that P. pastoris recombinant proteins possessed native protein epitopes.

Conclusion: These findings strengthen emerging data for a revision of DBL domain boundaries in
var-encoded proteins and may facilitate pregnancy malaria vaccine development.
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Background

Pregnancy-associated malaria (PAM) is an important
cause of maternal anaemia, stillbirth, and delivery of low
birth weight children in malaria endemic regions [1].
PAM is characterized by the selective accumulation of
Plasmodium falciparum-infected erythrocytes (IEs) in the
placental microvasculature mediated by chondroitin sul-
phate A (CSA) [2]. VAR2CSA is an unusually conserved
member of the P. falciparum erythrocyte membrane pro-
tein 1 (PfEMP1) family, which is transcriptionally upreg-
ulated in CSA-binding and placental isolates and binds
CSA [3-10]. Antibodies to VAR2CSA are developed in a
gender specific manner [11,12] and correlate with protec-
tion from PAM disease [7] making it the most promising
vaccine candidate against placenta malaria, but vaccine
development is complicated by protein size (~350 kDa)
and polymorphism [13].

VAR2CSA contains six different Duffy-binding-like (DBL)
domains and additional interdomain regions. DBL are
adhesion modules found in both parasite ligands used for
erythrocyte invasion and PfEMP1 proteins utilized by
infected erythrocytes to sequester from blood circulation
and avoid spleen-dependent killing mechanisms [14,15].
The DBL structure has been solved from three different
proteins, the erythrocyte invasion ligands, Plasmodium
knowlesi a. and EBA-175, as well as the VAR2CSA DBL3
domain [5,8,16,17]. DBL domains have highly similar
protein folds, despite limited sequence similarity, and are
characterized by conserved disulfide bonds. Although sig-
nificant progress has been made in heterologous produc-
tion of DBL recombinant proteins [18-24], proteins
containing multiple disulfide bonds are generally consid-
ered much more challenging to produce than cytoplasmic
proteins posing challenges to pregnancy malaria vaccine
development. Furthermore, understanding of optimal
domain boundaries for VAR2CSA immunogens remains
incomplete.

Because of its large size it has not been technically possi-
ble to express the complete VAR2CSA extracellular region,
and instead vaccine development has initially focused on
expressing the individual DBL domains. There are numer-
ous standardized systems for protein expression which
offer a variety of benefits and disadvantages, such as
Escherichia coli, baculovirus infected insect cells, and the
methyltrophic yeast Pichia pastoris. While general protein
expression is often faster in E. coli than P. pastoris, bacteria
lack the machinery to produce properly folded proteins
where the tertiary structure is highly dependent on
disulfide bonds. E. coli production of disulfide-rich pro-
teins frequently require multiple post-production steps,
which must be empirically determined and lower effective
protein yield [25]. The major advantage of P. pastoris or
baculovirus infected insect cells over E. coli is that the yeast
or insect cell secretory systems provide the necessary redox
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environment and co-factors to enhance the correct fold-
ing, solubility, and disulfide bonds present in many vac-
cine candidates. All three expression systems are being
investigated for VAR2CSA vaccine development
[18,19,21,26], but only a subset of the DBL domains have
been analysed in E. coli and P. pastoris because of difficulty
in producing some recombinant proteins.

Recently, the crystal structure has been solved for the
VAR2CSA DBL3 domain [5,8]. This structure indicates
that PfEMP1-type DBL domains may be longer than pre-
viously appreciated and contain three additional cysteine
residues, one at the N-terminus and two at the C-termi-
nus, which are involved in disulfide bonds. As the initial
and final two cysteine residues were missing in previous
recombinant proteins produced in P. pastoris [18] and E.
coli [21], it was possible that domain truncation may
affect protein conformation, stability, surface antigenicity,
and/or the ability to secrete the protein from P. pastoris. In
this study, the new structural insights into DBL disulfide
structure [5,8,16,17] were used to predict disulfide bonds
in VAR2CSA leading to revised DBL domain boundaries.
Based on the new domain boundaries, multiple VAR2CSA
constructs were evaluated in P. pastoris to investigate the
role of additional cysteine residues in recombinant pro-
tein secretion and to determine whether construct bound-
aries that worked well with one VAR2CSA sequence were
applicable across different VAR2CSA alleles.

Methods

Design of DBL synthetic genes

Synthetic genes were constructed by (Genscript Corpora-
tion, Piscatway, NJ, USA) and codon optimized for P. pas-
toris expression. All N-glycosylation sites were removed by
converting asparagine to glutamine and DNA sequence
carrying more than five adenine nucleotides in a row was
mutated to avoid any premature termination without
changing coding features.

