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Abstract

Background: The ATP-binding cassette (ABC) superfamily is one of the largest evolutionarily conserved
families of proteins. ABC proteins play key roles in cellular detoxification of endobiotics and xenobiotics.
Overexpression of certain ABC proteins, among them the multidrug resistance associated protein (MRP),
contributes to drug resistance in organisms ranging from human neoplastic cells to parasitic protozoa. In
the present study, the Plasmodium berghei mrp gene (pbbmrp) was partially characterized and the predicted
protein was classified using bioinformatics in order to explore its putative involvement in drug resistance.

Methods: The pbmrp gene from the P. berghei drug sensitive, N clone, was sequenced using a PCR
strategy. Classification and domain organization of pbMRP were determined with bioinformatics. The
Plasmodium spp. MRPs were aligned and analysed to study their conserved motifs and organization. Gene
copy number and organization were determined via Southern blot analysis in both N clone and the
chloroquine selected line, RC. Chromosomal Southern blots and RNase protection assays were employed
to determine the chromosomal location and expression levels of pbmrp in blood stages.

Results: The pbmrp gene is a single copy, intronless gene with a predicted open reading frame spanning
5820 nucleotides. Bioinformatic analyses show that this protein has distinctive features characteristic of
the ABCC sub-family. Multiple sequence alignments reveal a high degree of conservation in the nucleotide
binding and transmembrane domains within the MRPs from the Plasmodium spp. analysed. Expression of
pbmrp was detected in asexual blood stages. Gene organization, copy number and mRNA expression was
similar in both lines studied. A chromosomal translocation was observed in the chloroquine selected RC
line, from chromosome 13/14 to chromosome 8, when compared to the drug sensitive N clone.

Conclusion: In this study, the pbmrp gene was sequenced and classified as a member of the ABCC sub-
family. Multiple sequence alignments reveal that this gene is homologous to the Plasmodium y. yoelii and
Plasmodium knowlesi mrp, and the Plasmodium vivax and Plasmodium falciparum mrp2 genes. There were no
differences in gene organization, copy number, or mRNA expression between N clone and the RC line,
but a chromosomal translocation of pbmrp from chromosome 13/14 to chromosome 8 was detected in
RC.
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Background

The ATP-binding cassette (ABC) superfamily is one of the
largest evolutionarily-conserved families of protein trans-
porters. ABC proteins play key roles in cellular detoxifica-
tion of xeno- and endobiotics. Overexpression of certain
ABC proteins, among them the multidrug resistance pro-
tein (MDR) and the multidrug resistance associated pro-
teins (MRPs), contribute to drug resistance in a variety
organisms ranging from parasitic protozoa to human neo-
plastic cells.

Membrane transporters, such as the Plasmodium falciparum
chloroquine resistant transporter (pfcrt) and the Plasmo-
dium falciparum mdrl, which is a member of the ABC
superfamily, have been identified as key contributors in
decreasing susceptibility to several anti-malarial drugs [1-
4]. Research to identify additional potential contributors
to Plasmodium drug resistance has lead to the identifica-
tion of new candidate transporter genes, some of which
belong to the ABC transporter superfamily [5-8]. The ABC
transporter superfamily is comprised of eight subfamilies
in eukaryotes: ABCA, ABCB, ABCC, ABCD, ABCE, ABCEF,
ABCG, and ABCH. Proteins within this superfamily were
classified based on the sequence and organization of their
conserved nucleotide binding domains (NBD). Character-
istic motifs within these NBDs are found in the majority
of adenine nucleotide hydrolases: the Walker A and
Walker B boxes, ABC signature motif, H (histidine) loop,
D (aspartate) loop, and Q (glutamine) loop [9-13]. In
general, functional ABC proteins contain two NBDs and
two transmembrane domains (TMD) consisting of 6-11
transmembrane helices. Genes are organized either as full
transporters containing two of each domain or half trans-
porters with one of each (Figure 1c).

Members of the ABCC sub-family have been associated
with drug resistance in organisms ranging from bacteria to
man. This sub-family is comprised of a variety of proteins
some of which have been designated as multidrug resist-
ance associated proteins (MRPs). These proteins serve as
primary active transporters of an array of structurally
diverse compounds including organic anions such as glu-
curonide, glutathione (GSH), sulphate, drugs conjugated
to GSH, and non-conjugated agents by GSH co-transport
[14,15]. The human ABCC sub-family consists of 13
members, nine of which are transporters: MRP1, MRP2,
MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, and MRP9
[16,17]. The human MRP1 has been the most studied
among the MRP proteins because of its ability to transport
a broad range of anticancer drugs through cellular mem-
branes mediated by GSH co-transport or by the export of
GSH-drug conjugates [14,18]. In addition, MRPs have
been associated with drug resistance in other organisms
such as the heavy metal resistance protein MRP-1 in
Caenorhabditis elegans [19], the GSH conjugate transport-
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ers AtMRP1, AtMRP2, and AtMRP3 in Arabidopsis thaliana
[20-22], and yeast cadmium factor gene (ycf1) in Saccha-
romyces cerevisiae [23]. Several mrp orthologs have been
identified and linked to drug resistance in protozoa such
as Trypanosoma brucei and Leishmania spp. In T. brucei,
reduced sensitivity to melarsoprol has been linked to the
overexpression of the MRP homologue, TOMRPA [24]. In
Leishmania, the pentamidine resistance protein 1(PRP1/
ABCC7) and MRPA (formerly known as P-glycoprotein A/
ABCC3) were shown to confer pentamidine resistance
and antimony resistance, respectively [25-29].

