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Abstract

Background: Complement (C) can be activated during malaria, C components consumed and
inflammatory mediators produced. This has potential to impair host innate defence.

Methods: In a case-control study, C activation was assessed by measuring serum haemolytic
activity (CH50), functional activity of each pathway and levels of C3a, C4a and C5a in children
presenting at Kisumu District Hospital, western Kenya, with severe malarial anaemia (SMA) or
uncomplicated malaria (UM).

Results: CH50 median titers for lysis of sensitized sheep erythrocytes in SMA (8.6 U/mL) were
below normal (34-70 U/mL) and were one-fourth the level in UM (34.6 U/mL (P < 0.001). Plasma
C3a median levels were 10 times higher than in normals for

SMA (3,200 ng/ml) and for UM (3,500 ng/ml), indicating substantial C activation in both groups.
Similar trends were obtained for C4a and Cba. The activities of all three C pathways were greatly
reduced in SMA compared to UM (9.9% vs 83.4% for CP, 0.09% vs 30.7% for MBL and 36.8% vs
87.7% for AP respectively, P < 0.001).

Conclusion: These results indicate that, while C activation occurs in both SMA and UM, C
consumption is excessive in SMA. It is speculated that in SMA, consumption of C exceeds its
regeneration.

Background

There is ample evidence to indicate that malaria antigens,
either on infected erythrocytes (iE), or as free antigens
released from schizont rupture, or as immune complexes
formed from antibodies that target the antigens, can all
activate complement (C) [1-6]. Intravascular lysis of Plas-
modium falciparum iE also releases breakdown products

such as haemoglobin and haematin, which have inflam-
matory properties and can also activate C [7-9].

Low levels of C3, C4 and C1q in the sera of children with
acute falciparum malaria have been demonstrated, thus
implicating the classical pathway (CP). These studies have
suggested that C activation may play a part in initiating
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changes that lead to the vascular damage seen in malaria
[1]. The presence of cryoglobulins, circulating immune
complexes (CIC) and hypocomplementaemia in patients
with cerebral malaria has been reported, again implicating
the CP. Wenisch et al reported activation of both the CP
and alternative pathway (AP) that was marked by eleva-
tion of Bb, SC5b-9, and C4d [6]. Recent data has demon-
strated C activation of the AP by moderate concentrations
of haematin that promoted deposition of C3 activation
and breakdown products on E, which may be indicative of
a novel mechanism for the extravascular removal and lysis
of E [9]. Moreover, mannose binding lectin (MBL), which
binds to microbial surface carbohydrates [10], has been
shown to bind malaria iE [2], likely causing activation of
the MBL pathway. Other studies have shown that MBL-
deficiency associated with MBL variant alleles that encode
dysfunctional protein or decreased levels of the MBL can
compromise the host's ability to fight malaria [11,12].

C activation also leads to generation of very potent pro-
inflammatory mediators, especially C5a and C3a [13-15].
C3a and C5a are also chemo-attractant agents and are
involved in recruitment of inflammatory cells and
although they normally play roles in immunological
defence, they may promote tissue injury and destruction
of innocent bystander cells. Protection against C-medi-
ated damage is provided by cell-associated C regulatory
proteins such as CR1, CD55 and CD59, which are
expressed on E and other cells exposed to the bloodstream
[16]. These proteins inhibit C activation, and in addition,
E can remove CIC from the bloodstream via CR1 [17,18].
However, the removal of CIC by E can promote substan-
tial loss of CR1 [18-21]. Indeed, in children with malaria,
both E-associated CR1 and CD55 are substantially
reduced, and therefore the E may be more susceptible to
C-mediated damage [22-25]. Excessive C activation in
malaria could also deplete serum C and the ensuing
hypocomplementaemia would reduce the ability of the
host to fight bacterial infections. In fact, bacteraemia is a
common complication in malaria [26], but its association
with hypocomplementaemia has not been ascertained.