Recombinant protein production in P. pastoris

VAR2CSA constructs with a His,-tag on the C-terminus
were amplified from synthetic genes and cloned into the
pPICIK vector adjacent to an N-terminal a-factor secre-
tion signal (Invitrogen, USA). Constructs were digested
with Sacl and electroporated into P. pastoris strain, GS115.
The transformation resulted in DNA inserted at the AOX1
locus generating a His+ Mut+ phenotype. To screen for
protein production, 10-20 yeast clones per construct were
grown overnight in 5ml YPD (1% yeast extract, 2% tryp-
tone, 20% glucose) at 30°C and then 0.2 ml volume of
cells was transferred to 5 ml buffered complex medium
(BM) (1% yeast extract, 2% peptone, 1% yeast nitrogen
base, 1 M potassium phosphate buffer pH 6.0) plus 2%
glycerol (BMG) and grown for an additional 24 h at 30°C
with shaking at 250 rpm. For protein induction, cultures
were shifted to BM plus 0.5% methanol (BMM) and

Page 2 of 11

(page number not for citation purposes)



Malaria Journal 2009, 8:143

grown for two to five days at 20°C with shaking at 250
rpm. Pichia pastoris recombinant proteins were analysed in
4-20% SDS-PAGE gels under reduced or non-reduced
conditions (Invitrogen, USA). Gels were stained with Gel
Code Blue Reagent or transferred to a nitrocellulose mem-
brane and detected by Western Blot using anti-His tag
antibodies (Invitrogen, USA). For scaled-up production,
positive secreting P. pastoris clones were grown in a 2 L
shaker flask using the same methodology as above but
with 0.9 L YPD, 0.3 L BMG and 0.3 L BMM respectively
and a methanol concentration of 0.5%, 1% or 3%. HIS-
tagged recombinant proteins were harvested 48 h or 120
h post-induction using nickel resin or cobalt-nitrilotriace-
tic acid-agarose (Sigma, USA) on an Econo-Pac chroma-
tography column (Biorad, USA). Proteins were eluted in
200 mM imidazole following manufacturer's instructions
and fractions containing the protein were detected by
Western Blot, pooled together and dialyzed via buffer
exchange with 1x PBS. Protein concentrations were deter-
mined by Bradford Assay (Biorad, 500-0205, USA). The
identity of each recombinant protein was confirmed by
mass spectrometry analyses. Briefly, the protein sample
was digested with trypsin, and the peptides were analysed
by nano-LC-MS/MS using Sequest algorithm. Purified
proteins were stored at -80°C in 1x PBS prior to immuni-
zation.

Immunization and serological analysis of VAR2CSA
recombinant proteins

Immunizations were performed at R&R Rabbitry (Wash-
ington, USA) according to animal immunization guide-
lines. In brief, rabbits received 25-50 pg recombinant
protein in complete Freund's adjuvant for first immuniza-
tion and were boosted four times with the same amount
of recombinant protein in incomplete Freund's adjuvant.
Preimmune and immune rabbit sera were analysed by
flow cytometry on the homologous CSA-binding infected
erythrocytes or as a negative control sera were screened on
a non-CSA binding parasite line called A4ultra, which
expresses a different PFEMP1 variant from VAR2CSA. The
Adultra parasite line expresses a PfEMP1 protein called
Advar. Expression of the Advar PfEMP1 variant was main-
tained in A4ultra-infected erythrocytes by periodic selec-
tion with mAb BC6 that is specific to the Advar PfEMP1
protein [27]. The various CSA-binding lines were main-
tained by CSA-selection in vitro. Prior to flow cytometry,
var2csa transcription was validated by qRT-PCR using uni-
versal var2csa primers and compared to a housekeeping
control gene, as described [18]. For flow cytometry,
mature-stage IEs were washed in PBS and resuspended in
a 0.1 ml volume of PBS-1% bovine serum albumin con-
taining a 1/25 dilution of rabbit sera preadsorbed on
uninfected erythrocytes. Bound antibodies were detected
with Alexa Fluor 488-conjugated goat anti-rabbit IgG.
Infected erythrocytes were detected using ethidium bro-
mide. Samples were analysed on an LSRII (BD, USA).
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Results and discussion