Homologues of these proteins have been identified in
Plasmodium spp., but there is no clear evidence linking this
transporter to anti-malarial resistance. Expression of MRP
homologues was reported in P. berghei and P. yoelii [7] as
well as in P. falciparum [30]. The P. falciparum mrpl gene
is an intronless gene with highest mRNA expression in the
late trophozoite and schizont stages. The P. falciparum
mrp2, however, is mostly expressed in ring stages [31].
Protein expression of these genes has only been reported
for pfMRP1, where it has only been detected in the sch-
izont stage, except in the CQ resistant P. falciparum strain,
FACS, where it was also detected in the trophozoite stage
[30]. Mutations within this gene have been associated
with anti-malarial resistance in clinical isolates [5,6,32].

In this study, the pbmrp gene was partially characterized
using bioinformatics and molecular biology methods. We
sequenced pbmrp and classified it as an ABCC sub-family
member. Multiple sequence alignments with MRPs from
P. y. yoelii, P. vivax, P. knowlesi and P. falciparum reveal a
high degree of conservation within transmembrane and
nucleotide binding domains. Bioinformatic analyses indi-
cate that pbMRP is homologous to a Plasmodium spp.
MRP2 gene. In addition, the gene copy number, structural
organization, chromosomal localization and mRNA
expression levels of the pbmrp gene were determined in
drug sensitive (N clone) and the drug resistant derived
line RC which was selected under CQ pressure and dis-
plays the multidrug resistance phenotype.

Methods

Plasmodium berghei lines and maintenance
Random-bred Swiss albino female mice were infected
intravenously with the P. berghei drug sensitive N clone or
the RC line which was selected under CQ pressure and dis-
plays the multidrug resistant phenotype. These lines were
kindly provided by Wallace Peters [33,34]. Mice infected
with the RC line were dosed once with CQ 1 hr after infec-
tion in order to maintain drug selection pressure [35].
Platelets and white blood cells were removed from the
infected blood by glass bead and CF-11 cellulose col-
umns, respectively. Infected red blood cells (IRBCs) were
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Classification and structural organization of pbMRP. (A) Conserved domain database summary view of the domain
model identifying ABCC specific NBDs within ppMRP. These domains are depicted by red boxes under the corresponding
regions within the predicted protein sequence. (B) Graphical representation the ppbMRP predicted topology generated by the
TMHMM server. Results were also confirmed using the DAS server transmembrane prediction. Predicted transmembrane hel-
ices are depicted in red. (C) Diagram of ppMRP embedded in the membrane. The protein contains two TMDs and two ATP-
binding NBDs represented by red cylinders and blue circles, respectively.

differentially lysed with 0.15% saponin [36] and free par-
asites were collected.

Nucleic acid extraction

Plasmodium berghei DNA was isolated by phenol/chloro-
form extraction [37]. Total parasite RNA was extracted
using RNA STAT-60 (Tel-Test Inc.) according to manufac-
turer's specifications. Chromosome blocks were prepared
as described by Serrano et al [38].

PCR amplification, cloning and sequencing of the P.
berghei mrp

Plasmodium berghei genomic DNA from the N clone was
subjected to PCR amplification using primers designed
based on the mrp gene identified in P. y. yoelii [7] (Addi-
tional file 1). Amplification of pbmrp fragments was car-
ried out under standard conditions. Amplified products
were cloned into pGEM®-T-EASY (Promega) plasmids
according to the manufacturer's instructions. Purified
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clones were sequenced using the Applied Biosystems Big
Dye Terminator V3.0 sequencing chemistry (Davis
Sequencing Inc., CA). Every position of the putative open
reading frame for the pbmrp gene was sequenced at least
twice in each direction.

Bioinformatic analyses

The pbmrp gene was assembled by aligning the overlap-
ping translated sequence of the P. berghei cloned PCR
products along the translated P. y. yoelii mrp gene [Gen-
Bank: XP_725434]. Once the entire putative open reading
frame (ORF) was assembled, the predicted amino acid
sequence was analysed to identify conserved motifs using
the InterProScan sequence search tool [39] and the Con-
served Domain Search service [40]. The presence of inter-
nal transmembrane domains and their organization was
predicted using the TMHMM v. 2.0 prediction server [41]
and the DAS transmembrane prediction server [42]. Plas-
modium mrp sequences were retrieved by sequence similar-
ity searches using the pbmrp translated sequence from the
PlasmoDB ver. 5.4 [43] and the BLAST search tool hosted
at PlasmoDB and at NCBI [44,45]. To obtain the closest
human homologue, we performed sequence similarity
searches against human genome protein database using
the P. berghei mrp predicted protein sequence.

