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Abstract

Background: Daily mortality is an important determinant of a vector's ability to transmit
pathogens. Original simplifying assumptions in malaria transmission models presume vector
mortality is independent of age, infection status and parasite load. Previous studies illustrate
conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few
studies to date have considered the effect of infection density on mosquito survival.

Methods: A series of three experiments were conducted, each consisting of four cages of 400-
1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei
ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each
group were recorded, and on alternate days a sample of live mosquitoes from each group were
dissected to determine parasite density in both midgut and salivary glands.

Results: Survival analyses indicate that mosquito mortality is both age- and infection intensity-
dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate,
which declined to a minimum before increasing with mosquito age and parasite intake. As a result,
the life expectancy of a mosquito is shown to be dependent on both insect age and the density of
Plasmodium infection.

Conclusion: These results contribute to understanding in greater detail the processes that
influence sporogony in the mosquito, indicate the impact that parasite density could have on
malaria transmission dynamics, and have implications for the design, development, and evaluation
of transmission-blocking strategies.

Background The period necessary for the parasite to reach its infective
Daily mortality is the most important determinant of a  stage within the vector often takes an appreciable portion
mosquito's ability to transmit pathogens, influencing the  of the vector's life-span and, therefore, only a small pro-
probability to encounter infectious hosts, survive the  portion actually survive long enough in nature to transmit
extrinsic incubation period and transmit the infection [1].  the infection. As a result, the basic reproduction number
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(R,) of vector-borne infections is critically dependent on
the life-span of the vector, and in particular on the infec-
tive life expectancy [2,3]. Small changes in the daily mor-
tality rate can result in relatively large changes in
transmission. In support of this, Macdonald's malaria
models indicated that at equilibrium, the weakest link in
the chain of transmission was the survivorship of the
adult female Anopheles [1], providing a rationale for a
DDT-focused, World Health Organization-coordinated
eradication campaign that successfully eliminated malaria
transmission among approximately 700 million people
[4]. Therefore, understanding the determinants of mos-
quito survival can have important implications for the
design and assessment of new malaria control strategies.

Original simplifying assumptions in malaria transmission
models include that vector mortality is independent of
and, therefore, unaffected by, mosquito age, infection sta-
tus and parasite load [1,3,5-7]. This has resulted in esti-
mates of the daily survival rate entering as constants in
mathematical equations of epidemiological indices such
as the vectorial capacity and the entomological inocula-
tion rate, in models of population dynamics and in the
assessment of control strategies. These assumptions have
continued to permeate malaria transmission models
despite conflicting evidence as to their validity.

The assumption of mosquito mortality being independ-
ent of age was first articulated by Macdonald, who rea-
soned that environmental insults, disease, and predation
would kill mosquitoes before they died of old age [5].
Macdonald, therefore, based his mathematical treatment
of survival on the factor p, the probability of a mosquito
surviving from one day to the next. Some studies support
this notion [8,9] whereas others have found evidence of
mosquito senescence, particularly in laboratory popula-
tions [10-16]. Notably, Clements and Patterson [17] re-
analysed published reports of mosquito mortality and
concluded that many species exhibit age-dependent mor-
tality, with most, but not all, consistent with the Gom-
pertz model [18]. More recently, Styer et al [16] found that
mortality was highly age-dependent in both sexes of Aedes
aegypti, and that the age at which a mosquito first bites an
infectious host is an important indicator of the probabil-
ity of transmitting a pathogen.

Despite these studies clearly calling into question the
assumption of no senescence in mosquito populations,
the common operational assumption remains that insect
vector mortality is independent of age, and this has been
incorporated into many mathematical models [7,19-24].
The reluctance for this to change can primarily be ascribed
to the fact that allowing mortality to be constant with age
leads to the exponential model for the distribution of sur-
vival times, which has the significant advantage of mathe-
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matical simplicity and tractability, and reduces the
number and complexity of variables that need to be con-
sidered. However, acceptance of this non-senescence
assumption leads to the simplified view that the potential
of mosquitoes to survive and transmit disease is constant
regardless of their age, and it has been shown that quanti-
tative models that assume non-senescence can produce
results with substantial errors [17].

It has been argued that there will be strong selection pres-
sure on Plasmodium not to reduce vector survival, as both
partners benefit from high rates of survival and of blood-
feeding; the mosquito to increase its reproductive success
and the parasite to ensure its transmission [25]. However,
investigations into the pathogenicity of malarial parasites
in mosquitoes have not been conclusive, resulting in con-
flicting evidence as to whether malaria parasites are
benign to their vectors. Laboratory studies are contradic-
tory; some indicate that the survival rate of infected mos-
quitoes is not different from that of non-infected
mosquitoes [26-31], whereas others indicate reduced sur-
vival [32-37]. Ferguson and Read [38] conducted a meta-
analysis of 22 previously published laboratory studies,
and concluded that overall, malaria parasites do reduce
mosquito survival, but stated that these mortality effects
were more likely to be detected in vector-parasite combi-
nations not occurring naturally in the field and in studies
of longer duration. Field studies which have explored par-
asite-induced vector mortality indirectly, have also
yielded conflicting results; some supporting [39,40] and
others not supporting [41] its operation.