Reevaluation of domain boundaries in VAR2CSA

Based on initial sequence criteria [28,29], DBL domains in
PfEMP1 proteins were predicted to begin at a cysteine res-
idue (C1) and end shortly after the tenth cysteine residue
(C10) ata (W/Y)X,(Y/F) motif (Figure 1). However, these
domain boundaries may need to be revised because DBL
domains in erythrocyte invasion ligands have two or three
additional cysteine residues after C10, and these were
found to make conserved disulfide bounds with internal
cysteine residues when the DBL structures were solved
from the EBA175 F1 and F2 DBL domains and from the P.
knowlesi o protein (Figure 2) [16,17]. Furthermore, the
CIDR1 structure has been solved from one PfEMP1 pro-
tein and this led to the prediction that C11 and C12 resi-
dues are present in PFEMP1 DBL1 domains, but may have
been missed due to lack of sequence homology in the
region between C10-C12 (Figure 1) [30]. This prediction
has been confirmed for the VAR2CSA DBL3 domain [5,8]
demonstrating that the C-terminal disulfide bonding pat-
tern has been conserved in diverse DBL domains (Figure
2). In addition, the VAR2CSA DBL3 domain had an addi-
tional disulfide bond at the N-terminus, which was not
present in erythrocyte invasion ligands, between a
cysteine residue at the minus one position C(-1) and an
additional cysteine residue between C5 and C6, referred
to as C5a (Figure 1). Therefore, it may be necessary to
extend the N- and C-terminal boundaries in VAR2CSA
DBL domains.

To predict the disulfide bonding pattern of the VAR2CSA
DBL domains, sequence alignments of the six VAR2CSA
DBL domains were compared to the three solved DBL
domains from erythrocyte invasion ligands (Figure 1).
DBL domains from erythrocyte invasion ligands have
twelve to fourteen conserved cysteine residues (Figure 2).
Sequence analysis indicates that many of these same
cysteine residues are present in VAR2CSA DBL domains
(Figure 1), but that each VAR2CSA domain will have
slightly distinct disulfide bonding pattern because of gain
or loss of cysteine residues. For instance, the C5a residue
has the motif WW X, W X, C. This motif is present in four
of the six VAR2CSA DBL domains, plus the DBL2 domain
had a cysteine residue that came 13 amino acids after the
tryptophan residue (Figure 1). This suggests that the
VAR2CSA DBL1, DBL5, DBL6, and possibly DBL2
domains may make a C(-1) to C5a disulfide bond, similar
to VAR2CSA DBL3 (Figure 2) and that the N-terminal
boundary of these domains may need to be extended
upstream by at least one cysteine residue to account for
this disulfide bond (grey bars in Figure 2). Consistent with
this idea, the DBL4 domain does not contain a C5a resi-
due (Figure 1) and the region upstream of DBL4 does not
contain a free cysteine residue for disulfide bonding (Fig-
ure 2). Based on the IT4 VAR2CSA sequence (accession
number AAQ73926) and counting amino acids from the
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Figure |

DBL sequence alignment. The six DBL domains in VAR2CSA are compared to erythrocyte binding proteins. Cysteine res-
idues are highlighted in blue shading and numbered - to |12 based on conservation between erythrocyte binding proteins. The
end of the sequence homology between PfEMPI and erythrocyte binding-type DBL domains is indicated with an arrowhead
and grey shading of the final F/Y residue. The SI, S2 and S3 subdomains boundaries are indicated by arrows. The start and end
residues in the original VAR2CSA DBL constructs are indicated by grey shading. There is a 26 amino acid spacer before the
CXC motif in the DBL2 domain. Accession numbers are IT4-VAR2CSA (AAQ73926), EBA-175 (MAL7PI.176), and P. knowlesi

o (M90466).

beginning of the protein, this would imply that DBL1
begins at residue C52, DBL2 at C527 or C544, DBLS5 at
C2001, and DBL6 at C2279 (Figure 2). All of these
cysteine residues were 100% conserved in a global-wide
comparison of VAR2CSA sequences [13], except for C544,
which is why the 100% conserved C527 residue is an
alternate potential beginning of the DBL2 domain. Of
interest, the C(-1) and C5a residues in DBL3 are not 100%
conserved in all VAR2CSA sequences although this
disulfide bond was present in the 1T4 VAR2CSA DBL3
crystal structure [5]. This may mean that C5a is sometimes
a free cysteine since the next upstream cysteine residue
(C1202) is predicted to participate in a CIDR-like fold
[30,31]. As most PfEMP1-type DBL domains have a WW
X, W X, C [28] this may imply that the C(-1) to C5a
disulfide bond is under selection in PfEMP1 proteins and
that N-terminal domain boundaries will need to be
shifted upstream by one cysteine residue.

At the C-terminus, the final two cysteine residues in DBL
domains generally have the motif CX,_,C [5,8,16,17].

