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Abstract
Background: Malaria infection and disease exhibit microgeographic heterogeneity which if predictable could have 
implications for designing small-area intervention. Here, the space-time clustering of Plasmodium falciparum infections 
using data from repeat cross-sectional surveys in Gezira State, a low transmission area in northern Sudan, is 
investigated.

Methods: Data from cross-sectional surveys undertaken in January each year from 1999-2009 in 88 villages in the 
Gezira state were assembled. During each survey, about a 100 children between the ages two to ten years were 
sampled to examine the presence of P. falciparum parasites. In 2009, all the villages were mapped using global 
positioning systems. Cluster level data were analysed for spatial-only and space-time clustering using the Bernoulli 
model and the significance of clusters were tested using the Kulldorff scan statistic.

Results: Over the study period, 96,022 malaria slide examinations were undertaken and the P. falciparum prevalence 
was 8.6% in 1999 and by 2009 this had reduced to 1.6%. The cluster analysis showed the presence of one significant 
spatial-only cluster in each survey year and one significant space-time cluster over the whole study period. The primary 
spatial-only clusters in 10/11 years were either contained within or overlapped with the primary space-time cluster.

Conclusion: The results of the study confirm the generally low malaria transmission in the state of Gezira and the 
presence of spatial and space-time clusters concentrated around a specific area in the south of the state. Improved 
surveillance data that allows for the analysis of seasonality, age and other risk factors need to be collected to design 
effective small area interventions as Gezira state targets malaria elimination.

Background
Malaria parasite transmission and clinical disease are
characterized by important microgeographic variations,
often between adjacent villages, households or families
[1-7]. This local heterogeneity is driven by a variety of
factors including genetic [6,8], distance to potential
breeding sites [9-12], housing construction [2,5,11,13,14],
presence of domestic animals near the household [15,16],
and socio-behavioural characteristics [3,10,11,17]. While
seldom prioritized in the planning of malaria control by

national programmes, the understanding of the microep-
idemiology of malaria is important to the design of effec-
tive small-area interventions [3,4] particularly in areas of
unstable or very low transmission where risk is over-dis-
persed and highly focal [18].

To assess space-time local heterogeneity of disease,
techniques that detect the presence of statistically signifi-
cant small-area disease clusters are often used [5,7,19-
21]. Some of the earliest use of disease cluster analysis
was in the detection of distribution patterns of rare con-
ditions such as cancers [20,22] and more recently applied
to infectious diseases including dengue [23], filariasis
[24], sleeping sickness [25] and West Nile virus [26]. The
space-time clustering of malaria has also been described
but mainly in moderate to high transmission settings
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[2,5,27-30]. There are very few descriptions and quantifi-
cation of space-time clustering of infection, disease or
hospitalization from malaria in areas of unstable low or
very low transmission settings. Here, the spatial and tem-
poral clustering of Plasmodium falciparum infections in
88 villages surveyed each year from 1999 to 2009 in the
Gezira state, a generally very low unstable transmission
area of the northern Sudan, is examined.

Methods
Study area
Gezira State is in the eastern central region of Sudan and
has an area of 23,373 km² and an estimated population of
approximately 3.2 million people according to the 2008
national census [CBS 2008 unpublished data]. The State
is dissected by the Blue Nile River with Wad Madani
town as its capital (Figure 1). The average daily tempera-
ture is 32°C during summer (April, May, June to middle of
July) and 22°C during winter (November to the end of
January). The rainy season starts in July and ends by
October, with an estimated annual rainfall of 140 - 225
mm [31]. The relative humidity is 38% in autumn (end of

July to the middle of October) and 30% during winter.
The Gezira irrigation scheme is the main economic activ-
ity in the state and a major challenge for malaria control
as it contributes to the accumulation of water resulting in
both permanent and temporary breeding sites for mos-
quitoes and other vectors that cause water-borne dis-
eases. Anopheles arabiensis is the main vector of malaria
throughout in Gezira state [31,32]. The peak months of
malaria transmission are from September to November.
In the irrigated areas, however, a third peak of malaria
transmission in February to March is often observed as a
result of increased mosquito densities coinciding with the
end of the irrigation season, when there are many pools
of stagnant water along the drying rivers and canals [32].

Malaria control in Gezira state
Malaria control in Gezira evolved to address the increas-
ing risk of infection due to the establishment of the
Gezira irrigation scheme in 1925 with vector control as
the primary approach [31]. From 1935 when formal
malaria control began, Gezira state has seen periods of
dramatic success when P. falciparum prevalence dropped
to below 1% in 1970 punctuated by resurgence of infec-
tions leading to epidemics in 1971, 1974, 1993 and 1994
[31,33]. These epidemics have been attributed to the
interruption of malaria control due to lack of funding
[31,33] and the emergence of resistance to insecticides
after sustained periods of use [31,34,35]. In 1975, the
Gezira State Malaria Control Programme (GMCP) of the
Federal Ministry of Health (FMoH) began longitudinal
surveys of P. falciparum prevalence among children aged
between 2 to below 10 years to monitor disease patterns
in the state [33]. In 1978, the Blue Nile Health Project was
established to ensure long-term malaria control in the
area around the Gezira irrigation scheme supported by
carefully assembled scientific evidence [31]. This was fol-
lowed by sustained malaria control in the project area for
10 years before funding was withdrawn in 1989 resulting
in a resurgence of malaria incidence [33].