It has also been suggested that malaria parasites may only
be harmful to mosquitoes when parasite burdens are
exceedingly high [28,35], which has been used to refute
the existence of Plasmodium-induced mortality in nature,
as most naturally infected mosquitoes carry, on average,
only two to three oocysts of Plasmodium falciparum [42-
45]. However, the absence of high oocyst burdens in pop-
ulation samples could also be due to the mortality of
more heavily infected mosquitoes [40]. Very few studies
to date have explicitly and systematically considered the
effect of infection density on mosquito mortality, and
those which have, have not reported consistent results.
Whilst some authors suggest that mosquito survivorship
is not negatively correlated with parasite density [29,32],
others found that mosquito mortality increased with
oocyst burden [35-37,46]. The review by Ferguson and
Read [38] concluded that there is no relationship between
mortality and mean oocyst burden in the five studies that
reported oocyst burden, but suggested that sporozoite
load may be the prime determinant of mosquito mortality
as mortality differences only became apparent in studies
of longer duration when sporozoites would be in the sal-
ivary glands.
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In the context of the renewed global efforts to eliminate
malaria, it has become increasingly important to obtain a
better understanding of the component of the malaria life
cycle taking place within the mosquito. Using the Plasmo-
dium berghei-Anopheles stephensi experimental system, it
has been rigorously demonstrated that parasite develop-
ment during sporogony is density-dependent [47]. Using
the same system, this paper investigates the validity of the
original simplifying assumptions that mosquito mortality
is independent of age, infection status, and infection den-
sity, which are commonly used in the formulation of
mathematical models of malaria transmission. The ulti-
mate aim is that of generating testable hypotheses that
serve to prompt investigation of whether similar phenom-
ena apply to any of the complex, numerous, and multifar-
ious parasite-vector combinations that play a role in
malaria transmission in the field.

Methods

Experimental design

Three experiments were conducted over the course of one
year, each consisting of four (30 cm3) cages of An.
stephensi (SDA500 strain) fed on mouse blood infected
with different P. berghei ookinete densities, summarized
in Figure 1. The first group of mosquitoes in each experi-
ment acted as the control group, and were fed on rodent
blood containing P. berghei 233; a non-gametocyte-pro-
ducing clone (i.e., 0 ookinetes). This choice of control rec-
ognizes the impact of parasite-induced serum
components present at the time of blood-feed which are
known to modulate parasite infectivity [48], thus making
the groups as comparable as possible, differing only in the
presence and density of ookinetes. The further three
groups were fed on blood containing increasing ookinete
densities; 100, 400 and 2,000 ookinetes per pul of blood in
the first two experiments (to represent the three phases of
the sigmoid relationship between numbers of oocysts and
ookinetes shown in Sinden et al [47]), and 50, 250 and
1,000 ookinetes per pl of blood in the third experiment
(in order to explore a different range of parasite densities).
Ookinete rather than gametocyte densities were chosen as
the source of infection because they tend to predict more
accurately the intensity of the resulting infection [47], and
reduce the between-mosquito variability that would oth-
erwise require much larger (and unfeasible) mosquito
numbers to achieve sufficient statistical power. For these
groups of mosquitoes the transgenic GFP-expressing P.
berghei clone PbCONGFP (ANKA strain) was maintained
in Theiler's Original mice, as these parasites express the
GFP constitutively throughout all stages of the life cycle
facilitating localization and enumeration of parasites. The
growth kinetics of this fluorescent strain has been shown
to be the same as that of the wild-type [49]. The course of
infections and gametocyte production were monitored on
Giemsa-stained blood films. The mosquitoes were starved
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overnight and fed either directly on anaesthetized infected
mice (for the control cage), or were membrane-fed with a
suspension of cultured ookinetes in blood from unin-
fected mice (for each of the other cages). The feeder appa-
ratus used Parafilm® as the feeding membrane and
maintained the blood at a constant temperature of 37°C
using a water circulation system. The feeds lasted approx-
imately 90 minutes in the dark at 19°C. Those mosqui-
toes which had taken less than a full blood meal
(distinguished visually) were removed the following day,
reducing the possibility that any difference between
groups could be due to variation in blood meal size, and
resulting in roughly 400 to 1,000 fed females per cage (see
Table 1). The cages were maintained at approximately
19°C, 80% relative humidity and fed on 5% fructose for
the duration of the experiment.

The populations of mosquitoes were followed over time
post-feeding (which is also a proxy for mosquito age in
this experiment) by recording the number of dead females
in each group twice each day. In addition, for the first six
days, and on alternate days after this time, a sample of
twenty live mosquitoes from each group (with the excep-
tion of the control) were dissected to remove both the
midgut and (from approximately day 10 onwards) sali-
vary glands to determine parasite density in both midgut
and salivary glands using fluorescence microscopy. This
paper reports the results of the survival analysis. A sum-
mary of the resulting dynamics of parasite stages and den-
sities with time post-feeding has been presented elsewhere
[50].

Statistical analysis

Non-parametric methods

Survival functions for each of the four groups (based on
the ookinete density fed to the mosquitoes) in each of the
three experiments, were estimated using the Kaplan-Meier
estimate [51], classifying those mosquitoes lost to follow-
up, e.g. those which were killed for dissection, as censored
observations. (For details on the calculation of the Kap-
lan-Meier estimate see additional file 1: 'Detailed statisti-
cal methods'.)

The median survival time (with 95% confidence intervals)
was calculated for each group to compare survival times,
by determining the time beyond which 50% of the indi-
viduals in the population are expected to survive. The
Mantel-Cox test and a log-rank test for trend were used to
compare the survival distributions of the four groups
within each of the experiments. The Mantel-Cox test is
used for two-sample comparisons and is based on a test
statistic with a chi-squared distribution and one degree of
freedom under the null hypothesis that there is no differ-
ence between the survivorship of the individuals in the
two groups under comparison [52,53] (for further details
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Table I: Summary statistics for cages of An. stephensi mosquitoes fed different estimated P. berghei ookinete densities

Experiment (date) Estimated ookinete Meanf number of

Meani sporozoite Total number of Median survival

density fed (per 1ll) oocysts per mosquito scorefper mosquito mosquitoes in each  (days)
on day 10* (range) on day 22* cage (95% C.1.)
| 0 442 32 (30, 34)
(August 2007) 100 46.4 (0-251) 24 399 ND (25, ND)
400 141.8 (0-307) 3.0 645 26 (23, 31)
2,000 259.6 (0-591) 37 562 21 (19, 24)
2 0 733 33 (32, 35)
(April 2008) 100 55.3 (0-212) 2.0 565 ND (ND, ND)
400 83.1 (0-259) 2.6 662 34 (32, ND)
2,000 138.4 (0-477) 1.8 502 30 (29, ND)
3 0 625 42 (41, ND)
(July 2008) 50 11.3 (0-47) 1.2 815 36 (35, 37)
250 67.6 (0-121) 1.7 852 36 (34, 38)
1,000 96.8 (0-200) 29 999 34 (32, 35)

 Arithmetic mean parasite load in 20, randomly chosen surviving mosquitoes.