The following sequences were recovered and used for sub-
sequent sequence analyses: P. falciparum mrpl [GenBank:
ABV24500], P. falciparum mrp2 [GenBank: ABV24501], P.
vivax mrpl [GenBank: XP_001612680], P. vivax mrp2
[GenBank: XP_001617379], P. knowlesi mrp [GenBank:
CAQ42240], P. berghei mrp [GenBank; AAS46595], and P.
y. yoelii mrp [GenBank: XP_725434]. Multiple sequence
alignments and analyses were carried out using the Clus-
talW program hosted at the European Bioinformatics
Institute [46]. Alignments were visualized by using Gene-
Doc (provided by the Pittsburg Supercomputing Center)
[47]. The phylogenetic analysis of the MRPs from Plasmo-
dium was performed as follows. The predicted protein
sequences for the MRP genes from Plasmodium listed in
Table 1 and the MRP2 from Homo sapiens |[GenBank:
CAB45309] (which was used as outgroup for placement
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of the root) were retrieved from NCBI in FASTA format.
The multiple sequence alignment was done with ClustalWw
as described above. The alignment was submitted to the
GBlocks server to trim the sections of large variability that
would affect the phylogenetic analysis [48]. The GBlocks
analysis was carried out using the less restrictive settings of
smaller blocks and permitting gaps within the blocks. The
suggested multiple sequence alignment, which retained
approximately 49% of the alignment positions, was
taken. The phylogenetic analysis was done using the
PHYLIP suite of programs [49]. The program SEQBOOT
was used to generate a bootstrapped data set of 500 repli-
cates. The program PROTDIST was used to generate the
distance matrices for the analysis. The rooted phyloge-
netic trees were constructed according to the program
NEIGHBOR using the neighbor-joining algorithm [50].
The program CONSENSE was used to build a rooted con-
sensus tree using an extended majority rule.

Southern blot analysis

Southern blots and subsequent hybridizations were per-
formed as described by Gervais et al., 1999 [51]. Genomic
DNA (gDNA) from the P. berghei lines, N clone and RC,
were digested with HindlIII, EcoRI, or ECORV. Membranes
were hybridized with 5' and 3' pbmrp specific probes
which were amplified with the following primer combi-
nations: pbmrp 5' (Forward primer-TAATATAGA-
TAAAAATGAGGGGG and Reverse primer-
AAAGTGCATAACAGTTACTTCC) and pbmrp 3' (Forward
primer-TACAATAGTTATGGCAATATTAG and Reverse
primer-CATCAATAATTTCITATCAGA).  Hybridizations
were carried out at 65°C in 2x sodium chloride/sodium
citrate solution (SSC) with 0.1% sodium dodecyl sulphate
(SDS).

Chromosomal blot and localization

Plasmodium berghei (N clone and RC) chromosomes were
separated by pulse-field gel electrophoresis [52,38]. To
optimize separation (BioRad CHEF DRII) running condi-
tions were modified as follows: 125V, 120-s pulses for 24
h and 300-s pulses for 24 h at 14°C. Chromosomes were
blotted onto a Zeta Probe membrane (BioRad) and

Table I: Plasmodium MRP predicted protein sequence similarity to pbmrp from the Plasmodium berghei N Clone line

Gene* GenBank Nucleotide Predicted protein Percent sequence Percent amino acid E value
accession number length (nt) length (aa) identity to pbmrp similarity to pbmrp
pyMRP XP_725434 5928 1976 82% 88% 0
pkMRP CAQ42240 6051 2016 36% 54% 0
pvMRP2 XP_001617379 6072 2024 36% 53% 0
pfMRP2 ABV24501 6327 2108 36% 56% 0
pvMRPI XP 001612680 518l 1727 32% 51% 2.3e273
pfMRPI ABV24500 5469 1822 32% 53% 5.9e-252

* P. y. yoelii MRP (pyMRP), P. knowlesi MRP (pkMRP) P. vivax MRP2 (pvMRP2), P. falciparum MRP2 (pfMRP2), P. vivax MRP| (pvMRP1), P. falciparum

MRPI (pfMRPI)
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hybridized at 65°C in 2x SSC/0.1% SDS with a radiola-
beled P. berghei mrp specific 3' probe. Subsequently, the
membranes were stripped and hybridized to known P.
berghei chromosome markers: a chromosome 13/14
probe (probe 9.45 kindly provided by Dr. Marta Ponzi)
[52] or a chromosome 8 probe directed to a known gene
previously localized to this chromosome, the P. berghei vy-
glutamylcysteine synthetase gene (pbggcs) [53,54].