In this study, children presenting at Kisumu District Hos-
pital, western Kenya with either severe malarial anaemia
(SMA) or with uncomplicated malaria (UM) were
enrolled. Their C status was examined by measuring
serum haemolytic activity, functional activity of the three
arms of the C cascade, and levels of C split products (C3a,
C4a, C5a).

Methods

Study site and design

The study was a hospital-based prospective case-control.
60 patients with severe malaria (SMA) were matched by
age (+ 2 months) and sex to children with uncomplicated
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malaria (UM). Both groups were recruited from the paedi-
atric ward of Kisumu District Hospital, western Kenya.
Specimens for research were transported to the WRP/
KEMRI research laboratory in Kondele, Kisumu where the
assays were performed.

Sample size calculation and statistics

The sample size of 60 in each arm was based on a previous
similar study that recruited 30 subjects in each arm and
showed a statistically significant difference in CR1 levels
in children with complicated malaria and those without
the disease [25]. Based on the hypothesis that comple-
ment utilization may be more complex than removal of
CR1, the sample size was doubled. Statistical analysis was
carried out using Graph pad prism version 5 (GraphPad,
San Diego CA). Wilcoxon matched-pairs signed-ranks test
was used to determine if the two cohorts have different
medians. The effectiveness of matching was determined
using nonparametric Spearman correlation test.

Ethical consideration

Participation into the study was under Approved Protocol
# 1145 obtained from the Ethical Review Committee of
the Kenya Medical Research Institute, Nairobi and the
Walter Reed Army Research Institute of Human Use
Research Commiittee, Silver Spring, Maryland, USA.

Study population

Two groups of children were enrolled. Group one (SMA)
comprized children (age < 5 yrs) admitted to the partici-
pating hospital with asexual P. falciparum parasitaemia
confirmed by a positive Giemsa-stained blood smear and
anaemia (haemoglobin < 6 g/dL). Group two (UM) were
age (+ 2 months) and sex matched children with sympto-
matic uncomplicated malaria. Inclusion and exclusion
criteria were as previously published [23,25]. Thin and
thick blood film preparation and staining for microscopic
diagnosis of malaria was as described [27].

Serum samples

Blood samples were collected into serum separation tubes
devoid of clot activator and allowed to remain at room
temperature for 30 minutes. Serum was then separated
from the clot by centrifugation at 2,000 x g for 5 min at 2-
4°C. The serum was aspirated, aliquoted and kept at -
70°C until examined. For use, samples were thawed at
room temperature and then kept on ice until they were
analysed.

Determination of haemolytic complement titer (CH50)

Complement titers, based on the classical haemolytic
assay for lysis of antibody-sensitized sheep E, were per-
formed as described previously [28,29]. Briefly, 2 x 108 E/
ml were opsonized with rabbit anti-sheep haemolysin
(Sigma-Aldrich, MO) by adding an equal volume of a
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1:160 dilution of haemolysin to the E suspension and the
mixture was then incubated at 37°C in a shaking water
bath for 30 minutes. The sensitized E were then centri-
fuged at 3,000 rpm for five minutes and washed three
times with gelatin veronal buffer (GVB) (Sigma-Aldrich
Inc, supplemented with 10 mM EDTA (GVBE). Sensitized
E were stored in GVBE supplemented with 2.5% glucose,
0.03% NaNj at 4 °C for not more than two weeks. For use,
sensitized erythrocytes were washed with GVB containing
Mg?+and Ca2* (GVB++).

Patient sera (in duplicates) were serially diluted in a 96
micro-well plate in GVB++ to give a final dilutions of 1/
320. To each serum dilution, 25 pl of 5% sensitized E was
added followed by incubation at 37 °C for 60 min. To stop
the reaction, 100 ul of GVBE was added to all wells. Con-
trol wells included spontaneous lysis of opsonized E with-
out serum and 100% lysis well in which complete lysis
was achieved by adding 1% triton X. The plate was centri-
fuged at 3,000 rpm in a plate centrifuge (Marathon
3000R, Fisher Scientific, MA) at 4°C for 5 min to pellet
un-lysed cells. 100 pl of supernatant was then transferred
to a flat-bottomed plate and the absorbance readings of
released hemoglobin read at 415 nm (Vmax Kinetic micro
plate reader, Molecular Devices, USA). The degree of lysis
(v) was determined from the formula: y = (sample OD -
spontaneous lysis control OD)/(OD of 100% lysis - spon-
taneous lysis control OD). A standard curve was generated
from the serial dilutions of each sample and used to deter-
mine the serum titer that causes 50% haemolysis of sensi-
tized sheep E.

