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Abstract
Background: The objective of this study was to identify demographic, environmental and
socioeconomic risk factors and spatial patterns of Plasmodium falciparum parasitaemia in a high
endemicity area of Africa, and to specify how this information can facilitate improved malaria
control at the district level.

Methods: A questionnaire was administered to about 4,000 schoolchildren in 55 schools in
western Côte d'Ivoire to determine children's socioeconomic status and their habit of sleeping
under bed nets. Environmental data were obtained from satellite images, digitized ground maps and
a second questionnaire addressed to school directors. Finger prick blood samples were collected
and P. falciparum parasitaemia determined under a microscope using standardized, quality-
controlled methods. Bayesian variogram models were utilized for spatial risk modelling and
mapping of P. falciparum parasitaemia at non-sampled locations, assuming stationary and non-
stationary underlying spatial dependence.

Results: Two-thirds of the schoolchildren were infected with P. falciparum and the mean
parasitaemia among infected children was 959 parasites/μl of blood. Age, socioeconomic status, not
sleeping under a bed net, coverage rate with bed nets and environmental factors (e.g., normalized
difference vegetation index, rainfall, land surface temperature and living in close proximity to
standing water) were significantly associated with the risk of P. falciparum parasitaemia. After
accounting for spatial correlation, age, bed net coverage, rainfall during the main malaria
transmission season and distance to rivers remained significant covariates.

Conclusion: It is argued that a massive increase in bed net coverage, particularly in villages in close
proximity to rivers, in concert with other control measures, is necessary to bring malaria
endemicity down to intermediate or low levels.
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Background
Malaria remains one of the most pressing public health
and poverty-related issue in the developing world, partic-
ularly in sub-Saharan Africa [1]. Each year, malaria might
claim the lives of >1 million individuals. There are >500
million episodes of clinical Plasmodium falciparum malaria
and the global burden might exceed 40 million disability-
adjusted life years (DALYs) [2-4]. Mortality, morbidity
and economic losses due to malaria could be reduced sig-
nificantly if effective measures, such as sleeping under
long-lasting insecticidal nets (LLINs) and access to
prompt diagnosis and effective treatment using artemisi-
nin-based combination therapy (ACT) were made availa-
ble to all those in need [5]. Interventions aiming at the
control and local elimination of malaria require reliable
risk maps in order to enhance the efficacy and cost-effec-
tiveness of control measures. Since parasitaemia is corre-
lated with clinical manifestations of malaria [6],
parasitaemia risk maps are a useful tool for the spatial tar-
geting of control interventions. Ongoing blood sampling
at the household level on a broad scale is expensive and
not practical for surveillance purposes. District-level plan-
ning and targeting would be greatly facilitated by rapid
and non-invasive identification of high-risk zones.

Over the past decade, geographical information system
(GIS) and remote sensing technologies have been widely
used for mapping malaria [1,7,8]. However, purely GIS
and remote sensing approaches have a number of short-
comings, due to their inability to quantify the relation
between environmental factors and malaria risk and, con-
sequently, infer predictions from statistical models [9].
Furthermore, classical statistical models have been widely
employed to evaluate the relationship between disease
risk and demographic, environmental and socioeconomic
factors, assuming independence of spatially-explicit data
[10-12]. Since disease data cluster in space, the assump-
tion of independence is violated, and hence the statistical
significance of the model covariates often overestimated
[13]. It follows that predictive risk models lack accuracy.

In recent work by the authors, Bayesian non-stationary
geostatistical models were employed for spatial risk profil-
ing of malaria [9,14,15]. The strengths of these models are
their accountancy for spatial dependence in the data, and
the assumption of non-stationary spatial processes. The
use of non-stationary models is further justified on the
ground that local characteristics related to human behav-
iour and environment, including vector ecology, depend
on location. Consequently, assuming stationarity may
provide unreliable results when analyzing spatially-
explicit disease data.

Here, risk factors and spatial patterns of P. falciparum par-
asitaemia among school-aged children in a high endemic-

ity setting of western Côte d'Ivoire are elucidated. An
integrated approach, using GIS and remotely-sensed envi-
ronmental data, questionnaire and parasitological survey
data and Bayesian geostatistical models was employed.
Finally, the use of non-stationary models for risk profiling
of P. falciparum parasitaemia at a regional scale was
explored. The identified risk factors can help district
health planners to implement malaria control interven-
tions in a spatially-explicit manner, followed by monitor-
ing and surveillance so that control tools can be fine-
tuned over time to enhance their performance [16].

Methods
Study area and population
This study was carried out in the region of Man, a moun-
tainous area in the western part of Côte d'Ivoire, which is
highly endemic for P. falciparum malaria, as well as
helminth infections [17-21]. Climate conditions are trop-
ical with rains occurring from March to October with
highest precipitation observed in July and August. The dry
season extends from November to February.

The present study was carried out between October 2001
and February 2002. Schoolchildren from 57 rural schools
attending grades 3-5 were invited for finger prick blood
samples and two questionnaires were administered, one
addressed to schoolchildren and the second one to school
directors.