However, in the four solved DBL structures the C11 and
C12 cysteines are located between 43-55 amino acids
downstream of the previous DBL domain boundary pre-
dicted by sequence homology in PfEMP1 proteins (Figure
1), and have been predicted to be up to 80-100 residues
downstream for the PfEMP1 DBL1 domain [30]. Inspec-
tion of a VAR2CSA sequence alignment indicates that five
of the six VAR2CSA DBL domains have a CX;_,C motif
located between 28-80 amino acids downstream of the
previous domain boundaries and DBL2 domain had one
124 residues away (Figure 1, grey extensions in Figure 2).
In addition, the DBL6 domain had two potential CX;_,C
motifs located near each other (Figure 2). All of the CX, _
,C motifs were 100% conserved or missing from at most
one parasite isolate in a global sampling of VAR2CSA
sequences [13] suggesting they may be under structural or
functional selection. While DBL2 is potentially longer
than other VAR2CSA domains, the extended DBL2
boundary is supported by homology modeling predic-
tions that the ID2 region contains a CIDR-like fold
between residues 1025 to 1212 [30,31]. Thus, the first
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Figure 2

Reevaluation of VAR2CSA domain boundaries. A) The disulfide bond structure in four solved DBL domains [5,8,16,17]
is shown above the dashed line. An unpaired Cl0a cysteine residue in EBA175 Fl is italicized. Below the dashed line is the pre-
dicted disulfide bonds in VAR2CSA domains. Black cysteines are invariant, grey cysteines were present in more than 50% of
sequences from a comparison of 19 var2csa sequences [13]. The location of S1, S2, and S3 subdomains, including anti-parallel
a-helical elements in the S3 subdomain are shown. B) VAR2CSA protein schematic showing DBL domains and interdomain
(ID) regions. The original DBL domain boundaries are shown in black and numbered according to IT4-VAR2CSA (AAQ73926).
Revised domain boundaries including predicted Cl | and CI2 cysteines are shown in grey. The DBL6 domain has two CX,_,C
motifs, either of which may mark the domain end. Cysteine residues are numbered from the protein start and colored black or
grey as described above. The three unnumbered cysteine residues are not present in the IT4 VAR2CSA sequence, but were
present in more than 50% of VAR2CSA sequences. The location of disulfide bonds in the solved DBL3 domain [5,8] and the

predicted CIDR-like domain [30,31] are indicated.

part of ID2 may fold as part of DBL2 and second part
assume a CIDR-like fold. Based on amino acid numbering
in the IT4 VAR2CSA sequence this implies the DBL1 ends
after C427, DBL2 after C966, DBL3 after C1576, DBL4
after C1909, DBLS5 after C2277, and DBL6 after C2599 or
C2628, although the second CX;_,C motif is more likely.

Of the C-terminus predictions, the most difficult domains
to unambiguously assign C11 and C12 cysteine residues

were the DBL1, DBL2, and DBL4 because these were all
followed by larger interdomain regions with multiple
cysteine residues (Figure 2). However, the fact that the
C11 and C12 disulfide bonding partner are conserved in
every domain except DBL5 also supports extending
domain boundaries. If C8-C12 and C10-C11 disulfide
bonds were no longer present, then it might have been
expected that "pairwise loss" may have occurred, as hap-
pened to the C2-C3 bond in DBL2, DBL4, DBL5 and
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DBL6 (Figure 2). Furthermore, at least five of the
VAR2CSA domains appear to have a C6a residue that may
make a C6a-C10a disulfide bond similar to VAR2CSA-
DBL3 and EBAF2 (Figure 2) [8,17]. The remaining
domain, DBLI, has a cysteine residue between C5 and C6,
but it is not in the typical C6a position (Figure 1), so it is
more difficult to predict a disulfide bond interaction.
Taken together, the conservation of CX,_,C motifs and

Table I: Expression of PFEMP| domains in P. pastoris

http://www.malariajournal.com/content/8/1/143

retention of C6a, C8, and C10 cysteines residues support
that VAR2CSA DBL domains have the classic subdomain
3 disulfide bonding pattern (Figure 2). Although only two
disulfide bonds (C1-C4 and C7-C9) are predicted to be
present in all of the VAR2CSA domains (Figure 2), this
analysis suggests that the N-terminal and C-terminal
boundaries of the DBL domains need to be extended in
VAR2CSA. After making these adjustments, there are still