Determination of functional complement activity in the
pathways

The functional C activity in each pathway was evaluated
using ELISA kits (Wieslab, Euro-Diagnostica, Malmo,
Sweden), that are supplied pre-coated with specific activa-
tors for the CP, MBL and AP. Serum samples were diluted
into buffers containing specific blockers to ensure that
only the respective pathway was activated. For CP and
MBL, samples were diluted at 1:100, and 1:18 for the AP.
For quality control of the assay and for calculation of the
functional activities, positive and negative controls with
known activities were used as recommended by the kit
manufacturer. Briefly, 100 pL of each diluted sample and
control were added in duplicate to the wells of the respec-
tive pathway-specific plates and incubated for 70 min at
37°C. Wells were then aspirated and washed thrice with
wash buffer. Then 100 pL of conjugate containing alkaline
phosphatase-labeled antibodies to C5b-9 was added to
each well and incubated for 30 min at 25°C. Wells were
again washed thrice and 100 pL of substrate [(3,3',5,5'
tetramethylbenzidine (TMB)] added and the samples
were incubated for 30 min at 25°C to allow for color
development. Absorbance was then immediately read at
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405 nm. Functional activity for the respective pathways
was then calculated using the OD values of the positive
and negative controls.

Detection of complement activation fragments

Plasma levels of C fragments were measured using com-
mercial ELISA kits (BD, Biosciences Pharmigen, San
Diego, CA) that detect C3a-desArg, C4a-desArg and C5a-
desArg, the stable metabolites of C3a, C4a and C5a. In
this assay, the plates are supplied pre-coated with mono-
clonal antibodies that are respectively specific for human
C3a-desArg, C4a-desArg and C5a-desArg. Plasma samples
for C3a-desArg and C4a-desArg were diluted at 1:500 and
1:5 for C5a-dersArg. To allow quantification of the com-
plement fragments, a calibration curve was made with
plasma (supplied with kits) containing known amounts
of each fragment. Then 100 pl of each diluted sample and
standard were added in duplicate wells and incubated for
two hours at room temperature. Wells were then washed
four times with wash buffer provided in the kits. Working
detector was prepared by mixing biotinylated polyclonal
anti-human C3a, or C4a and or C5a antibody and strepta-
vidin-horseradish peroxidase. Then 100 pl of working
detector was added to each well, the plate was sealed and
incubated at room temperature for one hour. Wells were
again washed six times and then 100 pl of TMB substrate
added and the plates were incubated for 30 min at room
temperature. The reaction was stopped with 50 pul of 1 M
phosphoric acid and the absorbance was then read at 450
nm. The concentration of respective fragments in each
sample was extrapolated from the standard curves.

PCR detection of C4AQ0 and C4BQO0 null alleles

Details of the touch down PCR for detection of C4AQ0
and C4BQO null alleles have been described previously
[30].