Ethical clearance
The study protocol was approved by the institutional
research commissions of the Swiss Tropical Institute
(Basel, Switzerland) and the Centre Suisse de Recherches
Scientifiques (Abidjan, Côte d'Ivoire). Ethical clearance
was obtained by the Ministry of Health in Côte d'Ivoire.

Cross-sectional surveys
Thin and thick blood films were prepared from finger
prick blood samples on microscope slides, air-dried and
transferred to a laboratory in the town of Man. Slides were
stained with 10% Giemsa and examined under a light
microscope by experienced laboratory technicians. The
number of Plasmodium spp. parasites was counted by
assuming a standard white blood cell count of 8,000/μl of
blood.

The schoolchildren questionnaire was used to obtain
information about assets on ownership and household
characteristics (total of 12 indicators), and perceived
symptoms and diseases (total of 17 morbidity indicators).
In addition, children were asked whether they slept under
a bed net and whether they were living in the village of the
school or in a nearby village or hamlet. An asset-based
approach was used to stratify schoolchildren into five
socio-economic groups [19].
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The questionnaire addressed to school directors included
three main topics, i.e., (i) village demographics, (ii)
health issues and (iii) local environment (e.g., presence of
swamps, irrigation fields and pasture nearby the village
and the estimated distances). In case the school directors
felt they were not sufficiently acquainted to respond to
these questions, they were invited to consult with other
village authorities.

Environmental data
Geographical coordinates for each school were collected
using a hand-held Magellan 320 global positioning sys-
tem (GPS; Thales Navigation, Santa Clara, CA, USA). Dis-
tance to rivers was calculated from digitized ground maps.
Normalized difference vegetation index (NDVI) and land
surface temperature (LST) were downloaded at 1 × 1 km
spatial resolution from Moderate Resolution Imaging
Spectroradiometer (MODIS) from USGS EROS Data Cen-
tre. Rainfall estimate (RFE) data with an 8 × 8 km spatial
resolution from Meteosat 7 satellite were obtained from
the Africa Data Dissemination Service (ADDS). NDVI, LST
and RFE were downloaded for the period of September
2001 to August 2002 and processed as detailed elsewhere
[22]. A digital elevation model (DEM) was employed orig-
inating from the Shuttle Radar Topography Mission
(SRTM) to delineate watersheds [23].

Data management and analysis
Data were entered twice and cross-checked. Geographical
data were displayed in ArcView GIS version 3.2 (Environ-
mental Systems Research Institute, Inc., Redlands, CA,
USA). Schoolchildren were subdivided into two age
groups: (i) 6-10 years and (ii) 11-16 years. Bed net cover-
age was calculated as the percentage of schoolchildren
who reported sleeping under a bed net at the unit of the
school.

All demographic, environmental and socioeconomic cov-
ariates were fitted into negative binomial regression mod-
els on the P. falciparum parasitaemia data, using STATA
version 9.0 (Stata Corporation, College Station, TX, USA).
Covariates with a significance level <0.15 were built into
three different spatial models for P. falciparum parasitae-
mia using WinBUGS version 1.4 (Imperial College &
Medical Research Council, London, UK). The models
were (i) a stationary Bayesian negative binomial regres-
sion model, and (ii) two non-stationary Bayesian negative
binomial regression models. To take into account the spa-
tial heterogeneity, location-specific random effects were
integrated in the logistic models, assuming that they are
distributed according to a multivariate normal distribu-
tion with variance-covariance matrix related to the vario-
gram of the spatial process. Markov chain Monte Carlo
(MCMC) simulation was employed to estimate the model
parameters [24]. Model covariates from the final model

were utilized to generate a smooth map of P. falciparum
parasitaemia using Bayesian kriging [25].

Model specification

To model P. falciparum parasitaemia, let Zij be the P. falci-

parum parasite count in blood films of schoolchild j in vil-
lage i. It was assumed that Zij arises from a negative

binomial distribution, Zij~Nb(μij, r) with mean μij and

over-dispersion (extra variation) r. The covariates Xij and

village-specific random effect ϕi were modeled with

log(μij) as the outcome, that is log(μij) = β + ϕi, where

β is the vector of regression coefficients. The spatial corre-

lation was introduced on the ϕi's by assuming that ϕ  =

(ϕ1, ϕ2, ..., ϕN)T has a multivariate normal distribution, β

~MVN(0, Σ), with variance-covariance matrix Σ. Moreo-

ver, an isotropic spatial process was assumed, i.e., Σmn = σ2

exp(-udmn), where dmn is the Euclidean distance between

village m and village n, σ2 is the geographic variability
known as the sill, and u is a smoothing parameter that
controls the rate of correlation decay with increasing dis-
tance. To take into account non-stationarity, the study
area was partitioned in K subregions and a local stationary

spatial process  was assumed in each subregion k = 1,

..., K. One type of model included ecological subregions,
i.e., watersheds of rivers, whereas the other type included
fixed subregions, i.e., the study area was subdivided into
two subregions on a diagonal from the north-western cor-
ner to the south-eastern corner of the study area. Spatial
correlation in the study area was viewed as a mixture of

the different spatial processes. The spatial random effect ϕi

at location i was modeled as a weighted average of the
subregion-specific (independent) stationary processes as

follows: , with weights aik, which are

decreasing functions of the distance between location i

and the centroids of the subregions k [26]. Assuming ωk

~MVN(0, Σk), , it follows that

, with Ak = diag{a1k, a2k, ..., ank}.