* Parasite densities presented from the dissections on days 10 and 22 as these are the standard days used in determining oocyst and salivary gland
sporozoite density and therefore allow comparisons to be made with published studies, such as Sinden et al [47].

T Sporozoites counted using a scoring system; 0, 0 sporozoites; |, | to 10 sporozoites; 2, || to 100 sporozoites; 3, 101 to 1,000 sporozoites; 4,

1,001 to 10,000 sporozoites; 5, over 10,000 sporozoites.

ND, not determined as survival curve does not cross 0.5 and therefore the median survival cannot be calculated.

see additional file 1: 'Detailed statistical methods'). The
log-rank test for trend was computed because the four
groups to be compared in each experiment represented
ordered, increasing, densities of infection. Therefore, the
codes assigned to each of the mosquito groups were the
number of ookinetes per ul of blood fed, which allowed
this test to investigate if a linear trend exists between par-
asite density and survival. The resulting test statistic has a
chi-squared distribution with one degree of freedom,
under the null hypothesis of no trend across the groups
[52,54] (for further details see additional file 1: 'Detailed
statistical methods').

The combined datasets from the three experiments were
analysed using Cox regression survival analysis (propor-
tional hazards model) fitting ookinete density fed to the
mosquitoes first as a categorical variable to test for differ-
ences in survival between cages, and subsequently as a
continuous variable to explore the impact of an increase
in parasite density on mosquito survival. This statistical
analysis allows the impact of parasite density on mos-
quito survival to be tested whilst controlling for variation
due to experiment.

Estimation of mosquito mortality rates

The modelling of survival data centers on the hazard func-
tion (the instantaneous death rate), which is used to
express the risk or hazard of death at time t. Kaplan-Meier
estimates, which assume that this hazard function is con-
stant between successive death times, were calculated and

plotted for the mid-point of each time-interval (for details
as to their calculation see additional file 1: 'Detailed statis-
tical methods').

Some of the most common hazard functions applied in
survival analysis were used to explore the underlying mos-
quito survivorship. These included a constant death rate,
the Gompertz function (the rate of mortality increases
with age in such a manner that its logarithm is linearly
proportional to age), and the Weibull function (the rate of
mortality increases or decreases monotonically with age
depending on the values of a shape and a scale parame-
ter). However, as the observed hazard rates initially
declined before increasing as time post-engorgement pro-
gressed, none of these functions were able to describe ade-
quately the pattern observed in the data. Consequently,
the following empirical quadratic hazard function for the
relationship between mortality rate and time post-
engorgement [55], was fitted by least squares estimation,

p(t)=vt>+5t+0 (1)

This function describes a parabola, with parameter & rep-
resenting the mortality rate at the time of feeding (i.e.
when t = 0), and parameters § and v being associated,
respectively, with the subsequent decline and increase in
death rate with time post-feeding, which could represent
different biological causes of mortality. Parameters v, &
and 6 were each allowed to vary linearly with the density
of ookinetes fed to the mosquitoes (K) to identify whether
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PbCONGFP)

Infected mice with GFP-tagged P. berghei (clone

Infected mice with non-gametocyte-producing
P. berghei (clone 233)

GROUP 1 GROUP 2 GROUP 3 CONTROL
Day 0
Membrane feed Membrane feed Membrane feed Direct feed
Experiments 1 & 2: 100 Experiments 1 & 2: 400 Experiments 1 & 2: Experiments 1, 2 & 3:
ookinetes per pl ookinetes per pl 2,000 ookinetes per pl 0 ookinetes per pl
Experiment 3: Experiment 3: Experiment 3:
50 ookinetes per pl 250 ookinetes per pl 1,000 ookinetes per pl
Day 1 Unfed mosquitoes removed from each of the cages
Days 1-53 Number of dead mosquitoes counted approximately every 10-14 hours for the duration of each
experiment
20 surviving mosquitoes randomly chosen and dissected from groups 1 to 3 every 1-2 days to
determine oocyst and salivary gland sporozoite density
Figure |

Schematic representation of the experimental design. Three experiments were conducted each consisting of 4 cages

of An. stephensi mosquitoes, represented by boxes in the figure.

vector mortality is a density-dependent process. The full
equation is therefore given as,

(6 K)=[(vo+viK) e + (8, +8,K)t+(0,+0,K) |
(2)

where v, &, and g, represent the baseline hazard experi-
enced by uninfected mosquitoes, and v;, 6, and 6, repre-
sent the additional mortality per unit increase in ookinete
density. Equation (2) was fitted to the full dataset using
non-linear least squares estimation, and allowing the
average mosquito mortality rate to vary between experi-
ments to account for inter-experimental variability. Anal-
ysis of variance tests were conducted on nested versions of
this full model to find the most parsimonious hazard
function using the 'nls' and 'anova' commands in the sta-
tistical package R [56] as described by Bolker [57]. Ninety-
five percent confidence intervals (95% C.1.) for the best-fit
model were estimated using bootstrapping methods (see
additional file 2: 'Generation of 95% confidence intervals
for the best-fit model'). The survivorship function con-
tains the integrated hazard function as detailed in addi-
tional file 1: 'Detailed statistical methods'.