Briefly, four oligonucleotide primer pairs specific for C4A
isotypes and C4B isotypes were used for amplification.
The primers pairs Aup (5'-gCatgCtCCtgtCtaaCaCtggaC-3')
and L3 (5'-gCggatCCagCagtttCggaag-3') were used to
amplify a 377 bp fragment of isotype A while Bup (5'-
tgCtCCtatgtatCaCtggagaga-3') and L3 amplify the same
size fragment of isotype B. Adown (5'-aggaCCCCtgtC-
CagtgttagaC-3') and L4 (5'-ataggatCCtaaggtCCCtgggCCt-
3') were used to amplify a 578 bp fragment of isotype A
while Bdown (aggaCCtCtCtCCagtgatagat) and L4 amplify
same size fragment of isotype B. Absence of any of these
fragments indicate lack of that allele. PCR was carried out
in a 25 pl reaction volume containing 1 uM of each of the
above primers, 1x gene amplification PCR buffer, 1.5 mM
MgCl,, 200 uM dNTPs and 2 U of Taq polymerase.
Cycling was performed on a DNA engine (Tetrad PTC-
225, MJ Research Inc. MA), with an initial denaturation
step at 94°C for 5 min, followed by 12 cycles at 94°C for
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30 s, decreasing annealing temperature by 1°C steps for
each two cycles from 68°C to 63°C for 1 min and exten-
sion temperature at 72°C for 1 min. The remaining 28
cycles were run with annealing temperature of 63°C and
the same denaturation and extension conditions. Follow-
ing amplification 15 pl of PCR amplicons were analysed
by gel electrophoresis on 2% agarose (Sigma-Aldrich Inc).

Results

Subjects enrolled

Although the study enrolled 60 cases and 60 controls
whose characteristics are shown in Table 1, not all sam-
ples were available for all the analyses. The median age for
both groups was 16.5 months. Parasite median densities
and interquartile range in the SMA group was 58,000 iE/
mL (12,200-133,000) and were not statistically different
from that of UM control group, 39,000 iE/mL (6,400-
105,000), even after log transformation. The mean Hb
level in cases was 4.5 + 1.0 g/dL and 8.9 + 1.3 g/dL in the
controls.

Serum of children with SMA have reduced haemolytic
activity

As shown in Figure 1, samples from 52 SMA and 44 UM
were available for analysis. Children with SMA had very
low C activity compared to children with UM. The CH50
median levels and interquartile range in the SMA group
was 8.6 U/mL (2.1 to 24.4) (normal = 34-70 U/mL) com-
pared to 34.6 U/mL (18.5 to 47.7) in the UM group (P <
0.001), with 50% of the children in the SMA group having
no detectable complement activity. Wilcoxon matched-
pairs signed-ranks test was performed with the 44 paired
samples.

Levels of the three complement pathways are consumed in
children with severe malarial anaemia

Figure 2 shows the median and interquartile % functional
C activity in each arm of the cascade in the SMA and UM
groups. In each pathway, the functional activity was
greatly reduced in cases compared to the controls (median
= 9.9% vs 83.4% for CP, 0.09% vs 30.7% for MBL and
36.8% vs 87.7% for AP respectively, P < 0.001. Moreover,
in the SMA group, more than half of the children had no
measurable activity in all three C pathways.

http://www.malariajournal.com/content/8/1/7

Cases and controls have elevated levels of the
anaphylatoxins C4a, C3a and C5a

Plasma anaphylatoxin levels for C4a, C3a and C5a which
are good indicators of the extent of C activation were
markedly elevated in both the SMA and UM groups (Fig-
ures 3, 4 and 5). The C4a levels, which reflect upstream
activation of the CP and MBL pathways are shown in Fig-
ure 3. The median and interquartile C4a levels in both
cases and controls were markedly elevated in SMA (1,800
ng/mL, 1,400-2,200) and UM (1,350 ng/mL, 1,160-
2,200) but there was no significant difference between the
two groups (P = 0.08). The normal plasma levels of C4a
range between 63 and 235 ng/mL. Wilcoxon matched-
pairs signed-ranks test was performed with the 42 paired
samples.

Levels of C3a, which serve as indices of activation of all
three C pathways, showed marked elevations (Figure 4) in
both SMA and UM groups, but in contrast with the find-
ings for C4a, the median values and interquartile range
were slightly higher for UM (3,500 ng/mL, 3,100-4,200)
compared to SMA (3200 ng/ml, 2,800-3,700 (P = 0.02).
Normal plasma C3a levels range between 250-700 ng/
mL. Wilcoxon matched-pairs signed-ranks test was per-
formed with the 43 paired samples.