The range is defined as the minimum distance at which
spatial correlation between locations is below 5%. It can

be calculated as  and is expressed in meters.
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Model implementation

Following a Bayesian model specification, prior distribu-
tions for the model parameters were adopted. Vague Nor-

mal distributions for the β parameters with large variances
(i.e., 10,000), gamma prior for r with large variance,

inverse gamma priors for  and uniform priors for uk, k

= 1, ..., K were chosen. MCMC simulation was employed
to estimate the model parameters [24]. A single chain
sampler with a burn-in of 5,000 iterations was run. Con-
vergence was assessed by inspection of ergodic averages of
selected model parameters. Covariates from the binomial
regression models were used to generate a smooth risk
map for P. falciparum parasitaemia using Bayesian kriging
[25].

Model performance and predictive ability

The deviance information criterion (DIC) was utilized to
assess the model performance [27]. Additionally, a two-
stage approach was adapted for assessment of model per-
formance based on the predictive ability. First, a training
sample from the current database was utilized by fitting
individual-level data from 43 randomly selected schools
into the negative binomial regression models. The indi-
vidual-level data from the remaining schools were utilized
for prediction purposes. 95%, 75%, 50%, 25% and 1-5%
Bayesian credible intervals (BCIs) of the posterior predic-
tive distribution of test individuals were calculated. The
model with the highest percentage of correctly predicted
individual parasitaemia within the interval with the
smallest coverage was considered as the best predicting
one. Second, the predictive ability of the models was
assessed using a Bayesian p-value analogue calculated
from the predictive posterior distribution, recently pre-
sented by Gosoniu and colleagues [9]. The Bayesian p-
value is calculated as

. I(·)

denotes the number of points fulfilling the specific condi-
tion in the argument, pi

obs is the observed parasitaemia of

an individual and pi
rep = pi

rep(1),..., pi
rep(1000) are 1,000 repli-

cated data from the predictive distribution for a test indi-
vidual. When the median of the predictive posterior
distribution is close to 0.5, the model predicts the
observed data well. The model with median p-values clos-
est to 0.5 is considered the best performing one.

Results
Study cohort
A total of 3,962 schoolchildren had complete data
records, i.e., were individually interviewed and had P. fal-

ciparum parasitaemia results from blood film examina-
tion. There were 2,340 boys (59.1%) and 1,622 girls
(40.9%). With regard to age, 1,684 children (42.5%) were
between 6 and 10 years, whereas 2,278 children (57.5%)
were aged 11-16 years.

Plasmodium falciparum parasitaemia
Almost two out of three children were infected with P. fal-
ciparum (64.9%). Other Plasmodium species were rare:
Plasmodium malariae and Plasmodium ovale infections were
found in 117 (3.0%) and 7 children (0.2%), respectively.
All subsequent analyses focus on P. falciparum. At the unit
of the school, the prevalence of P. falciparum ranged from
34.0% to 91.9%.

Among P. falciparum-infected children, the mean parasi-
taemia was 959 parasites/μl of blood. Whilst approxi-
mately a third of the children had no P. falciparum
infection as determined by light microscopy, a third of the
children had a P. falciparum parasitaemia <500 parasites/
μl of blood (37.9%), and one-fourth had a parasitaemia
ranging between 500 and 5,000 parasites/μl of blood
(25.1%). Only 72 (1.8%) of the children had a parasite
count >5,000 parasites/μl of blood. At the unit of the
school, the mean P. falciparum parasitaemia ranged from
63 to 2,178 parasites/μl of blood.

Risk profiling and spatial patterns
Results of the bivariate non-spatial analyses are shown in
Table 1. Children aged 6-10 years were at a significantly
higher risk of having a high P. falciparum parasitaemia
than their older peers. Sex was not significantly associated
with P. falciparum parasitaemia. Children from the fourth
and fifth quintile (the less poor and least poor) were at a
higher risk of having higher parasitaemia levels compared
to the poorest schoolchildren. Other significant risk fac-
tors included not sleeping under a bed net, bed net cover-
age at the unit of school, NDVI, RFE, LST, close proximity
to standing water (rivers, swamps and irrigated fields) and
absence of pasture near villages. There was no significant
association between P. falciparum parasitaemia and dis-
tance to the closest health care facility. Finally, no signifi-
cant association was found between P. falciparum
parasitaemia and the children's place of residence (living
in the same village as the school or in a nearby village or
hamlet).

The mean P. falciparum parasitaemia at the unit of the
school is shown in Figure 1. Three schools in the north-
eastern part of the study area and one in the central part
had a mean parasitaemia >1,500 parasites/μl of blood.