RNase protection assay (RPA)

Alpha-32P UTP labelled riboprobes for pbmrp and S-tubu-
lin (ptub, used as a normalizing control) were synthesized
in vitro by antisense transcription using the T7 RNA
polymerase (Maxiscript® SP6/T7 Kit, Ambion). Ribo-
probes were co-precipitated with dilutions of total RNA
from the P. berghei sensitive N-clone or the drug resistant
derived line RC. RPA was performed using the RPAIII™
system (Ambion, Austin, Texas) according to the manu-
facturer's instructions. Protected RNA hybrids were
resolved on denaturing acrylamide gels which were subse-
quently exposed to autoradiography films. Autoradio-
grams were scanned and analysed using Quantity One 1-
D Analysis Software (Bio-Rad, v. 4.4). Ratios of the densi-
ties of the normalized pbmrp signals were subsequently
normalized to the drug sensitive N-clone to estimate
mRNA expression levels in RC.

Results

Identification and characterization of an mrp homologue
in P. berghei

An mrp homologue was identified in P. berghei using
primers designed to PCR-amplify the pbmrp gene in the
drug sensitive N clone. Sequence analysis of the pbmrp
gene shows an open reading frame (ORF) of 5820 nucle-
otides. This single exon gene encodes a predicted protein
of 1939 amino acids (Additional file 2). Based on the
NBD amino acid sequence, the NCBI's Conserved
Domain Database classified ppMRP as a member of the
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ABCC transporter sub-family (Figure 1a). This transporter
possesses the general structural features associated with
MRPs. Transmembrane helix predictions by both the DAS
and TMHMM transmembrane prediction servers predict
that ppbMRP has 12 transmembrane helices organized into
two TMDs and that both, the N-terminal and C-terminal,
are intracellular. A model presenting domain organiza-
tion of the predicted ppMRP amino acid sequence, which
contains two TMDs and two NBDs, is shown in Figure 1c.
Five of the six characteristic motifs associated with ABC
NBDs were found within the NBDs of ppMRP (Figure 2).
In NBD1, the Walker A, Q loop, ABC motif, Walker B and
the D loop were identified, with a large variable insertion
between the ABC motif and the Walker B motif. Within
NBD2, the Walker A, Q loop, ABC motif, Walker B and the
H loop were found. However, the H loop in NBD1 and
the D loop within NBD2 were not found (Figure 2). Con-
sensus motif sequences and the Plasmodium spp. motif
sequences found within the NBDs are reported in Table 2.

The predicted pbMRP amino acid sequence was used to
identify homologues in other Plasmodium species by
sequence similarity searches in PlasmoDB. A partial
sequence was found in the P. berghei genome, two
homologous genes in P. falciparum (pfmrpl and
pfmrp2), two in P. vivax (pvmrp1l and pvmrp2), one in P.
knowlesi (pkmrp), and one in P. y. yoelii (pymrp). A mul-
tiple sequence alignment of the protein sequences shows
that pbMRP has highest similarity with its homologue in
the rodent malaria species, P. y. yoelii (Figure 3 and Addi-
tional file 3). Sequence identity between pbMRP and the
MRPs from Plasmodium spp. ranges from 82-32% with
the highest percent identity with pyMRP and the lowest
with pfMRP1 (Table 1). BLAST results show that ppMRP
is more closely related to pyMRP, pkMRP, pfMRP2 and
PVMRP2 with expectation values reported as 0 although it
also exhibits a high degree of relatedness to pfMRP1 and
PVMRP1 (Table 1). Sequence similarity searches against

Table 2: Motifs within Plasmodium spp. MRP nucleotide binding domains

Nucleotide Binding Domain  Motif Consensus Sequence Consensus in Plasmodium spp. Location in ppbMRP
NBDI Walker A GxxxxGK [S, T] G [D, N] [I, VIGSG [E, K]T 714-722
Q loop XQx PQ I, F] 753-755
ABC motif LSGGQ LSKGQ 808-812
Walker B XILxDE LYL [L, FIDD 954-959
D loop LD LD 964-965
H loop XHx Not identified
NBD2 Walker A GxxxxGK [S, T] G [K, RISGAGKS 1705-1712
Q loop XQx PQS 1752-1754
ABC motif LSGGQ L[S, AJLVR 1835-1839
Walker B XILxDE L [L, V, I]LIDE 18491854
D loop LD Not identified
H loop XHx [S, A]JHD 1895-1897
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Figure 2
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A
* 820 * 840 * 8E0 * 880
Walker A

pbMRP : KPVKFEN-NYNQSENM Fi TAIRIE Y I P : 758
PYMRP : KPVKFEN-NYNQSKNI Fi TATNIED IES Y11 A ;791
DKMRP 1 ————————————— TDAL L G 3 1 7 : 785
PVMRPZ § ——=——=-- GQPLVPAAL) L ) ol 781
pEMRPZ : INMENCYFSSKNNDDY Il I SVVI 837