Gene Domain Parasite strain construct Mw! Protein Secreted IE surface reactivity?
var2CSA DBLI IT/FCR3 3 H58 — S383 38.9 ++ yes
var2CSA DBLI 3D7 H58 — 1433 45.2 ++ yes
var2CSA DBLI 7G8 H57-1437 46.3 ++ yes
var2CSA DBLI Dd2 H57-1433 45.6 ++ yes
var2CSA ID1-DBL2 IT/FCR3 V490 — D883 44.5 + nt
var2CSA DBL2 IT/FCR3 3 K543 — K838 36.1 - nt
var2CSA DBL2 IT/FCR3 D517 — D883 41.6 + nt
var2CSA DBL2 IT/FCR3 D517 - L1024 58.4 - nt
var2CSA DBL2 IT/FCR3 G550 - L1024 54.6 - nt
var2CSA DBL2 IT/FCR3 D545 - L1024 55.2 - nt
var2CSA DBL2-ID2 IT/FCR3 D517 - GI1229 81.6 - nt
var2CSA ID1-DBL2-ID2 IT/FCR3 V490 - G1229 84.4 - nt
var2CSA D2 IT/FCR3 V878 — K1201 384 - nt
var2CSA D2 IT/FCR3 $843 — G1229 45.2 - nt
var2CSA ID2 IT/FCR3 L1024 - G 1229 24.9 - nt
var2CSA ID2-DBL3 IT/FCR3 N 859 — C 1576 83.0 - nt
var2CSA DBL3 IT/FCR3 3 L1221 —EI541 373 negligible yes
var2CSA DBL3 IT/FCR3 Cl1202 - CI1576 438 + yes
var2CSA DBL3 3D7 Cl224-YI1510 332 - nt
var2CSA DBL3 Dd2 Cl219-Y1529 44.2 - nt
var2CSA DBL3 Pc49 Cl1227 - Y1540 438 - nt
var2CSA DBL3 7G8 CI1199 — EI587 45.0 ++ nt
var2CSA DBL4 IT/FCR3 3 S1594 - V1888 347 ++ no*
var2CSA DBL4-DBL5 IT/FCR3 G1588 — E2288 85.4 - nt
var2CSA DBL4-DBL5 IT/FCR3 S1594 — E2288 82.5 - nt
var2CSA DBL4-1D4-DBL5 IT/FCR3 S1594 — R2271 66.8 - nt
var2CSA DBL4-DBL5 3D7 S1576 — T2291 85.6 - nt
var2CSA DBL4-DBL5 3D7 G1550 — T2291 88.3 - nt
var2CSA DBL4-DBL5 7G8 S1604 - T2318 89.2 - nt
var2CSA DBL4-DBL5 7G8 G1578 - T2318 88.3 + nt
var2CSA DBL5 IT/FCR3 3 L2003 - L2270 31.7 - nt
var2CSA DBL5 IT/FCR3 N1893 — N2290 46.6 - nt
var2CSA DBL5 IT/FCR3 K1984 — E2288 36.6 + yes
var2CSA DBL5 IT/FCR3 E1971 — N2290 37.8 - nt
var2CSA DBL5 7G8 Q2000 - T2318 38.8 ++ yes
var2CSA DBL5 3D7 L1997 — A2269 322 - nt
var2CSA DBL5 3D7 K1978 — T2291 379 - nt
var2CSA DBL5 3D7 L1997 — T2291 358 - nt
var2CSA DBL5 3D7 EI1964 — T2291 39.6 - nt
var2CSA DBL5 3D7 K1923 - T2291 44.6 - nt
var2CSA DBL5 3D7 N1888 — T2291 48.3 + yes
var2CSA DBL6 IT/FCR3 3 E2322 — E2590 32.7 ++ yes

P. pastoris clones were grown overnight at 0.9 L to build biomass and protein induced at 0.3 L scale. Yields following a single nickel chromatography
step; — (not detected), + (< | mg/L), ++ (I mg/L). nt, not tested.
I' Molecular weight predicted by Vector NTI software.
2 Rabbit antibodies were screened against CSA-binding infected erythrocytes and negative control Adultra-infected erythrocytes expressing a non-
VAR2CSA protein

3 Data previously published by [18].

4 Antibody reactivity could be revealed by pre-treating IEs with chymotrypsin or trypsin
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a few remaining cysteine residues in the ID1 and ID4
regions (Figure 2). It remains to be determined whether
these regions fold independently or as part of adjacent
DBL domains.