Spatial analyses and model performance
Results of the spatial analyses are summarized in Table 2.
Children's age, bed net coverage and mean RFE during the
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main malaria transmission season (June to August) were
significant covariates in the stationary negative binomial
regression model. The three covariates were also found
significant in the non-stationary model with ecological
subregions. In contrast, mean RFE during the transmis-
sion season was not significant in the negative binomial
regression model with fixed subregions. In the latter

model, age, bed net coverage and distance to rivers were
significant covariates. There was a clear over-dispersion (r
= 0.16) of the data. The range where spatial correlation is
below 5% was 1.9 km in the stationary model. For the
non-stationary model with ecological subregions, the
ranges were 2.3 km, 1.9 km and 2.1 km, respectively. For
the non-stationary model with fixed subregions, the

Table 1: Results of the bivariate negative binomial regression models for P. falciparum parasitaemia among 3,962 schoolchildren from 
55 rural schools of western Côte d'Ivoire.

Source of data Indicator Plasmodium falciparum parasitaemia

IRRa 95% CIb P-value (AICc)

School registry Age
6-10 years 1.00
11-16 years 0.70 0.60, 0.83 <0.001

Questionnaire addressed to schoolchildren Socioeconomic status
Most poor 1.00
Very poor 1.02 0.79, 1.32
Poor 0.93 0.72, 1.20
Less poor 1.34 1.04, 1.73
Least poor 1.34 1.04, 1.73 0.005

Sleeping under a bed net 0.75 0.58, 0.98 0.040
Bed net coverage

<25% 1.00
≥ 25% 0.38 0.28, 0.53 <0.001

Living in the same village as school 0.86 0.70, 1.06 0.162
Health district registry Distance to health care facility 1.00 0.93, 1.08 0.916
Questionnaire addressed to school directors Presence of swamps for rice cultivation 0.85 0.72, 1.01 0.124

Distance to irrigated field
<500 m 1.00
500-999 m 0.55 0.32, 0.96
≥ 1000 m 0.86 0.59, 1.22 0.117

Presence of pasture 0.77 0.62, 0.96 0.022
Satellite images NDVI

Mean I§ 1.03 0.94, 1.12 0.532 (46,255)
Mean II¶ 1.06 0.97, 1.15 0.177 (46,253)
Mean III|| 0.95 0.88, 1.03 0.205 (46,254)
Annual mean 1.00 0.92, 1.08 0.950 (46,255)
Mean of the transmission season 1.14 1.05, 1.23 0.001 (46,245)

Annual mean NDVI (categorized)
<0.65 1.00
0.65-0.70 1.66 1.30, 2.12
>0.70 1.31 1.05, 1.64 <0.001 (46,240)

RFE
Mean Id 1.06 0.98, 1.15 0.122 (46,253)
Mean IIe 1.01 0.94, 1.09 0.742 (46,255)
Mean IIIf 1.11 1.02, 1.20 0.015 (46,249)
Sum of annual rainfall 1.17 1.08, 1.26 <0.001 (46,238)

Mean of the transmission seasong 1.22 1.13, 1.32 <0.001 (46,230)
Maximum LST 1.09 1.00, 1.18 0.048

Digitized ground maps Distance to rivers 0.85 0.78, 0.92 <0.001 (46,241)
Distance to rivers (categorized)

<500 m 1.00
500-999 m 0.98 0.80, 1.21
≥ 1000 m 0.62 0.51, 0.76 < 0.001 (46,236)

aIRR: incidence-rate ratio; bCI: confidence interval; cAIC: Akaike information criterion; dMean I: mean value during the month prior to blood sample 
collection; eMean II: mean value during the month of collection and the previous month; fMean III: mean value during the month of collection and 
the two previous months; gThe transmission season is during June to August
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ranges were 1.9 km and 2.3 km. Geographical variability
differed depending on the subregion in the non-station-
ary model with ecological subregions.

For the assessment of the model performance, the spatial
models without the covariates bed net coverage, presence
of swamps, distance to irrigated fields and presence of pas-
ture were used, since no information was available for pre-
diction. Results of the spatial analyses of those models are
shown in Table 3. The differences between DICs for the
three models were only marginal, and hence the results
suggest that the stationary and the non-stationary models
performed similarly. Table 4 summarizes the results of the
models' predictive ability using different BCIs. Virtually
no difference was found between the stationary and the
non-stationary models, although the latter type of models
seemed to perform slightly better at the smallest BCIs. The
p-values calculated from the predictive distribution of the
1,034 selected individuals for model validation revealed
similar distributions for all three models, including medi-

ans, suggesting that the models had the same predictive
ability.

Risk mapping
Figures 2, 3, 4, 5, 6 and 7 display the results from the three
stationary and non-stationary P. falciparum parasitaemia
models. The maps were based on models without the cov-
ariates bed net coverage, presence of swamps, distance to
irrigated fields and presence of pasture, as this informa-
tion was missing for prediction. There is a clear difference
in the parasitaemia predictions between stationary and
non-stationary models. In the non-stationary map
inferred from the non-stationary model with ecological
subregions, the predicted parasitaemia was considerably
higher in the north-eastern part of the study area com-
pared to the maps derived from the stationary model and
the non-stationary model with fixed subregions. How-
ever, the standard deviations of the predicted parasitae-
mia inferred from the non-stationary model with
ecological subregions show that in this area the prediction

Mean P. falciparum parasitaemia among 3,962 schoolchildren from 55 sampled schools in the region of Man, western Côte d'Ivoire during the school year 2001/2002Figure 1
Mean P. falciparum parasitaemia among 3,962 schoolchildren from 55 sampled schools in the region of Man, 
western Côte d'Ivoire during the school year 2001/2002. The normalized difference vegetation index (NDVI) is dis-
played in the background.
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error is highest. Nonetheless, all three standard deviation
maps show increased standard errors in the north-eastern
part of the Man area in western Côte d'Ivoire.