Life expectancy

The median survival times (Table 1) provide an indication
of life expectancy immediately after engorgement for each
of the mosquito groups. In addition, life expectancy can
be calculated using the parametric survivorship model
described above, including each parameter of Equation
(1) as a linear function of fed ookinete density as in equa-
tion (2):

3 2
S(t, K) = exp —|:(v0 + le)% +(8q + 511<)t7 +(6, +6,K)t

3)
Life expectancy at t = 0 of a group of mosquitoes fed K
ookinetes, ¢,(K), is this survival function integrated from
the time of feeding to the maximum time post-engorge-
ment lived by an engorged mosquito,

eo(K) = j S(¢t, K)dt. (4)
0
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Equation (4) was evaluated using the Berkeley Madonna
numerical integration package (Version 8.0.1) [58] to cal-
culate how the life expectancy of mosquitoes varied with
the number of fed ookinetes and time post-engorgement.
In the literature, mosquito life-span has been previously
discussed in relation to oocyst rather than ookinete den-
sity, and therefore by way of illustration, mosquito life
expectancy was also related to the mean oocyst load found
in the sample of mosquitoes dissected from each of the
cages 10 days post-bloodfeed as described in additional
file 3: 'Calculating how life expectancy of mosquitoes var-
ies with mean oocyst density on day 10 and time post-
engorgement'.

Results

Table 1 summarizes the data from each of the three exper-
iments (approximately 400-1,000 female mosquitoes fed
in each of the cages). The median survival time experi-
enced by each of the cages of mosquitoes within each
experiment shows a general trend towards a decrease in
survival with an increase in average parasite load.

Figure 2 presents the observed proportion of mosquitoes
surviving each time interval as Kaplan-Meier survival
curves for every mosquito group in each of the three
experiments. Mosquitoes in the control group of Experi-
ment 1 were followed up until day 53 post-feeding, when
every mosquito had died; the figures only display results
up until day 40 to facilitate comparison with the other
mosquito groups. The mosquitoes clearly experienced dif-
ferent mortality through the course of the experiment
depending on which infection intensity group they
belonged to (especially evident in experiments 1 and 3).
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In addition, if mosquito mortality were independent of
age (here measured as time since feeding), these survival
curves would be represented by an exponential decline.
However, in each of the cages, including the control, the
survival curves do not conform to an exponential distribu-
tion of survival times (Figure 2), and observed mortality
rates are not constant with age (Figure 3), indicating that
mosquitoes do senesce.

The log-rank test applied to each of the experiments had a
significant chi-square value in all three cases (Table 2).
The results of a series of Mantel-Cox tests, conducted as
pair-wise comparisons between the survival of mosqui-
toes in each cage within each experiment, are given in
Table 2. Experiment 1 indicates that the survival of mos-
quitoes in the low infection density group (100 ookinetes
per ul of blood fed) did not differ significantly from that
experienced by the control group, whereas mosquitoes in
the intermediate (400 ookinetes per ul) and high density
groups (2,000 ookinetes per ul) experienced statistically
significantly (see Table 2) higher mortality in a dose-
dependent manner (see Table 1 for mean numbers of
oocysts and sporozoites in each population). The results
from experiment 2 indicate that the mosquitoes in the low
density group actually experienced a lower mortality rate
than the control group, the intermediate density group
did not differ significantly from the control group, and the
highest parasite density group had significantly higher
mortality than each of the other groups. The Mantel-Cox
tests that compared the cages from experiment 3 indicate
that all three groups fed on infectious blood experienced
significantly more mortality than the control group fed on
uninfected blood, but that there was no difference

A B C
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3
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S 3 L
53 04 04 04
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o
g o2 0.2 02
o

0 0 0

0 10 20 30 0 o 10 20 30 0 0 10 20 30 40

Time Post-Engorgement (Days)

Figure 2

Kaplan-Meier survival curves with time post-engorgement for each group of An. stephensi mosquitoes. (A)
Experiment |. Colors; black = 0 ookinetes per il of blood fed; red = 100 ookinetes per pl of blood fed; green = 400 ookinetes
per pl of blood fed; blue = 2,000 ookinetes per pl of blood fed. (B) Experiment 2. Colors as in panel A: (C) Experiment 3.
Colors; black = 0 ookinetes per pl of blood fed; dark red = 50 ookinetes per pil of blood fed; dark green = 250 ookinetes per

pl of blood fed, dark blue = 1,000 ookinetes per pl of blood fed.
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Table 2: Results of two-sample and multi-sample statistical comparisons of An. stephensi survival times.
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Experiment (Date)

Mosquito Group (Ookinete Test Statistic Statistical Results

density per ul of blood)