Evaluation of longer VAR2CSA construct boundaries

Previously [18], four of the six VAR2CSA DBL domains
have been secreted from P. pastoris, but these constructs
generally began ~1-9 amino acids upstream of C1 and
ended ~15-35 residues after the (W/Y)X,(Y/F) motif (Fig-
ure 1), and therefore would be truncated compared to the
new domain boundaries. The inability to secrete some
VAR2CSA domains in P. pastoris may be related to protein
mis-folding and ER quality control mechanisms since

http://www.malariajournal.com/content/8/1/143

truncated domains would possess free thiols that do not
have their normal bridging partner. To investigate
whether longer construct boundaries would improve
recombinant protein expression, new VAR2CSA con-
structs were investigated starting with the DBL2, DBL3,
and DBL5 domains that were poorly or not secreted from
P. pastoris [18]. Initially, DBL3 was chosen because the
structure was solved and disulfide bonding pattern con-
firmed [5,8]. In the original DBL3 construct L1221-
E1541, the final three cysteine residues (C10a, C11, and
C12) were missing (Figures 2 and 3). This protein was
poorly secreted, but expression could be improved by co-
transforming with a plasmid overexpressing the protein
disulfide isomerase and biofermentation [18]. The same

ID1 DBL2

67 347 547 843 1230 1527 1595 1864 2010 2270 2331 2570
H58 me——— 383 S$1594 m—— \/1838
K543 — K838 G1588 ** E2288
D517 m———— D333 51594 ** E2288
D517 L1024 51594 R2271
G550 X 11024 12003 12270
D517 G1229 K1984 —— E2288
%
V490 D883 K1893 N2290
V490 G1229 E1971 ** N2290
V87 K1201 E2322 m—
5843 ——————————————— G1229 E2590
L1024 G1229
C1005 G1229
*%k
N859 C1576
L1221 e E£1541
*%
C1202 m——— (1576
*%*
H58 m— 433 C1224 Y1510 L1997 A2269
*% *k
H57 e— 437 C1219 Y1529 K1978 T2291
*% **
H58 E——— 33 Cc1227 Y1540 L1997 T2291
*%k *k
C1199 s 1587 E1964 T2291
K1923 ** 12201

Figure 3

* %
N1888 m— 72291

Q2000 — 72318

G1550 12291
S1576 ** 12201
**
G1578 T2318
*k
51604 12318

VAR2CSA construct boundaries. VAR2CSA protein schematic showing original domain boundaries in black and revised

domain boundaries in grey. The start and stop positions for each construct are shown; IT4-var2csa allele in black, 3D7-var2csa
in green, 7G8-var2csa in blue, Dd2-var2csa in red and Pc49-var2csa in orange. Thick bars indicates the recombinant protein was
secreted by P. pastoris, thin bars means it was not. The presence of predicted Cl | and CI2 cysteine residues at the C-terminus

of constructs is indicated by two asterisks.
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VAR2CSA

VAR22
IT4 3D7 7G8 Dd2 1T4 IT4 IT4 IT4 7G8 IT4 3D7 7G8 T4 T4
D1 D1 D1 D1 ID1+D2 D2 D3 D4 D4+D5 D5 D5 D5 D6 D1

(@)
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64 —

51 = - »
90— i W . -._*- - - -
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_ - = -
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Figure 4

VAR2CSA recombinant proteins secreted by P. pas-
toris. | ug of purified P. pastoris recombinant proteins were
analysed in 4-20% SDS-PAGE gels under non-reduced (A, B)
or reduced (C) conditions. Proteins were stained with Gel
Code Blue Reagent in (A) and (C) or were detected by
Western blot with an anti-His Tag antibody (B).

truncated domain boundaries also did not work for DBL3
domains from three other VAR2CSA alleles (Figure 3).
However, IT4-DBL3 protein secretion was improved by
including the complete S3 subdomain owHo(C1202-
C1576) and a full-length 7G8-DBL3 recombinant protein
(C1199-E1587) was also highly expressed (Table 1).
Under non-reducing conditions, the majority of DBL3
recombinant protein appeared to run as a monomer,
although smaller amounts of higher, dimeric-sized pro-
tein forms were visible by Western (Figure 4). Therefore,
full-length DBL3 constructs were better secreted than
truncated domains, and the equivalent construct bounda-
ries worked for both IT4 and 7G8.

Secretion of IT4-DBL2 could also be improved by extend-
ing construct boundaries by 2 cysteine residues (D517~
D833) (Figure 3), but these two additional cysteines were
not part of a CX1-2C motif (Figure 1) and longer con-
structs including the predicted CX1-2C motif (D517-
L1024 and G550-L1024) were not secreted. Because the
interdomain region following DBL2 has a number of
cysteine residues and it is not proven where the CIDR-like
fold begins, we investigated several different construct
boundaries to improve DBL2 production. Altogether,
seven different DBL2 constructs were tested, but only two
were weakly secreted (Figures 3, Table 1). Four different

http://www.malariajournal.com/content/8/1/143

versions of the ID2 region were also examined but none
of these were secreted (Figure 3, Table 1). Therefore, two
additional cysteine residues at the C-terminus improved
IT4-DBL2 secretion, but constructs containing the entire
predicted S3 subdomain were not secreted.