Discussion
Current anti-malarial prophylaxis and treatment, and vec-
tor control using insecticides are susceptible to the emer-
gence of resistant malarial parasites and vectors. Hence,
there is a pressing need for other interventions incorpo-
rated into the programme that can delay the onset of

Table 2: Multivariate stationary and non-stationary spatial analyses results for P. falciparum parasitaemia for the region of Man, 
western Côte d'Ivoire.

Indicator Bayesian negative binomial regression models

Stationary Non-stationary with ecological 
subregions

Non-stationary with fixed subregions

IRRa 95% BCIb IRRa 95% BCIb IRRa 95% BCIb

Age (years)
6-10 1.00 1.00 1.00
11-16 0.72 0.60, 0.85 0.71 0.60, 0.83 0.71 0.59, 0.83

Socioeconomic status
Most poor 1.00 1.00 1.00
Very poor 1.02 0.77, 1.33 1.00 0.75, 1.29 1.01 0.77, 1.30
Poor 0.97 0.74, 1.26 0.96 0.73, 1.24 0.97 0.74, 1.25
Less poor 1.14 0.85, 1.51 1.09 0.82, 1.43 1.10 0.83, 1.43
Least poor 1.08 0.79, 1.44 1.04 0.76, 1.39 1.03 0.76, 1.37

Sleeping under a bed 
net

0.86 0.63, 1.14 0.88 0.65, 1.17 0.87 0.65, 1.16

Bed net coverage (%)
< 25 1.00 1.00 1.00
≥ 25 0.51 0.24, 0.98 0.49 0.27, 0.82 0.50 0.26, 0.90

Presence of swamps 
for rice cultivation

1.11 0.71, 1.63 1.23 0.80, 1.77 1.13 0.73, 1.67

Distance to irrigated 
field (m)

< 500 1.00 1.00 1.00
500-999 0.74 0.17, 2.23 0.66 0.23, 1.48 0.64 0.21, 1.59
≥ 1000 0.92 0.35, 2.14 0.95 0.47, 1.74 0.89 0.39, 1.76

Presence of pasture 0.99 0.57, 1.59 0.88 0.57, 1.32 0.92 0.58, 1.43
NDVI (categorized)

< 0.65 1.00 1.00 1.00
0.65-0.70 1.42 0.81, 2.43 1.57 0.95, 2.40 1.61 0.97, 2.49
> 0.70 0.76 0.42, 1.33 0.78 0.46, 1.24 0.78 0.46, 1.24

Mean rainfall during 
transmission season

1.28 1.00, 1.61 1.24 1.01, 1.51 1.20 0.95 1.54

Maximum LST 0.93 0.75, 1.15 0.95 0.76, 1.15 0.93 0.72, 1.16
Distance to rivers (m)

< 500 1.00 1.00 1.00
500-999 1.13 0.68, 1.74 1.08 0.73, 1.56 1.03 0.66, 1.56
≥ 1000 0.72 0.44, 1.09 0.71 0.46, 1.08 0.63 0.42, 0.94

rc 0.16 0.16, 0.17 0.16 0.16, 0.17 0.16 0.16, 0.17
ρ1

d 0.0016 0.0005, 0.003 0.0014 0.0002, 0.002 0.0013 0.0002, 0.002
ρ2 0.0016 0.0005, 0.003 0.0016 0.0005, 0.003
ρ3 0.0013 0.0002, 0.002
σ1

2e 0.33 0.17, 0.57 0.14 0.02, 0.39 0.13 0.02, 0.39
σ2

2 1.20 0.40, 3.08 0.58 0.26, 1.16
σ3

2 0.21 0.03, 0.60
DICf 46,047.4 46,044.9 46,045.3

aIRR: incidence-rate ratio; bBCI: Bayesian credible interval; cr: over-dispersion parameter; dρ: scalar parameter representing the rate of decline of 
correlation with distance between points; eσ2: estimate of geographic variability; fDIC: deviance information criterion; a composite measure of how 
well the model does, i.e. a compromise between fit and complexity, with smaller DICs indicating better performance of the model.
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resistance. There is also a need for new drugs and insecti-
cides and a malaria vaccine, coupled with improved mon-
itoring and surveillance [28]. Mapping areas where people
are at an elevated risk of infection and P. falciparum para-
sitaemia is important for the design and implementation
of district-based malaria control interventions.