LENVN TLKNNt I G GSGKTIFFnS 16 kL G Y EKEnf dmPv Y PQ W

* <00 * 20 * 940 * €0
ABC motif
pbMRP KC@RTERIE : 838
pPYMRP K@ICTENIE : 871
PKMBP SDYLIDJEK : 875
PVMRPZ SDLVDJER : 861
DPEMRPZ : : D) IFEDIREF HaaDL R YIRSDEHS QK A KHMNLYJOK : 517
GTIRSMI F N £fDp YY al gSEL nD FK D RYv DEHSLSKGQK RI LAR LY HYI M 1 Yy
* 1140 * 11€0 * 1180 * 1200
Walker B D loop
DPbMRP  : Sl TFYNLFCISAaR e 81 3y B B SHDF : 1028
DPYMRP : SE TFYNLFCRlaRalpi IR ERs SWYF : 10€9
PkMRP  : A i TFYNLFCEumaRaey AF| I RTRVY : 1110
DPVMRPZ : Y A 3 FYNLFCSanuey GF| I SHVY @ 1100
pEMRPZ : I KDL EAED KEE TQHFRFNSSF ILSISETT ¥ HY : 1093
SYLYL1DD F LDP IS nIFYNLFC K ¢ vtnn nSF dii QY V IY Len L
B
* 1940 * 19€0 * 1580 * 2000

pbMRP : IL ITPSQFPIS 1 1722
PYMRP : ALVSPTQLPQS| 1757
pPKMRP : PPMCAPENGHA 1792
pvMRPZ : SPSKDVPC 1785
pEfMRPZ : YTSPHIDI Y 1886

k EYG

b zZ0zo * 2040 * Z0e0 ol zZo8so
phMRP 1802
pyMRP 1837
pkMRP 1872
pvMRPZ 1875
pEMRP2 1966

L E K IG LPQSSFVF HUNIRTYIDPY F D eI dAF IGINL
* 2100 * 2120 * 2140 * 21€0
ABC motif Walker 8

pbMRP H M- — EYDESKYTKTNEKYNEY Y IL Mshl II-‘.YLELVI-‘. HLNPJ 1 N ! E : 1870
PYMRP EYHESKYTKINKKNNER YILMSIVEShSNEFSIRG HLNF AN YE N E I : 1906
pPkMRP : RAS————QDGRRVYNGRDKFDESKSSSTVALSLSLEIECIR NP A J H LY LS : 1547
pvMRPZ : JKSASRDDRAGGGLPNGADKGOKGNSSSSAANFLAVE) IRYLEILVR JJLNRLNYE] WLOLE-LS : 1954
pEfMRPZ : RQQQ------- FRFNFENTHNLWVKEESF IDLTRS ISLE ECS:¥¢fSIARL FIBNIHEYaf TNl F C - YNTKKL : 2038

k N SDd IRYL LVRi LNR YKL LIDEIPV N n ns nNF
* 2180 * 2200 * 2220 *
H loop

pbMRP : JTENL 1] SIHDpYS { { : 1936
pyMRP : JJTENL SHDpY: r ) : 1975
pkMRP : |§SSD S| ALIVSEESC IKG S L A : 201é
pvMRPZ : JJSSD ALIASINE ﬁCDFI K C FKCEIYR WAL A : 2023
pEMRPZ : JTTDI AEDEE TLS®CDF 1] Ve Nrrc : 2108

F K F YII nyF hiTvLII HD TLS CDFI Vv KGEv YKC Y D TQ

Figure 3

Alignment of the of Plasmodium spp. MRP NBDs. Alignment of predicted NBD| (A) and NBD2 (B) amino acid
sequences from Plasmodium spp. mrp genes were performed using the ClustalVWV algorithm with the Blosum matrix (all other
parameters set as default). Amino acids with a 100% identity are shaded in red, 99-75% identity are in blue and 74-50% identity
in yellow. Conserved Walker A, Q loop, the ABC motif, Walker B motifs as well D loop and H loop motifs are indicated above
the corresponding sequence. Within the NBD| there is a large non conserved region in NBD| between the ABC motif and
the Walker B and D loop containing region (from position 961 to 1110 in the multiple sequence alignment) which is not shown
in this figure. For the complete multiple sequence alignment refer to Additional file 3.
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the human genome protein database show that MRP2 is
the closest homologue to ppMRP with an expectation
value of 9e-30. The phylogenetic gene tree supports the
results presented in Table 1 (Figure 4). The MRP1 sub-
family and the MRP2 subfamily are clearly grouped into
separate clusters indicating these are paralogous genes.
The bootstrap values for all branches are above 97 percent
indicating highly significant support for the clades seen in
the gene tree.

pbmrp gene organization in drug sensitive and resistant
lines

To explore whether pbmrp genetic rearrangements and/or
an increase in gene copy number contribute to drug resist-
ance in resistant P. berghei lines, Southern blot analysis
were performed on restricted gDNA from each of the P.
berghei lines (Figure 5). The 3' probe hybridized to a single
band for each enzyme used. Similarly, the hybridization
with the 5' probe also resulted in a single band for each
enzyme. Results show no difference in the band patterns
and hence there is no difference in the genetic organiza-
tion of pbmrp between the drug sensitive N clone and the
CQ resistant RC line. In addition, there is no difference in
hybridization intensities between the drug sensitive (N
clone) and resistant line (RC) indicating the same pbmrp
gene copy number in both parasite lines.