For DBLS5, the original IT4-DBL5 construct L.2003-12270
was not secreted [18], but a longer K1984-E2288 con-
struct that included predicted C11 and C12 cysteines was
secreted (Figure 3). In contrast to IT-DBL5, a shorter 1T4-
DBL4 recombinant protein lacking the predicted full-
length domain was highly secreted [18]. To investigate
whether a highly-expressed domain could 'rescue' expres-
sion of a poorly secreted domain, several different T4
DBL4-DBL5 tandem domain construct boundaries were
tested, but none were secreted even though they included
the longer C-terminus that improved DBLS5 secretion (Fig-
ure 3). In contrast, one of two different DBL4-DBL5 tan-
dems from the 7G8 VAR2CSA allele was weakly secreted,
but neither 3D7 DBL4-DBL5 tandem was secreted. The
7G8 DBL4-DBL5 protein was partially trunctated

(Figure 4).

As longer construct boundaries allowed IT-DBL5 to be
secreted, the equivalent boundaries were investigated in
two other VAR2CSA alleles. Similar to IT4-DBL5, the pre-
dicted full-length 7G8-DBL5 recombinant protein was
highly secreted (1.3 mg/L) (Table 1). However, the same
C-terminal boundaries did not work for 3D7-DBL5 unless
the N-terminal boundary was also extended (Figure 3,
Table 1). A total of five different N-terminal boundaries
were tested for 3D7-DBL5, but only N1888-T2291 was
secreted (Figure 3). Interestingly, the secreted 3D7-DBL5
was smaller than expected (Figure 4). Edman degradation
analysis indicated that the majority of 3D7-DBL5 recom-
binant protein was cleaved at position 95 (D1983),
accounting for the decrease in molecular weight. After
cleavage, the truncated 3D7-DBLS5 protein had very simi-
lar boundaries to IT4-DBL5 and 7G8-DBL5 and was only
slightly larger than one of the 3D7-DBL5 constructs that
was not secreted. These findings suggest that longer con-
struct boundaries could improve IT4-DBL5 production,
but that P. pastoris secretion was sensitive to N-terminal
domain boundaries and partially sequence context
dependent.

Since longer C-terminal domain boundaries improved the
yield of three poorly or non-secreted VAR2CSA domains,
longer construct boundaries were also examined for the
DBL1 domain, which was highly secreted even though it
lacked the predicted C11 and C12 cysteine residues [18].
Predicted full-length versions of VAR2CSA DBL1 domain
from the 3D7, 7G8, and Dd2 parasite strains were highly
secreted by P. pastoris with yields exceeding 1 mg/L (Table
1). Under non-reducing conditions, the majority of
recombinant protein in each case appeared to run as a
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Table 2: Effect of methanol concentration and induction time on recombinant protein yield

Methanol concentration and induction time

0.50% 1%
Construct 48 h 120 h 120 h
var2csa 7G8 DBL5 Q2000-T2318 1.2 mg/L 0.9 mg/L Nt
var2csa [T DBL2-ID2 D517-G1229 0 0 0
var2csa |IT DBL3 L1221-E1541 0.1 mg/L 0.375 mg/L | mg/L
var2csa 3D7 DBL5 N1888-T2291 0.21 mg/L 0.46 mg/L Nt
var2csa 7G8 DBL4-DBL5 G1578-2318 0 0.1 mg/L Nt
var22 IT DBL3 G1180-N1488 0 nt 0.75 mg/L
var|8 IT DBL3 N1247-D1545 0 nt 0.125 mg/L

P. pastoris clones were grown overnight at 0.9 L to build biomass and protein was induced at 0.3 L scale at different durations and methanol

concentrations. nt, not tested.

monomer, although there was some higher, dimeric-sized
protein forms that were generally lost after reduction (Fig-
ure 4). Taken together, these results indicate that C11 and
C12 residues are not essential for recombinant protein
secretion in P. pastoris, but that extending the N- and C-
terminus to include extra cysteines residues believed to be
important in domain folding improved production of
several poorly or non-secreted VAR2CSA DBL domains
and also worked for a highly secreted domain.