| 100 400 2,000
(August 2007) 0 Hazard Ratio (HR)  1.1413 1.4261 2.2004
HR C.I (0.87, 1.50) (1.17, 1.74) (1.77,2.74)
Mantel-Cox 0.9124 12.4278 52.6238
P-value 0.3395 0.0004* <0.0001*
100 HR 1.4003 1.9702
HR C.I. (1.09, 1.80) (1.52, 2.55)
Mantel-Cox 6.9297 27.2606
P-value 0.0085* <0.0001*
400 HR 1.4023
HR C.I. (1.16, 1.70)
Mantel-Cox 12.2886
P-value 0.0005*
All 4 Groups Log-rank 55.89
P-value <0.0001*
2 100 400 2,000
(April 2008) 0 HR 0.7312 1.1786 1.7447
HR C.I (0.58, 0.92) (0.97, 1.44) (1.38, 2.20)
Mantel-Cox 7.0017 2.6747 22.3554
P-value 0.0081* 0.1020 <0.000I*
100 HR 1.6063 2.1607
HR C.I. (1.27,2.03) (1.65, 2.82)
Mantel-Cox 15.7261 33.6528
P-value <0.0001%* <0.000I*
400 HR 1.3186
HR C.I. (1.05, 1.66)
Mantel-Cox 5.6392
P-value 0.0176*
All 4 Groups Log-rank 31.20
P-value <0.0001*
3 50 250 1,000
(July 2008) 0 HR 2.2198 2.1914 2.545]
HR C.I (1.77, 2.79) (1.76, 2.73) (2.06, 3.15)
Mantel-Cox 49.5610 51.1026 78.9376
P-value <0.0001* <0.0001* <0.000I*
50 HR 1.0144 1.1677
HR C.I (0.86, 1.20) (0.99, 1.37)
Mantel-Cox 0.0283 3.7481
P-value 0.8664 0.0529
250 HR 1.1543
HR C.I. (0.99, 1.34)
Mantel-Cox 3.5264
P-value 0.0604
All 4 Groups Log-rank 36.61
P-value <0.0001*
* Significant at 5% level
C.l.,, 95% confidence interval.
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between the three infected groups. The Cox regression
results summarized in Table 3, show that when combin-
ing the data from all three experiments, all ookinete den-
sities fed to mosquitoes, apart from 100 ookinetes per pl,
resulted in significantly greater mosquito mortality than
the control blood containing no ookinetes. In addition,
treating ookinete density as a continuous variable resulted
in a significant p-value, suggesting an increase in mos-
quito mortality with ookinete density. The Cox regression
analysis also indicated a significant effect of experiment
on mosquito mortality, with mosquitoes in experiments 2
and 3 experiencing significantly lower levels of mortality
than those in experiment 1.

Life tables for each mosquito group in each experiment
are presented in additional file 4: 'Life tables for each
experiment'. Mortality rates per time interval, and fitted
by the parametric hazard function described in Equation
(1), are plotted in Figures 3A to 3G (for the range of ook-
inete densities explored), and compared in Figure 3H. In
general, mosquitoes experienced a degree of excess mor-
tality immediately after feeding, and their death rate
declined with time post-engorgement (age) to a mini-
mum value before subsequently rising again, generating a
parabolic shape. The empirical mortality function
described in Equation (1) fitted this pattern well, the larg-
est discrepancies occurring at the end of the experiments
when few mosquitoes remained alive in each of the cages
and therefore their survival or death resulted in larger fluc-
tuations. The relationship between parameters v, 6 and &
of the mortality functions and the ookinete density fed to

Table 3: Cox regression analysis results.

http://www.malariajournal.com/content/8/1/228

the mosquitoes (as in Equation (2)) is shown in Figures
4A, 4B and 4C respectively, and the results of statistical
tests (on nested versions of the model, see Methods) indi-
cate that each of these three parameters are significantly
parasite-density dependent, with the inclusion of each of
the parameters in Equation (2) significantly improving
the fit of the model.

Allowing mortality rates to vary between the different
experiments significantly improved the fit of the model to
the observed data; mortality rates in the second and third
experiments were on average 30% (95% C.I., 17-42%)
and 32% (21-42%) lower than in experiment 1 respec-
tively, suggesting substantial between-experiment varia-
bility.

Figure 5 shows a 3-dimensional plot of mosquito life
expectancy (denoted e) as it varies with both time post-
feeding (t) and ookinete density fed (K), i.e., e(t, K), using
the mortality parameters estimated from combining the
data from all three experiments as in Figure 4. Additional
file 5: 'Mosquito life expectancy with time post-engorge-
ment and mean number of oocysts on day 10 post-
engorgement' relates this life expectancy to oocyst density
10 days post-engorgement as discussed in the Methods.
This illustrates that life expectancy decreases with both
parasite density and time post-engorgement.

Variable Coefficient Standard Error Hazard Ratio (95% C.I.) P-value
Ookinete density per |l of blood fed as a categorical variable

Control (0) 0 - | -
50 0.754 0.112 2.125 (1.707, 2.645) <0.001*
100 -0.074 0.086 0.928 (0.784, 1.099 0.390
250 0.767 0.110 2.153 (1.737, 2.669) <0.001*
400 0.314 0.067 1.369 (1.200, 1.561) <0.001*
1000 0.887 0.106 2.429 (1.974, 2.988) <0.001*
2000 0.639 0.071 1.894 (1.649, 2.176) <0.001*
Experiment | 0 - | -
Experiment 2 -0.411 0.053 0.663 (0.598, 0.735) <0.001*
Experiment 3 -1.000 0.105 0.368 (0.299, 0.452) <0.001*
Ookinete density per pl of blood fed as a continuous variable

Control (0) 0 - | -
Ookinete density 3.26 x 104 2.88 x |05 1.00032 (1.0003, 1.0004) <0.001*
Experiment | 0 - | -
Experiment 2 -0.421 0.052 0.656 (0.593, 0.727) <0.001*
Experiment 3 -0.474 0.046 0.622 (0.569, 0.680) <0.001*
* Significant at 5% level
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Mortality rate with time post-engorgement. Relationship between the mortality rate of An. stephensi mosquitoes fed on
blood containing different densities of P. berghei ookinetes and time post-engorgement (days). Markers correspond to the
observed death rates plotted for the mid-point of each time interval. The lines are the best fit hazard model defined in Equation
(2) for each parasite density, and the shaded area corresponds to 95% confidence intervals. Panels A to G represent increasing
ookinete density per pl of blood fed, with colors as in Figure 2; (A) Control (0 ookinetes). (B) 50 ookinetes. (C) 100 ooki-
netes. (D) 250 ookinetes. (E) 400 ookinetes. (F) 1,000 ookinetes. (G) 2,000 ookinetes. (H) Hazard curves from each of the
parasite densities on a single axis to facilitate comparison; colors as in panels A to G, in order from lowest to highest at time
post engorgement = zero (where curves cross the y-axis), 0, 50, 100, 250, 400, 1000 and 2000 ookinetes per Ll of blood fed.
Figure 4 illustrates how the parameters of the mortality function vary with ookinete density fed to the mosquitoes.