The median levels of C5a (Figure 5), which represent
downstream activation of C and are indicative of initia-
tion of assembly of the membrane attack complex (MAC),
were markedly elevated in both groups (SMA = (34.3 ng/
mL, UM =30.7 ng/mL, P = 0.35) compared to normal lev-
els (1.3-8 ng/mL), thus suggesting that some intravascu-
lar haemolysis may occur in both groups. Wilcoxon
matched-pairs signed-ranks test was performed with the
54 paired samples.

Genotyping of C4 null alleles

The 378 and 578 bp C4A isotypes were present in all the
samples tested. Five individuals were found to have the
C4B null alleles and four of these were in the uncompli-
cated malaria group, thus uncoupling this genetic factor
from the low C levels.

Table I: Demographics and clinical characteristics of patients enrolled in the malarial anaemia case control study.

Characteristics Severe malaria Uncomplicated malaria P
Sample size (N) 60 60 NC
Median age in months and (interquartile range) 16.5 (10-21) 16.5 (9-23) NC
Median parasitaemia (iE/pl) (interquartile range) 58,000 (12,200-133,000) 39,000 (6400—-105,000) 0.66
Hb level (g/dl) 45%1.0 89+ 13 NC
Note: P = Wilcoxon matched-pairs signed-ranks test. NC = not necessary.
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Scatter plot showing the median and interquartile C
hemolytic titer in children with severe malaria ane-
mia (cases) and those with uncomplicated malaria
(controls). The CH50 in cases was 8.6 U/mL (2.1 to 24.4)
compared to 34.6 U/mL (18.5 to 47.7) in the controls (P <
0.001). Wilcoxon matched-pairs signed-ranks test was per-
formed with the 44 paired samples.

Discussion

All three pathways of C activation have been variously
implicated as activation targets in malaria [1-4,6]. The
study reported here supports these observations and fur-
ther demonstrate the extent to which each pathway of Cis
consumed and therefore potentially unavailable for the
host defence. The results indicate that while C activation

o
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Figure 2

Aligned dot plot showing median and interquartile %
functional activity in each complement pathway in
children with severe malaria anaemia (cases) and
those with uncomplicated malaria (controls). The
median functional activity in cases was significantly reduced
compared to the controls (9.9% vs 83.4% for CP, 0.09% vs
30.7 for MBL and 36.8% vs 87.7% for AP respectively, P <
0.001). Wilcoxon matched-pairs signed-ranks test was per-
formed with the 36 paired samples.
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Figure 3

Scatter plot showing the median and interquartile
C4a levels in children with severe malaria anaemia
(cases) and those with uncomplicated malaria (con-
trols). The median C4a levels in cases was 1,800 ng/mL
(1,400-2,200) and 1,350 ng/ml (1,160-2,200) in the controls
(P = 0.08). Wilcoxon matched-pairs signed-ranks test was
performed with the 42 paired samples.

occurs in children with mild and severe malaria, in SMA,
C consumption is more severe. Indeed, in the SMA group,
the median CH50, a measure of total C activity was less
than half that in control group, with 50% of the children
having no detectable complement activity in any of the
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Figure 4

Scatter plot showing the median and interquartile
C3a levels in children with severe malaria anaemia
(cases) and those with uncomplicated malaria (con-
trols). The median values were significantly higher in the
controls (3,500 ng/ml, 3,100—4,200) compared to the cases
(3,200 ng/mL, 2,800-3,700) P = 0.02). Wilcoxon matched-
pairs signed-ranks test was performed with the 43 paired
samples.
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Scatter plots showing median and interquartile range
of C5a levels in severe malarial anaemia (cases) and
those with uncomplicated malaria (controls). The
median level in the cases (34.3 ng/mL, 27.7—68.2) was compa-
rable to the level in the control group (30.7 ng/mL, 28.1-
35.8), P = 0.35). Wilcoxon matched-pairs signed-ranks test
was performed with the 54 paired samples.

pathways (Figures 1 and 2), clearly indicating substantial
consumption of C in all three pathways in children with
SMA. Since hypocomplementaemia compromizes
defence against bacteria infection, this finding may partly
explain why bacteraemia is a common complication in
malaria [26,31].