Here an integrated approach for spatial risk profiling of P.
falciparum parasitaemia was used, building on previous
research pertaining to the mapping and prediction of
helminth infections in the Man region, western Côte
d'Ivoire [29]. Reasons why this approach is termed 'inte-
grated' are as follows. First, a diversity of data (demo-
graphic, environmental and socioeconomic) was
obtained from different sources, including cross-sectional

questionnaire and epidemiological surveys and remote
sensing. Second, data covered different spatial scales. For
example, RFE, LST and NDVI data were collected by
remote sensing at a large spatial scale. At a small spatial
scale, data on proximity to standing water (e.g., swamps
and irrigated agricultural fields) were obtained from ques-
tionnaires addressed to school directors and from digi-
tized maps. Third, the data were collated, stored and
managed using a GIS. Finally, Bayesian geostatistical
models were employed to produce smoothed risk maps of
P. falciparum parasitaemia, and to compare model out-
comes assuming either stationary or non-stationary
dependence. Age, socioeconomic status, sleeping under a
bed net, bed net coverage and different environmental
factors - both small-scale (e.g., close proximity to standing

Table 3: Multivariate stationary and non-stationary spatial analyses results for P. falciparum parasitaemia for the region of Man, 
western Côte d'Ivoire. 

Indicator Bayesian negative binomial regression models

Stationary Non-stationary with ecological sub-
regions

Non-stationary with fixed sub-
regions

IRRa 95% BCIb IRRa 95% BCIb IRRa 95% BCIb

Age (years)
6-10 1.00 1.00 1.00
11-16 0.72 0.60, 0.85 0.71 0.60, 0.83 0.71 0.59, 0.83

Socioeconomic status
Most poor 1.00 1.00 1.00
Very poor 1.02 0.77, 1.33 1.00 0.75, 1.30 1.00 0.76, 1.23
Poor 0.98 0.74, 1.27 0.96 0.73, 1.25 0.96 0.73, 1.22
Less poor 1.15 0.87, 1.52 1.11 0.84, 1.46 1.11 0.83, 1.44
Least poor 1.09 0.80, 1.46 1.07 0.79, 1.42 1.05 0.77, 1.39

Sleeping under a bed 
net

0.81 0.60, 1.07 0.81 0.61, 1.07 0.82 0.61, 1.08

NDVI (categorized)
<0.65 1.00 1.00 1.00
0.65-0.70 1.44 0.84, 2.35 1.54 0.94, 2.36 1.69 1.04, 2.54
>0.70 0.77 0.43, 1.29 0.76 0.46, 1.19 0.78 0.49, 1.21

Mean rainfall during 
transmission season

1.27 1.03, 1.56 1.25 1.00, 1.54 1.20 0.96, 1.51

Maximum LST 0.92 0.75, 1.12 0.91 0.75, 1.10 0.89 0.72, 1.09
Distance to rivers (m)

<500 1.00 1.00 1.00
500-999 1.19 0.76, 1.80 1.08 0.73, 1.56 1.01 0.98, 1.55
≥ 1000 0.73 0.46, 1.10 0.71 0.46, 1.08 0.61 0.39, 0.92

rc 0.16 0.15, 0.17 0.16 0.15, 0.17 0.16 0.15, 0.17
ρ1

d 0.0016 0.0005, 0.002 0.0013 0.0002, 0.002 0.0014 0.0003, 0.003
ρ2 0.0016 0.0005, 0.002 0.0016 0.0006, 0.003
ρ3 0.0014 0.0002, 0.002
σ1

2e 0.33 0.18, 0.54 0.18 0.03, 0.45 0.14 0.02, 0.37
σ2

2 1.08 0.37, 2.73 0.60 0.27, 1.19
σ3

2 0.26 0.06, 0.68
DICf 46,046.4 46,044.6 46,045

These models were used for calculation of model performance and prediction.

aIRR: incidence-rate ratio; bBCI: Bayesian credible interval; cr: over-dispersion parameter; dρ: scalar parameter representing the rate of decline of 
correlation with distance between points; eσ2: estimate of geographic variability; fDIC: deviance information criterion; a composite measure of how 
well the model does, i.e. a compromise between fit and complexity, with smaller DICs indicating better performance of the model.
Page 8 of 16
(page number not for citation purposes)



Malaria Journal 2009, 8:252 http://www.malariajournal.com/content/8/1/252
water) and large-scale (e.g., LST, NDVI and RFE) - were
significant risk factors for P. falciparum parasitaemia.
Interestingly, after introducing spatial correlation into the
regression analyses, age, bed net coverage and - depending
on the type of the model - mean RFE over the malaria
transmission season, and distance to rivers appeared to be
significant risk factors for P. falciparum parasitaemia.
Appraisal of model performance revealed no difference

when comparing stationary with non-stationary models.
However, the non-stationary model with ecological subre-
gions showed that the geographical variability is different
between subregions.

Two shortcomings of the present study should be noted.
First, school-aged children are usually not the most
severely affected group with malaria in highly endemic

Table 4: Percentage of test individuals with P. falciparum parasitaemia falling within selected Bayesian credible intervals (BCIs).