Discussion

The role of model systems

Any single model system cannot accurately reflect the
biology of all natural parasite-vector combinations.
Nonetheless studies on the biology of Plasmodium spp per
se, and their interactions with Anopheles mosquitoes have
been advanced considerably by the analysis of P. berghei
in An. stephensi [47]. This paper exploits the unique ability
to study the effect of increasing densities of homogeneous
populations of P. berghei (clone) on the survival of An.
stephensi (inbred iso-female line) in a controlled biologi-
cal environment. The results reported here indicate that,
in captivity, An. stephensi mosquitoes experience initial
blood feed-associated and age-dependent mortalities, and
that their survival decreases with the intensity of P. berghei
infection.

Blood feeding- and age-dependent mortality

The time (age)-dependent curves of survivorship (Figure
2) and mortality rates (Figure 3) indicate that female mos-
quitoes have the potential to senesce, in agreement with
previously published studies in a variety of species
[10,11,16,17,59]. Most previous analyses have used the
Gompertz hazard function. However, this was not ade-
quate to describe the mortality rates experienced by the
mosquitoes in the experiments presented here; in each of
the mosquito groups, including the control, mortality
rates were found to be high immediately after feeding,
decreasing initially to a minimum before increasing with
age. This functional form, depicted in Figure 3, which
describes the mortality rates experienced by the mosqui-
toes, could result from a number of biological processes.
The initial mortality (measured by parameter 6 of the haz-
ard function in Equation (1) of the Methods section) is
likely to be in part associated with the act of feeding itself,

Page 9 of 16

(page number not for citation purposes)



Malaria Journal 2009, 8:228 http://www.malariajournal.com/content/8/1/228

A B C
v
- o
ﬂ.‘ 8
g g
> x 7 w 9 )
(] S S
8 8 g e
] -1 ] v o
E 1 £ 2 £
©c © ©c © - @©
s % & © ©
a a | a
uw
o
T 2 5
Y o
o 4
g - ?
-l
I I I I I I I I I I I I I I I
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Ookinete Density Fed / pl
Figure 4

Relationship between parameters of the mortality function and ookinete density fed. Linear functions (as illus-
trated in Equation (2)) are fitted to the relationship between the parameter values of the mortality function and parasite den-
sity fed to each group of mosquitoes (ookinetes per pl of blood). Shaded areas represent 95% confidence intervals. (A)
Parameter v, which predominantly represents the increase in mortality rate with time-post feeding; parameter values (and 95%
confidence intervals), 1= 1.18 x 10-4(4.65 x 10-3, 1.40 x 10-4)*, v, = 6.43 x [0-8(4.29 x 108, 2.60 x 10-7)** (B) Parameter J,
which predominantly represents the initial decline in mortality rate with time post-feeding; 6, = -3.27 x 103 (-4.13 x 103, -1.31
x [0-3)% 5, =-1.30 x 106 (-6.77 x 106, -1.24 x 10-¢)*. (C) Parameter 6, which represents the mortality rate at the time of
feeding; 6, =3.09 x 10-2(9.69 x 10-3,5.06 x 10-2)** 9, =1.07 x 10-5(5.99 x 106, 5.33 x 10-5)*. Significant p-values (* represents
a p-value < 0.05 and ** represents a p-value < 0.001) indicate that the best-fit mortality function includes each of the parameter

values in Equation (2).

for example, allowing the bacterial population within the
mosquito midgut to proliferate [60]. Additionally, this
early mortality in the control group might also be attrib-
uted to asexual stages of the parasite, or parasite-induced
factors present in the mouse blood up-regulating the mos-
quito's immune system [61], which could be costly to the
survival of the mosquito. After reaching a minimum mor-
tality rate at an intermediate time post-engorgement, the
increase in mortality rate (measured primarily by param-
eter v of the hazard function in Equation (1)) is expected
to represent the effect of mosquito ageing.

These results suggest that the age at which a mosquito
bites an infectious host is important in determining the
probability that it will transmit the parasite and contrib-
ute to malaria transmission. Mosquitoes exhibiting age-
dependent mortality patterns are more likely to transmit
pathogens if they bite an infectious host when their mor-
tality rate is at a minimum, as they are more likely to sur-
vive the extrinsic incubation period. Clements and
Patterson [17] and Styer et al [16] illustrated the impor-
tance of accepting this concept of mosquito senescence,
showing that the longevity factor [3] and the vectorial
capacity for a variety of mosquito species can be signifi-
cantly overestimated if calculated using the simpler expo-
nential hazard model compared to a hazard model which

is age-dependent such as the Gompertz model. Conse-
quently, the potential impact of anti-vectorial control
measures could be underestimated by assuming age-inde-
pendent mosquito mortality. Gillies [62] even called for
the exponential hazard model that assumes no senescence
to be 'buried’, as it produces results which are 'at best
approximations'. Recent studies that explore the potential
impact of novel control strategies such as fungal biopesti-
cide sprays have acknowledged this by using a mosquito
age-structured model and adult female age (time since
infection)-dependent mortality [63].

The study of mosquito cohorts in the laboratory presented
here provides patterns of mortality and survival under
conditions in which many individuals may survive until
old age, and therefore represent the baseline state which is
inevitably modified on exposure to natural conditions. It
is particularly important to determine whether age-
dependent mortality is relevant in field situations as it has
previously been accepted that few organisms die of senes-
cence in nature, with the majority being killed by other
hazards such as predators or disease before they reach 'old
age' [64]. Previous research has found both constant sur-
vival rates in natural settings in An. gambige (using
Polovodova age-grading) [9,41], and increasing death
rates with insect age in many mosquito species in the field
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Mosquito life expectancy. Life expectancy of mosquitoes maintained in the laboratory, plotted against time post-engorge-
ment and number of ookinetes per pl of blood fed to the mosquitoes. The life expectancy values are generated from Equation

(4) with S(t, K) as defined in Equation (3).