Depletion of the CP may be linked to the high levels of
CIC that have been reported in children with SMA
[1,32,33]. In the MBL pathway, it is the binding of MBL to
mannose and N-acetyl glucosamine residues of microor-
ganisms that activates complement. It is not clear whether
malarial antigen carbohydrate moieties activate MBL, but
proteins on the surface of malaria iE are recognized by
MBL [2,34]. Studies are ongoing to determine whether the
observed low levels of MBL in children with SMA are
related to variant MBL alleles that have been associated
with increased susceptibility to severe malaria [11,12].

Activation of C generates potent inflammatory peptides,
especially C5a and C3a, and these agents have a broad
spectrum of biological functions including generation of
cytokines, such as TNF [13-15]. In vivo, the normally
short lived C3a, C4a and C5a are cleaved to more stable
desArg metabolites whose measurements can be used to
draw reliable conclusions about ongoing C activation
activities [35]. Contrary to the expectation that increased
C consumption as seen in the SMA group (Figures 1 and
2) would result in significantly higher C activation prod-
ucts, the levels of C3a-desArg were in fact higher in the
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UM group, and similarly elevated for C4a-desArg and
C5a-desArg in the two groups (Figure 3). It is unclear why
this is so, but speculations are that, in children with SMA,
consumption of C exceeds its regeneration.

In this study, the median plasma C5a-desArg levels were
markedly elevated in both groups (cases = 34.3 ng/mlL,
controls = 30.7 ng/mlL, Figure 5), compared to normal lev-
els (ranges from 1.3-8 ng/mL). Elevated C5a may indicate
significant intravascular haemolysis due to assembly of
MAC. However, because levels of C5a in SMA were not
significantly different from those in UM, these results sug-
gest that the excessive destruction of E that occurs in chil-
dren with severe malarial anaemia may not be due to
assembly of the MAC. Previous data implicate comple-
ment-mediated extra-vascular destruction of red blood
cells [23-25]. Moreover, although the AP was not depleted
as much as the other two pathways, it was reduced consid-
erably, and in fact more than half of the children with SM
had no AP activity (Figure 2). This could reflect C activa-
tion mediated by haematin released by intravascular
haemolysis. As noted, this reaction can deposit C3 activa-
tion products on young E that express high levels of CR1,
possibly leading to their early extravascular clearance and
destruction [9].

Although rare, complement deficiency can also be caused
by genetic factors [36-38]. Of these genetic deficiencies,
the most common involve C4 [39]. Carriers of comple-
ment deficiencies suffer from immune complex related
diseases such as systemic lupus erythematosus [19,21]
and have an increased vulnerability to microbial infection
[40]. However, examination of C4 null alleles suggested
that the low C activity observed in patients with SMA are
not related to genetic defect of C4 genes.

Conclusion

In conclusion, the findings in this study indicate substan-
tial activation of C irrespective of malarial clinical status.
However, the high level of C consumption observed in
children with SMA compared to UM indicate that in the
SMA, the consumption remains uncompensated. The
actual malarial components that can activate C have not
been identified, but are thought to include malarial anti-
gens on the surface of iRBC, antigens that are released dur-
ing schizont rapture either as free antigens or bound to
antibodies, and free haematin [1,2,9,32,34]. The cross sec-
tional nature of the current study makes it difficulty to
draw definite conclusions regarding causal relationship
between C utilization and susceptibility to severe malaria.
It could for example be argued that the SMA group repre-
sent those children with prolonged symptoms before
seeking medical treatments while UM group represent
those that are recovering or those who have had a short
duration of illness. It will be possible to address such
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issues in future studies that will have a longitudinal
design.
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