Since 1999, the GMCP has implemented a number of
malaria control initiatives consisting mainly of indoor
residual spraying (IRS) of households and larviciding of
breeding sites in all localities [33]. In 2002, the Gezira
State Malaria Free Initiative (GMFI) was created with
support from the WHO and the FMoH [33]. In the same
year, insecticide-treated nets were introduced and are
now provided to households in all localities. From 1999 to
2001 the two main insecticides for IRS were pyrethroid
combinations, permethrin and malathion-deltamethrin,
while temephos (Abate) EC 50% was the main insecticide
for larviciding throughout the study period [33]. In 2002,
following reports of emerging resistance to malathion-
deltamethrin this insecticide was discontinued and only
permethrin was used for IRS, augmented with use of

Figure 1 Map of Gezira state showing the location of the state 
capital (Wad Madani) in relation to the national capital (Khar-
toum), the distribution of settlements in Gezira and the location 
of the distribution of 88 survey locations where the P. falciparum 
prevalence surveys were undertaken from 1999-2009. Inset is the 
state map of the Sudan showing the location of Gezira state.
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pyrethroid-treated bed nets. Permethrin was replaced
with bendiocarb for IRS in 2007 and 2008 when reduced
susceptibility of vectors to pyrethroids was reported in
2005 and 2006 [36]. In 2009, IRS was not implemented,
but larviciding using temephos EC 50% and the distribu-
tion of long-lasting insecticide-treated nets continued
across the whole state (Sayed El Bushra, Personal Com-
munication).

Parasitological surveys
A random sample of 88 villages covering all localities of
Gezira state was selected and in each village children
between the ages of two to below ten years were exam-
ined for malaria parasites [33]. These surveys were
undertaken by field teams from the GMCP in January
each year. Originally they covered 154 villages but only
the 88 villages were used in this study (Figure 1), as they
represented the most contemporary and temporally com-
plete dataset within the entire data series covering the
period 1999-2009. During the surveys, the team leaders
explained the survey objectives to the household head
before blood samples were drawn from the selected chil-
dren of consenting parents/guardians. In every village, all
children two to below ten years were listed and a 100
were randomly selected. For all children, thick and thin
blood smears for malaria parasites were prepared and
allowed to dry. Once dry, they were stored in slides boxes
and transported to a central laboratory at the GMCP in
Wad Madani town. The thin smears were fixed in abso-
lute methanol. The thick and thin smears were then
stained in 4% Giemsa solution for 30 minutes and were
subsequently read using a light microscope with a ×100
oil-immersion lens and ×10 eyepieces. One hundred high
power fields were examined before a slide was considered
negative for the presence of parasites. After the first read-
ing of all slides, all positive and a randomly selected pro-
portion of the negative slides were read by an
independent microscopist for quality control. All chil-
dren who were found positive for the malaria parasites in
the first reading were visited at their home by the state
malaria team and were treated with the first-line drug,
which was chloroquine (CQ) or sulphadoxine-
pyrimethamine (SP) prior to 2004 and artesunate-SP
(AS+SP) since 2004. In 2009, all the villages were mapped
using Garmin etrex (Garmin Inc., Kansas, USA) handheld
global positioning systems (GPS). The final database of
villages contained information on the name of the village,
the longitude and latitude, the year of survey, and a sum-
mary of the number of children who were examined and
the number who were positive for P. falciparum parasites.
Individual level data were not available for analysis.

Spatial and temporal cluster analysis
The Kulldorff spatial scan statistic [20], as implemented
in SaTScan 8.0 [37] was used for the analysis of the spatial
and temporal clustering of the data, with the specific aim

of identifying clusters of high P. falciparum infection
rates. A Bernoulli model was used for the analysis of spa-
tial and temporal clustering in the data for several rea-
sons. First, the number of people surveyed in some
locations varied over the years and it was important to
adjust for these sampling changes to avoid clusters that
are driven by the number of people surveyed rather than
the number of people who had infection. Second, the
model allowed for locations or years that are always of
high malaria prevalence relative to other locations/years
to contribute to the overall space-time clusters, a particu-
larly important advantage given the generally low preva-
lence of the survey locations throughout the study period.
Third, this model allowed analysis of the purely spatial
and/or the space-time scan statistics [19,20]. The Ber-
noulli model requires the case and control data, repre-
sented respectively by P. falciparum positive and negative
samples, and the spatial location and time for each case
and control [19,20]. A circular spatial scan window and a
maximum spatial cluster size of 50% of the cases was used
so that both small and large clusters could be detected.
The model compares the number of observed cases and
controls in a cluster to the expectation if the spatial and
temporal locations of all cases were assumed to be inde-
pendent of each other so that there is no space-time
interaction. Tests of statistical significance of the identi-
fied clusters were based on likelihood ratio tests, with P-
values obtained by 9999 Monte Carlo replications. The
main model outputs were the location and radius of clus-
ters, the number of villages in the cluster, the number of
observed and expected cases, the rate ratio defined as the
ratio of observed to expected cases of P. falciparum infec-
tion and the P-value of the Kulldorff scan statistic.