Chromosomal location of pbmrp in drug sensitive and
resistant lines

In this study, pbmrp was mapped in drug sensitive and
drug resistant line. In the drug sensitive, N clone, the

HsMRP2

PIMRP2

PkMRP

489 = PVMIRP2

PbMRP

PIMRP1

PVMRP1

Figure 4

Consensus rooted gene tree for Plasmodium multid-
rug-resistance associated proteins. Consensus rooted
gene tree was generated with the PHYLIP suite of programs
using the neighbor-joining algorithm. The branch labels rep-
resent the bootstrap counts. The Homo sapiens MRP2 was
used as an outgroup for root placement. MRPs have been
designated as described in Table I.
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A RVRIH3RIH3RIRVRVH3RI l l
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5 =
2 Kb 2.5Kb
3.5 Kb6.5 Kb
~9.5 Kb
~14.1 Kb
B
N clone RC N clone RC

H3 RI RV

H3 RV RIH3 RI RVH3 RV RI

~14.1 Kb

3.5Kb
2 Kb

pbmrp 5 pbmrp 3’ pbmrp 3’

pbmrp 5’

Figure 5

Southern Blot Analysis of the pbmrp Gene. (A) Dia-
grammatic representation of the pbmrp locus organization.
Black arrows above the locus represent the restriction sites
within the gene or in flanking areas. Below the coding region,
the black lines represent the 5' and 3' specific probes used.
Genomic DNA from N clone and RC line was digested with
Hind Il (H3), Eco RI (RI), and Eco RV (RV). The predicted
bands and their sizes are depicted by black arrows. (B) Both
probes hybridize to a single band for each of the enzyme
used: 14.1 kb for RV, 3.5 kb for RI, and 2.0 kb for H3 (left
panel) and 9.5 kb with RI, 6.5 kb with H3, and approximately
2.5 kb with RV (right panel), respectively.

pbmrp gene was localized to the largest chromosome band
corresponding to chromosome 13/14, which co-migrate
in P. berghei (Figure 6). However, in CQ selected line
(RC), the pbmrp gene was detected only in chromosome 8
indicating that a translocation event took place. This
translocation was observed using pbmrp specific probes
targetting the 3' terminus.

Comparison of pbmrp expression profiles in drug sensitive
and resistant lines

RNase protection assays were employed to measure pbmrp
expression at the level of transcription in the drug sensi-
tive N clone and the drug resistant line, RC. Expression in
RC was 1.26 + 0.49 (mean =+ std.dev) relative to N clone
pbmrp RNA expression levels (Figure 7). Similar pbmrp
transcription levels were detected in RC when compared
to N clone.

Discussion

Energy-dependent transporters are responsible for main-
taining the metabolic homeostasis in organisms. Under-
standing transporters involved in cellular detoxification
and/or drug efflux in Plasmodium spp. can provide critical
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N RC N RC N RC N RC

EtBr Chr. 13/14 Chr. 8 pbmrp 3’

3.2 Mb

2.0 Mb

Figure 6

Chromosomal location of the pbmrp gene. Representa-
tive results for the chromosomal location of pbmrp gene in
the P. berghei N clone and RC line. P. berghei chromosomes
were visualized with ethidium bromide (EtBr) prior to trans-
fer. Chromosome membranes were hybridized with a 3' spe-
cific pbmrp probe, a chromosome |3/14 specific marker [52]
or to a chromosome 8 probe [54]. Note, that the pbmrp
gene was localized to chromosome 13/14 in N clone and to
chromosome 8 in the CQ selected line (RC).

information about their function and their potential as
new drug targets. Plasmodium berghei, a rodent malaria
model, is a proven and valuable tool for studying Plasmo-
dium biology as well as the development of resistance to
anti-malarials which continues to be global health prob-
lem. In this study, a multidrug resistance associated pro-
tein gene in P. berghei was sequenced. This gene, pbmrp,
was classified and characterized using bioinformatics. The
pbmrp gene organization, copy number, and gene expres-
sion levels were compared between the drug sensitive N
clone and the CQ selected (RC) P. berghei line.