BCIs Bayesian negative binomial regression model

Stationary Non-stationary (ecological subregions) Non-stationary (fixed subregions)

95% 99% 99% 99%
75% 94% 93% 93%
50% 63% 63% 64%
25% 14% 13% 13%
5% 2% 1% 2%
4% 1% 1% 1%
3% 1% 1% 1%
2% 1% 1% 1%
1% 0% 0% 0%

Smoothed map of P. falciparum parasitaemia derived from a stationary negative binomial regression model using Bayesian in the region of Man, western Côte d'IvoireFigure 2
Smoothed map of P. falciparum parasitaemia derived from a stationary negative binomial regression model 
using Bayesian in the region of Man, western Côte d'Ivoire.
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areas. Since the western part of Côte d'Ivoire is holoen-
demic for malaria [15,17,18,21], it is likely that school-
aged children have acquired some kind of immunity to
malarial parasites [30,31]. However, parasitaemia levels
in school-aged children might be higher than in younger
children. Underlying reasons are that school-aged chil-
dren in high endemicity areas are mainly asymptomatic
carriers, they might be more exposed to mosquito bites
due to their behaviour, they are less likely to be treated
because of a lower incidence of clinical malaria, and
hence they might harbour considerably more parasites
than preschool-aged children. Second, due to the possibil-
ity of sequestration mechanisms of infected erythrocytes
from peripheral blood, as well as partially acquired
immunity, microscopic examination of only a single fin-
ger prick blood sample might have underestimated the
true prevalence of infection, and P. falciparum parasitae-
mia might have been slightly different [32-34].

Notwithstanding these shortcomings, several risk factors
were found to be associated with P. falciparum parasitae-
mia, including demographic factors (e.g., age), socioeco-
nomic factors, personal preventive measures (e.g.,

sleeping under a bed net and bed net coverage) and a host
of environmental factors. As expected, children who
reported sleeping under a bed net were less likely to have
a high malaria parasitaemia as were children from schools
with a bed net coverage >25%. A study from rural Tanza-
nia revealed that people from poorer households were less
likely to access preventive measures [35]. A similar result
has been reported for the population under study here
[19]. Based on these observations and the common belief
that the poorest population segments would share the
highest burden of malaria, the current results surprisingly
point in the opposite direction: schoolchildren from bet-
ter-off households were more likely to have a higher par-
asitaemia than their poorer peers. This result is in
accordance with previous work focusing on spatial risk
profiles of P. falciparum prevalence in the same group of
children [15] and consequently warrants further investiga-
tion.

For the current mapping of P. falciparum parasitaemia, a
similar geostatistical approach was used as before when
modeling P. falciparum prevalence data [15] and common
helminth infections [22,23,36]. Importantly, the statisti-

Standard deviation map of the predicted P. falciparum parasitaemia derived from a stationary negative binomial regression model using Bayesian kriging in the region of Man, western Côte d'IvoireFigure 3
Standard deviation map of the predicted P. falciparum parasitaemia derived from a stationary negative bino-
mial regression model using Bayesian kriging in the region of Man, western Côte d'Ivoire.
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cal significance of several covariates changed once spatial
correlation had been taken into account. For example,
children's socioeconomic status, sleeping under a bed net
and several environmental factors - most notably LST,
NDVI, close proximity to standing water and presence of
pasture - were not significant anymore in the spatial mod-
els. This issue might be explained because omission of
spatial correlation, when analysing spatially-explicit data,
overestimates the significance of the regression coeffi-
cients [13]. In contrast to previous spatial analyses of P.
falciparum prevalence data, it was found that environmen-
tal factors such as rainfall during the main malaria trans-
mission season and distance to the nearest permanent
river were significant predictors for P. falciparum parasitae-
mia. These environmental covariates are related to the
presence and abundance of malaria vectors, including
Anopheles gambiae and Anopheles funestus, which are the
key vector species as found in previous work in the nearby
forest and wet Savannah zones of Côte d'Ivoire [37,38]
and the medium-sized town of Man located in the centre
of the current study area [20]. As shown in a study from
Burkina Faso these vectors breed in small pools (An. gam-
biae) and larger semi-permanent water bodies (An. funes-

tus) [39]. In previous research pertaining to P. falciparum
prevalence data, most of the environmental factors
included had a large spatial scale and none of the environ-
mental covariates was found significant [15]. Hence, it
was concluded that environmental data at a small spatial
scale are necessary for more precise spatial risk profiling at
the district level where decisions are usually made for the
control of malaria and other infectious diseases. Indeed,
including information obtained from interviewing the
directors of schools about the proximity of residential
houses to standing water revealed a number of significant
environmental covariates in the non-spatial analyses,
although there was a lack of statistical significance in the
spatial models. At a more local or regional scale, only dis-
tance to rivers, which was used as a proxy for standing
water, was significant in one of the spatially-explicit mod-
els. Further ground-based investigations are required,
since only data derived from questionnaires and digitized
maps were used rather than ecological surveys to explore
small-scale environmental features. It will also be interest-
ing to determine the use of topography-derived wetness
indices, which have been linked to household malaria risk
at small spatial scale in two communities in the Kenyan

Smoothed map of P. falciparum parasitaemia derived from a non-stationary negative binomial regression model with ecologic subregions using Bayesian kriging in the region of Man, western Côte d'IvoireFigure 4
Smoothed map of P. falciparum parasitaemia derived from a non-stationary negative binomial regression 
model with ecologic subregions using Bayesian kriging in the region of Man, western Côte d'Ivoire.
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highlands [40]. Perhaps somewhat surprising at first, the
present spatial analyses showed that RFE during the main
malaria transmission season, which is rather a broad scale
indicator, indicated the spatial heterogeneity of parasitae-
mia in the study area. This observation might be
explained by the distinct climatic conditions, i.e., higher
precipitation in the mountainous northern part of the
study area.