[12,17,59]. A conceptual shift from age-independent to
age-dependent mortality rates and an understanding of
their relative merits in natural malaria transmission set-
tings requires detailed knowledge of mosquito popula-
tion age structure and its relation to pathogen
transmission dynamics. Current age-grading techniques
used in the field are most commonly based on morpho-
logical changes in the mosquito, such as the detection of
tracheal skeins, which only permits differentiation
between nulliparous and parous females [65], or the enu-
meration of follicular relics for the assessment of physio-
logical age [66], which is difficult to implement in the
field (requiring training and the use of phase-contrast
microscopy), as discussed by Hugo et al, 2008 [67]. There
is therefore a need for the development of novel age-grad-
ing assays that allow investigation of the age structure in
mosquito populations prior to and after interventions.
Additionally, other age-related changes also occur in mos-
quitoes, such as changes in flight performance [68], struc-
ture of the salivary glands [69], immune function [70,71],

and efficiency of detoxification mechanisms [72,73],
showing that mosquitoes, like other organisms, experi-
ence age-related structural and functional deterioration.

Plasmodium-dependent mortality

Ferguson and Read's review [38] illustrated the inconsist-
ent results from research aiming to elucidate the impact of
Plasmodium infection on mosquito mortality. This review
also indicated a lack of systematic research to understand
the effect of increasing parasite density on mosquito sur-
vival, despite it often being postulated that Plasmodium is
only harmful to the vector when parasite loads are very
high [28,35]. The results presented here indicate that mos-
quito mortality was influenced by the range of intensities
of Plasmodium infection explored. In general, the higher
the parasite density fed to the mosquitoes the greater the
mortality experienced as indicated by the Cox regression
results (Table 3). In the first two experiments, mosquito
survival in the group with the lowest Plasmodium density
(100 ookinetes/ul of blood; see Table 1 for resulting
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oocyst and sporozoite densities) was found either not to
differ from, or to be lower than, that in the control group,
whereas significant differences were found with higher
parasite densities, in a dose-dependent manner. This
appears to be consistent with the few previous studies that
have considered infection density [33,37,46,74]. In partic-
ular, Klein et al [37] found that the survival rates of Anoph-
eles dirus with less than 10 Plasmodium cynomolgi oocysts
were not significantly different from those in uninfected
mosquitoes, whereas the mean survival rates of the groups
infected with over 41 oocysts per mosquito were signifi-
cantly lower. Interestingly, the results from the third
experiment in this paper indicated that even very low par-
asite densities (50 ookinetes per pl of blood fed, which
(from Table 1) resulted in a mean oocyst load of 11 per
mosquito on day 10) can reduce mosquito survival. The
fitness cost to mosquitoes of feeding on infected versus
uninfected hosts may even be higher than estimated in
this experimental design, as the control group was fed on
blood with asexual parasitaemia, which by potentially
eliciting costly immune responses, could result in
increased mosquito mortality [61].

The impact of parasite density on mosquito mortality is
further exemplified by the relationship between the
parameter values of the empirical hazard function
describing how mortality rates change over time (Equa-
tion (2) in the Methods section) and parasite density fed
to each of the mosquito groups (Figure 4). Parameter 6
(the intercept), which describes the rate of mortality
immediately post-feeding, varies with parasite density,
being lowest in uninfected mosquitoes and increasing
with parasite density fed to the mosquito. This indicates
that this initial mortality may not only be associated with
bacteria proliferating in the midgut as discussed above,
but that there is also an impact of, or interaction with,
Plasmodium infection, potentially due to rupture of the
midgut causing septic injury, particularly at high parasite
densities when the ability of the midgut to repair and seal
[75,76] may be compromised (as seen in Figure 3 of [77]).
Parameter ¢, which primarily measures the degree of the
subsequent decline in the mortality rate, decreases with
parasite density, indicating a steeper decrease in mortality
with increasing parasite density (due to starting from a
higher intercept). Finally, parameter v, which measures
predominantly the slope of the final rise in mortality rate
with time post-feeding, is positively and significantly
associated with infection density, indicating that mortal-
ity not only increases with age, but that the rate of this
increase is amplified by the intensity of Plasmodium infec-
tion. This suggests that Plasmodium density has the poten-
tial of affecting the shape of the hazard function of
infected Anopheles mosquitoes over their full life-span.
Interestingly, no specific change in mortality rate was seen
on day 12 or 14 when sporozoites were first found in the

http://www.malariajournal.com/content/8/1/228

salivary glands of the sample of mosquitoes dissected
from each of the groups [50].

These results reveal that under laboratory conditions,
Anopheles mortality is not only influenced by Plasmodium
infection, but that this may also be an important source of
density dependence in the system. This may, therefore, go
someway towards explaining the varied and often con-
flicting results found in the past and reviewed by Ferguson
and Read [38]. The majority of previous experiments had
not explored or even reported parasite density, and there-
fore the density used in each study may explain why some
have found evidence for Plasmodium-induced mosquito
mortality whilst others have not. Additionally, Plasmo-
dium-density dependent mortality has the potential to
explain the low oocyst loads found in the field as those
mosquitoes with large numbers of oocysts may have died
as a result of infection as well as, or because of an interac-
tion with, environmental factors. Density-dependent, par-
asite-induced vector mortality has been reported in other
vector-borne diseases, and particularly in the filarial para-
sites, both in captivity [55,78,79] and in the field [80,81].