The pbmrp gene has an intronless ORF of 5820 nucleotides
and is predicted to encode a protein comprised of 1939
amino acids. NCBI's Conserved Domain Database classi-
fied ppMRP as a member of the ABCC transporter sub-
family (Figure 1a). Using the predicted ppbMRP sequence,
six homologues were identified in four Plasmodium spe-
cies (P. falciparum, P. vivax, P. knowlesi and P. y. yoelii) by
sequence similarity searches in the PlasmoDB and in
NCBI. We note that at the time the analyses were per-
formed the annotation of the proteins at NCBI and Plas-
moDB is only complete for the pfMRP2 and pfMRP1. For
PVvMRP1 and pvMRP2 the annotations are ABC trans-
porter and multidrug-resistance associated protein,
respectively. The classification as MRP1 and MRP2 is
based on the results presented here from similarity
searches and phylogenetic analyses. For pkMRP2,
PyMRP2 and pbMRP2 the annotations are transporter/
putative mrp, ABC transporter, and multidrug-resistance

http://www.malariajournal.com/content/8/1/1
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Figure 7

Determination of pbmrp transcript levels in sensitive
and drug resistant P. berghei parasites. (A) Representa-
tive results of an RPA analysis using total RNA dilutions from
the drug sensitive N clone or the CQ selected RC line show-
ing protected fragments with the ftub or pbmrp riboprobes.
Ptub was included as a normalizing control. (B) Densitomet-
ric analysis of pbmrp expression. Densities of the normalized
pbmrp signals were subsequently normalized to the drug sen-
sitive N-clone to estimate the relative mRNA expression lev-
els in RC. The horizontal line represents mean relative
expression of four experiments.

associated protein respectively. As before, classification as
MRP2 is based on the results presented here from similar-
ity searches and phylogenetic analyses. At this time, the
presence of two mrp genes appears to be unique for the
two human malaria species, P. falciparum and P. vivax
(Table 2). An additional mrp gene may confer a biological
advantage for P. falciparum or P. vivax with respect to fit-
ness or the evolution of drug resistance but this has yet to
be proven experimentally. BLAST results support that
from an evolutionary standpoint pbMRP is more closely
related to pyMRP, pkMRP, pfMRP2 and pvMRP2 rather
than to pfMRP1 and pvMRP1 (Table 1). Interestingly,
sequence similarity searches against the human genome
show that pbMRP is more closely related to the MRP2.
Taken together, the fact that pbMRP is more similar to
PVvMRP2 and pfMRP2 in addition to having the closest
relatedness to the human MRP2 confirms that the P.
berghei transporter is a member of the ABCC MRP2 sub-
family. The phylogenetic analysis presented in Table 1
and Figure 4 supports the hypothesis that the MRP2 fam-
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ily is the ancestral family of MRPs in Plasmodium. It is
noteworthy that at this time the MRP1 sub-family only
appears in parasites that infect humans. Given the lack of
knowledge about the function of the MRPs in Plasmodium,
it is not possible to assess the significance of the finding at
this time. It is also important to note that the MRP2 clade
groups the gene from P. knowlesi with that of P. vivax, in
agreement with published phylogenies [[55] and refer-
ences therein]. Human MRP2 is involved in the terminal
phase of detoxification and excretion of endogenous and
xenobiotic organic anions in a unidirectional manner.
This protein actively transports glutathione, glucuronate,
or sulphate conjugates in addition to a variety of non-con-
jugated anionic substances including glutathione and glu-
tathione disulfide [56]. Although MRP2 has broad
substrate specificity, it has highest affinity for gluconarate
and GSH conjugates of lipophilic substances [57,58].
Based on the sequence similarity to MRP2 and taking into
account the biological function of this membrane trans-
porter, it would be reasonable to suggest that the biologi-
cal function of pbMRP might be related to cell
detoxification and the secretion of conjugated and/or non
conjugated endogenous and xenobiotic anions. In addi-
tion, human MRP2 has been shown to confer drug resist-
ance to multiple chemotherapeutic agents in cell lines
expressing the recombinant protein or antisense con-
structs [59-61]. Given that MRP2 confers resistance in
human cells in addition to the fact that the overexpression
of homologues in Leishmania and T. brucei [24,26,29] is
associated with drug resistance raises the possibility that
pbmrp may also contribute to this phenomenon.

The pbMRP displays the typical core ABCC/MRP domain
organization of two units of a TMD and a NBD (Figure
1c). All human MRPs, the best and most completely char-
acterized members of this sub-family, possess this typical
core structure with the exception of MRP1, MRP2, MRP3,
MRP6 and MRP7 which have an additional N-terminal
region composed of a third transmembrane domain
(TMDO) [62,63,17,64]. The pbMRP does not possess this
additional TMDO (Figure 1b) similar to the other mem-
bers of human MRP family such as MRP4, MRP5, MRP8
and MRP9 [63,65-67].