Pichia pastoris culture adjustment to improve yield

In addition to modifying domain boundaries, protein
yield may also be improved by optimizing culture condi-
tions during shake flask fermentation. Protein yield has
been found to be affected by duration of methanol induc-
tion (2-5 days) and methanol concentration between
0.5% and 5.0% [32]. Whereas there are trade-offs with
longer protein inductions because unstable proteins may
be more susceptible to degradation and higher alcohol
concentrations can kill P. pastoris, optimized DBL con-
struct boundaries may enhance recombinant protein sta-
bility and permit longer inductions. For these studies,
transgene expression was induced for different lengths of
time and methanol concentrations. Under standard con-
ditions, 48 h of induction with 0.5% methanol, 7G8-
DBL5 protein was highly expressed (>1 mg/L) with no
improvement after longer periods of induction (Table 2).
However, for several poorly expressed proteins, IT4-DBL3,
3D7-DBL5, and 7G8 DBL4-DBLS5, longer inductions sig-
nificantly improved protein yield (Table 2). Although
longer inductions were not able to rescue secretion of all
VAR2CSA constructs, similar improvements were also
observed for two DBL domains from non-VAR2CSA pro-
teins (Table 2). Conversely, higher concentrations of
methanol (3%) did not improve protein production.
Overall, optimal culture condition for VAR2CSA protein
secretion seemed to be 120 h at a methanol concentration
of 0.5-1%.

Pichia pastoris recombinant proteins express native
protein epitopes

To test whether secreted proteins express native protein
epitopes, rabbits were immunized with eleven of the fif-
teen purified VAR2CSA recombinant proteins (Figure 4).
For every protein except [T4-DBL4, immune sera reacted
with the surface of CSA-binding infected erythrocytes by
flow cytometry, but not with a negative control non-CSA-
binding infected erythrocyte (Table 1), indicating that P.
pastoris expressed VAR2CSA recombinant proteins pos-
sessed native epitopes. In addition, four of these recom-
binant proteins were previously shown to react in a
gender-specific manner with malaria endemic sera [18].
These findings suggest that recombinant DBL domains
secreted from P. pastoris can be used for studying immune
acquisition in pregnant women and vaccine development.

Conclusion

VAR2CSA is the primary candidate for a pregnancy
malaria vaccine, but a fundamental challenge for vaccine
development is identifying parts of this large protein that
are targets of a protective immune response and that are
amenable to heterologous production of the disulfide-
rich DBL domains. Previous genome-scale attempts to
express recombinant Plasmodium proteins in E. coli for X-
ray crystallography have primarily focused on non-mem-
brane proteins that lacked disulfide bonds and the success
rates for soluble proteins were relatively low [33,34].
While significant progress has been made to refold DBL
recombinant proteins from E. coli or to secrete VAR2CSA
recombinant proteins from eukaryotic expression systems
[18-24], some VAR2CSA domains have proven more chal-
lenging to produce than others and only a subset of
domains have been expressed in P. pastoris [18] or as
refolded proteins from E. coli [21]. Furthermore, new
structural information on the disulfide bonds in DBL
domains suggests that PFEMP1-type DBL domains may be
larger than previously predicted by sequence homology,
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but there have been no systematic attempts to optimize
construct boundaries for protein secretion. The inability
to produce large amounts of all VAR2CSA domains has
hindered investigation into PAM immunity and vaccine
development.

In this study, new structural information on the disulfide
bonds in DBL domains was used to revise domain bound-
aries in VAR2CSA and the new boundaries were experi-
mentally investigated for recombinant protein expression
in P. pastoris. Based on sequence comparisons, VAR2CSA
DBL domains contain many of the conserved cysteine res-
idues present in solved DBL domains and would be
expected to make many of the same disulfide bonds. This
prediction is also supported by recent homology models
of the individual VAR2CSA DBL domains that came to
similar conclusions about domain boundaries and
disulfide bonds [35]. Although there is strong support
from sequence comparisons and homology modeling
[35] to modify the domain boundaries in VAR2CSA,
longer construct boundaries including these amino acids
were not always secreted from P. pastoris. Overall, extend-
ing construct boundaries to include the predicted C11 and
C12 cysteines generally improved protein secretion and
allowed production of previously poorly or non-secreted
DBL domains. However, protein secretion was variable, in
that slight difference in domain boundaries affected pro-
tein production and construct boundaries that worked
well for one VAR2CSA allele did not necessarily apply to
other alleles. Furthermore, some VAR2CSA regions, such
as DBL2 or ID2 were more difficult to clone into bacteria
or express from P. pastoris. Altogether 15 of 42 (36%)
VAR2CSA constructs were secreted from P. pastoris and the
new construct boundaries allowed production of all six
VAR2CSA DBL domains. These will provide new tools to
investigate PAM immunity. Although larger proteins,
including the tandem DBL domains from EBA175 have
been produced in P. pastoris [17], size appeared to influ-
ence protein secretion. 14 of the 15 secreted proteins were
single domains between 30-40 kDa, but only one of nine
constructs greater than 70 kDa was secreted. In conclu-
sion, these findings are consistent with recent structural
and functional studies supporting a revision of DBL
boundaries in PfEMP1 proteins and have application for
placental malaria vaccine development.
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