Comparing the performance of different models did not
reveal any significant difference in the predictive ability
between stationary and non-stationary models, and hence
the predicted parasitaemia risk maps were similar. Inter-
estingly though, the non-stationary model with ecological
subregions predicted a slightly larger area with high para-
sitaemia in the north-eastern part of the study area. The
corresponding standard deviations of the map showed
that uncertainty was particularly high in this subregion. A
likely explanation of this observation is that there were
fewer sampled locations in that specific subregion (Figure
1). However, uncertainty in the north-eastern part of the
study area was also elevated (though to a lesser extent)

when employing a stationary and a non-stationary model
with fixed subregions. Of note, the spatial parameters in
the non-stationary model with ecologic subregions
revealed that geographic variability differed between sub-
regions. Consequently, this would rule in favour of using
non-stationary models for predicting P. falciparum parasi-
taemia. Previous spatial analyses of P. falciparum preva-
lence in the same area revealed that non-stationary
models performed somewhat better than stationary mod-
els [15].

An important aspect of the current study is that the statis-
tical model approach influences not only the spatial
parameter estimates, including the prediction maps and
standard deviations of the prediction, but also the signifi-
cance of malaria risk indicators. Depending on the statis-
tical model chosen, i.e., stationary or non-stationary, the
significance of several environmental factors changed. For
example, in the stationary and the non-stationary models
with ecological subregions, mean RFE during the main
malaria transmission season was significantly explaining
the geographical heterogeneity, whereas in the non-sta-

Standard deviation map of the predicted P. falciparum parasitaemia derived from a non-stationary negative binomial regression model with ecologic subregions using Bayesian kriging in the region of Man, western Côte d'IvoireFigure 5
Standard deviation map of the predicted P. falciparum parasitaemia derived from a non-stationary negative 
binomial regression model with ecologic subregions using Bayesian kriging in the region of Man, western Côte 
d'Ivoire.
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tionary model with fixed subregions, this covariate was
not significant. Instead, distance to rivers appeared as a
significant covariate in the non-stationary model with
fixed subregions. Such differing results have also been
reported by others when comparing stationary and non-
stationary models for the risk of malaria across Mali [9].
The covariate mean RFE during the main malaria trans-
mission season had the lower BCIs near 1 in both station-
ary and non-stationary models with ecological
subregions, and the increase in odds due to increased rain-
fall was only 0.28 and 0.24, respectively. In contrast, the
non-stationary model with fixed subregions seems partic-
ularly promising, as the upper BCI for the covariate dis-
tance to rivers was not close to 1 and the parasitaemia risk
decreased by over a third with increasing distance from
rivers.

Employing a spatially-explicit risk profiling approach,
demographic, environmental and socioeconomic risk fac-
tors were identified that govern the geographic distribu-
tion of P. falciparum parasitaemia in a high endemicity
area at the district level. This information can be utilized
for designing and implementing malaria control interven-
tions. In particular, at the time of the study in 2001/2002,

virtually no malaria control interventions were carried out
in the region of Man. The very low frequency of school-
children reported sleeping under a bed net (< 10%) docu-
ments this issue [19]. Although bed nets were available for
purchase from local dispensaries and the district hospital
in the town of Man, the price was perceived as too high. It
is speculated that the malaria situation in this region has
not improved, partially explained by an armed conflict
starting in September 2002 that also hit the region of Man
and resulted in a collapse of the health care delivery sys-
tems [41,42]. Available information supports this claim;
coverage of bed nets (ITNs) was reported below 5% in
Côte d'Ivoire at a national scale [43] and in the Man
region in particular [44]. The results further suggest that
health-seeking regarding prevention and treatment of
malaria at dispensaries was weak, as no statistical signifi-
cance was found with regards to distance to a health post.

Conclusion
A massive scale-up of bed net coverage in the region of
Man, ideally promoting LLINs is indicated. Villages
located in the north-eastern part of the study area and
those in close proximity to rivers should be targeted first
to have the strongest impact. Once control interventions

Smoothed map of P. falciparum parasitaemia derived from a non-stationary negative binomial regression model with fixed sub-regions using Bayesian kriging in the region of Man, western Côte d'IvoireFigure 6
Smoothed map of P. falciparum parasitaemia derived from a non-stationary negative binomial regression 
model with fixed subregions using Bayesian kriging in the region of Man, western Côte d'Ivoire.
Page 13 of 16
(page number not for citation purposes)



Malaria Journal 2009, 8:252 http://www.malariajournal.com/content/8/1/252
will start to take off, it is conceivable that the malaria sit-
uation will become more heterogeneous across the Man
region, and hence stationarity in modeling prevalence and
parasitaemia will no longer be justified, as control inter-
ventions are likely to vary depending on location. Future
field studies will elucidate whether the presented inte-
grated risk profiling and control approach can also be
employed for rigorous monitoring and performance eval-
uations of the district-level malaria control programme.
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