The NBD size and organization in the MRPs of the Plasmo-
dium spp. studied were similar to those described in other
organisms. A high level of similarity was observed in mul-
tiple sequence alignments, in particular within the NBDs
with the exception of a large, non conserved insertion of
approximately 103 amino acids in NBD1 (from position
961 to 1110 in the multiple sequence alignment) (Figure
3, Additional file 3). Characteristic NBD motifs such as
the Walker A, Q loop, ABC motif, Walker B, D loop and
the H loop were found within the NBDs (Figure 3). All of
the characteristic motifs were identified with the excep-
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tion of the H loop in NBD1. This NBD is unique in the
sense that there is an insertion between the ABC motif and
the Walker B motif. This insertion was present in all the
Plasmodium MRP sequences studied. The Walker B motif
and the D loop were identified after this large insertion in
the multiple sequence alignment. The location and
sequence of the Walker B motif in the region following the
insertion is similar to that described as the Walker B in
pfMRP1 [30]. The D loop could not be identified in the
MRP NBD2 in all the Plasmodium species studied (Figures
2 and 3). The failure to identify the H loop in NBD1 and
the D loop in NBD2 may be due to a lack of conservation
in the sequences encompassing these motifs in Plasmo-
dium. Both the H loop and the D loop have structural
functions within the NBD although their precise role in
the molecular mechanism is not clear. The H-loop histi-
dine contacts the bound nucleotide and the D loop may
form a hydrogen bond with the Walker A backbone
[13,68]. Remarkably, the sequences characteristic of an
ABC transporter NBD were highly conserved among the
Plasmodium species studied but these are not strictly con-
served when compared to the consensus sequences
described for these motifs in vertebrates (Table 2).

The structure and function of MRP2 genes in Plasmodium
has not been described. In neoplastic cells as well as in
Leishmania, gene duplication and/or overexpression corre-
late with the drug resistant phenotype [69,70]. In this
study, the pbmrp gene was shown to have has similar gene
organization and the same gene copy number in both the
drug sensitive N clone and the CQ selected RC line (Figure
5). In addition, this gene was not differentially expressed
at an mRNA level between these two lines (Figure 7).
However, amplification or increased expression might
have been lost upon removal of drug pressure given that
RC line was not under continuous CQ pressure in these
experiments. In primary cultures of rat brain endothelial
cells treated with dexamethasone, increased expression of
mrp2 at the mRNA and protein level was detected in a con-
centration dependent manner. This increase in expression
was reversible in the absence of drug pressure [71]. In a
CQ selected P. falciparum clone, an increase in the size of
chromosome 3 was observed with increased CQ pressure
as a result of DNA amplification whereas removal of CQ
selection resulted in the return of chromosome 3 to its
original size [72]. Single nucleotide polymorphisms
within pfmrpl have been associated with anti-malarial
resistance in field isolates [5,6,32]. Nevertheless, muta-
tions within pbmrp may also contribute to the CQ drug
resistance phenotype.

The pbmrp locus was mapped to chromosome 13/14 in
the drug sensitive N clone. Similarly, synteny analysis
between the P. falciparum and the P. y. yoelii genome indi-
cate that pymrp is located in chromosome 14 [73]. How-
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ever, a striking finding in our study was that unlike N
clone, the CQ selected line RC exhibited a chromosomal
translocation of this gene to chromosome 8 (Figure 6). In
a CQ resistant P. falciparum isolates subjected to meflo-
quine selection and constant drug pressure, pfmdrl, a
member of the ABCB transporter sub-family, was ampli-
fied resulting in an increase in size of chromosome 5 [74].
A partial chromosomal duplication of the region contain-
ing the mdr1 gene was described in a Plasmodium chabaudi
line selected for a stable mefloquine-resistance, where a
second copy was translocated from chromosome 12 to
chromosome 4 [75]. Pyrimethamine selection of a P.
chabaudi line resulted in the duplication of the DHFR gene
and a rearrangement of chromosome 7 [76]. The detec-
tion of pbmrp solely in chromosome 8 in the RC line and
the fact that this chromosome appears to be of similar size
as its counterpart in the drug sensitive N clone support
that our observation is a translocation event without gene
duplication. Previous work mapped the pbggcs gene to
chromosome 8 in the P. berghei lines studied [54]. Co-
transfection experiments in Leishmania with the genes for
PGPA and GGCS demonstrated that they work synergisti-
cally to confer resistance to antimony [77].

Therefore, the relocation of the pbmrp gene to the same
chromosome of a potential linked gene, pbggcs, is intrigu-
ing and deserves further examination. It remains to be
established whether ppMRP transports anions such as
GSH, and/or GSH S-conjugates and whether it confers
resistance to any anti-malarials.

Conclusion

The P. berghei mrp gene was sequenced and compared to
homologues of this gene in other Plasmodium species and
organisms. Using bioinformatics the pbmrp gene was
found to have the highly conserved ABC motifs and was
classified as an ABCC/MRP2 type membrane transporter.

There were no differences in gene organization, copy
number, or level of expression when comparing a drug
sensitive and a CQ selected drug resistant P. berghei line. A
chromosomal translocation of the pbmrp gene from chro-
mosome 13/14 to chromosome 8 was observed when
comparing the drug sensitive N clone and the CQ resistant
line RC.

The fact that some of these proteins are involved in the
drug resistance phenomenon in other species justifies fur-
ther investigations on the potential contribution of ABC
transporters to anti-malarial resistance in Plasmodium. The
results of this study justify the examination of the role of
the Plasmodium berghei multidrug resistance associated
protein in Plasmodium detoxification pathways. Future
research on membrane transport mechanisms and intrac-
ellular biochemical processes mediated by these trans-
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porters could result in the identification of novel drug
targets or multidrug treatment strategies to combat
malaria.
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