It is recognized that there are a number of possible mech-
anisms and stages during Plasmodium development in
which infection could damage the vector and therefore
increase mortality. There is mixed evidence for many of
these potential mechanisms, as discussed below, and it is
possible that all could be exacerbated or altered in some
way by the density of infection. The parasite can cause
physical tissue damage, for example ookinetes perforating
the mosquito midgut, and this could also increase suscep-
tibility to bacterial infection and/or invasion by other par-
asites [82,83]. However, the 'time bomb' theory suggests
that as the parasite passes through the midgut wall it ini-
tiates apoptosis and expulsion of the midgut cell, which is
accompanied by a sealing of the midgut epithelium which
regains integrity and a healthy appearance within 48
hours [75,76]. As mentioned above, this seal may not be
entirely aseptic, allowing bacterial infection to spread,
especially during an infection with high parasite numbers
when the ability of the midgut to repair may be compro-
mised or slowed. It has also been postulated that Plasmo-
dium infection may lead to resource depletion in the
mosquito as levels of amino acids in their haemolymph
have been shown to be reduced, and glucose usage has
shown to be up to eight times as much as in uninfected
mosquitoes [84,85]. In contrast however, Rivero and Fer-
guson (2003) [86] found no evidence of a parasite-associ-
ated reduction in the energetic budget of mosquitoes.
Additionally, since infection may be associated with a
reduction in egg production [34,35], which is expensive in
terms of resources, infection may even result in a saving of
nutrients. In addition, mosquitoes have been shown to
mount a variety of immune responses to pathogens [87-
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89], which can be energetically costly, incurring reproduc-
tive costs [90-92]. Such costly immune responses may be
induced by the Plasmodium infection itself and/or by the
increase in gut bacteria due to blood feeding [93].

The feeding behaviour of infected mosquitoes has also
been shown to differ between uninfected and infected
mosquitoes, with infected mosquitoes spending more
time feeding, probing more regularly, more likely taking
multiple blood meals, being more persistent feeders, and
having poorer flight ability [94-98]. These additional
behavioural changes can increase the mortality of infected
mosquitoes whilst feeding in the field [39], and can vary
temporally with the developmental stage of the parasite,
balancing opportunities for Plasmodium transmission
with the risk of feeding-associated mortality [94]. Labora-
tory studies have reported that the feeding persistence of
female An. stephensi is decreased in the presence of Plasmo-
dium yoelii nigeriensis oocysts, but increased when the
malaria has developed into transmissible sporozoites in
the salivary glands [94]. Laboratory experiments, such as
those reported here, exclude these possible indirect costs
of infection such as increased risk of predation, and there-
fore the effect of infection on mosquito mortality may be
more pronounced in the field compared to the laboratory
due to greater levels of environmental stress. Insects in
this study were fed only once and subsequently kept
under controlled laboratory conditions, instead of under-
going their natural gonotrophic cycle of feeding, oviposi-
tion, and host-seeking, which may additionally impact on
their chances of survival.

The work reported here was carried out using an experi-
mental vector-parasite combination, the model system P.
berghei-An. stephensi, which allowed the investigation to
be conducted under tightly controlled conditions. The
average oocyst numbers resulting from the ookinete den-
sities fed to the mosquitoes in this study are higher than
the average number of Plasmodium falciparum oocysts
found in Anopheles gambiae in the field, and therefore the
density dependence found may not be as evident in stud-
ies of vector-parasite combinations found naturally. Addi-
tionally, it is recognized that the analysis of vector-
parasite combinations not naturally found in the field
may increase the chance of finding evidence of Plasmo-
dium-induced vector mortality, as stated by Ferguson and
Read [38]. As well as this perhaps resulting from a lack of
parasite-vector co-adaptation, it may also be due to the
greater likelihood of distinguishing parasite-induced
effects from environmental risks under the more control-
led conditions of the laboratory. In this study the removal
of extraneous variables has permitted the unequivocal
identification of density-dependent Plasmodium induced
Anopheles mortality, and therefore, as in Sinden et al [47],
the results have generated testable hypotheses, which now
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should be followed up with studies of other Plasmodium-
Anopheles combinations, including the less tractable
human malaria parasites and their multiple vector species,
both in the laboratory and in the field.

Conclusions and implications for malaria
transmission and control

These results indicate that, in the model system investi-
gated, the life expectancy of Anopheles mosquitoes is
dependent on both insect age and the density of Plasmo-
dium infection, as depicted in Figure 5. This emphasizes
the importance of testing these hypotheses in combina-
tions of medical importance, and of understanding the
impact of these factors on mosquito mortality, as they
influence the probability of a mosquito surviving the
extrinsic incubation period and contributing to malaria
transmission. Linking these results to previous findings
[47] (which illustrated density-dependent transitions
between sporogony parasite stages), indicates that inter-
mediate 'optimum’' parasite densities may exist for the
parasite to complete transmission, and it is likely that
these optima will depend on the specific Plasmodium-
Anopheles combination. Understanding such intricacies is
of utmost importance, as it is possible that interventions
could have unexpected outcomes; reducing high parasite
load for example, could inadvertently increase the life
expectancy of the vector and relax the density-dependent
constraints operating upon sporogony within the vector,
facilitating successful transmission of the pathogen. As a
result it is important for studies of transmission-blocking
strategies to report efficacy in terms of reductions in prev-
alence as well as parasite density to facilitate understand-
ing of the impact of such interventions on malaria
transmission.

As vector mortality is a particularly sensitive component
of pathogen transmission, quantitative models seeking to
describe transmission dynamics within the vector that do
not include these processes could produce misleading
results or miss epidemiologically important outcomes.
The results presented here suggest that high parasite loads
have the potential to reduce vector competence (summa-
rized as the per capita probability of an ingested gameto-
cyte to generate infectiousness) and vectorial capacity
(which includes the daily probability of vector survival
and the expectation of infective life or 'longevity factor').
Age- and parasite density-dependent mosquito mortality,
as well as density-dependent Plasmodium development are
in the process of being included into mathematical mod-
els that will provide a more comprehensive description of
the processes that influence sporogony in the mosquito
and the expectation of infective life. The usefulness of
such models for the design, development, and evaluation
of transmission-blocking strategies will be reported else-
where.
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