Ethical approval
Ethical approval for this study was obtained from the Eth-
ical Committee of the Blue Nile Research National Insti-
tute for Communicable Diseases - University of Gezira.
Formal permission was obtained from the Gezira malaria
control programme of the State Ministry of Health. Con-
sent was sought from parents/guardians before blood
samples were collected from sampled children.

Results
Plasmodium falciparum infection prevalence
Over the period 1999 to 2009, 96,022 malaria slide exam-
inations were undertaken among children aged between
two to below ten years in 88 villages in Gezira state (Table
1). There were no major differences in total observations
between years with a mean annual number of observa-
tions of 8,729 (8,523 - 8,928) children. At the start of the
study period in 1999, 8.6% of the children examined were
positive for P. falciparum infection and by 2009 this had
reduced to 1.6% representing more than a five-fold
decline in overall P. falciparum infection rates (Table 1
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and Figure 2, R2 of the trendline = 0.52). Although
throughout the survey period there was a consistent
decline in infection rates with time, the trend also showed
a number of perceptible peaks in infection in 2002, 2006
and 2008 (Figure 2). The trend in infection did not show
any significant association with total rainfall during the
preceding year of survey as estimated from meteorologi-
cal stations in Gezira state (Figure 2).

Spatial only and space-time clustering in P. falciparum 
infection prevalence
The Kulldorff spatial scan statistic showed highly signifi-
cant spatial-only clustering of P. falciparum prevalence in

each year from 1999-2009 (Table 2 and Figure 3). In 2004,
2007 and 2009 the spatial clusters consisted of only one
village resulting in clusters of indeterminate radius i.e.
only a single village was identified to be in the cluster and
hence the resulting cluster radius was 0 km (Table 2). In
the other years, the number of villages within a spatial
cluster ranged from 26 in 2002 to 6 in 2005 and the radius
of the spatial window was from 12.8 km in 2008 to 31.7
km in 2002 (Table 2). In total, 45/88 villages were part of a
spatial cluster in one or multiple years over the study
period (Figure 3). The rate ratio of the spatial cluster or
the risk of an individual within the cluster having an
infection compared to those outside was highest in 2009
(RR = 14.66) and lowest in 2001 (RR = 2.20). The propor-
tion of malaria positive cases within a cluster ranged from
8.4% in 2004 to 69.4% in 2005. Across the study period
the mean P. falciparum prevalence within the spatial-only
clusters was between two to 14 times higher than that
outside the clusters (Table 2), with the differences gener-
ally increasing with year as overall prevalence declined.

The Kulldorff space-time scan statistics, however, iden-
tified only one highly significant primary space-time clus-
ter of high prevalence centered near the southern tip of
Gezira state (Table 2 and Figure 4). This cluster contained
24 villages within a radius of 26.8 km and a rate ratio of
2.59. About 27% of all persons examined and 49% of all
those who were positive for P. falciparum infection over
the study period were contained in this cluster (Table 2).
The overall positivity rate inside the space-time cluster
was 5.3% compared to 2.0% outside the cluster.

Figure 2 Graph of P. falciparum prevalence (solid line) and the to-
tal rainfall of the preceding year in mm (bars) as estimated from 
meteorological stations in Gezira state by year of survey. The 
dashed line represents the linear trend line (R2 = 0.522) of P. falciparum 
prevalence from 1999-2009.

Table 1: Summary of Gezira P. falciparum prevalence data from 88 survey locations (968 surveys) from 1999 to 2009 showing annual 
average infection prevalence, the number of locations with no positive cases, those with ≥5% prevalence and the sample size by 
residence and year

% P. falciparum positive

(number examined)

Survey locations (%) with no positive 

P. falciparum samples

Survey locations (%) with P. falciparum

prevalence ≥5%

1999 8.6 (8,523) 15 (17.0) 51 (58.0)

2000 4.0 (8,928) 17 (19.3) 28 (31.8)

2001 2.1 (8,667) 39 (44.3) 14 (15.9)

2002 3.7 (8,783) 29 (32.9) 24 (27.3)

2003 2.9 (8,792) 45 (51.1) 14 (15.9)

2004 2.0 (8,763) 32 (36.4) 10 (11.4)

2005 1.9 (8,716) 59 (67.0) 12 (13.6)

2006 2.3 (8,733) 44 (50.0) 16 (18.2)

2007 1.1 (8,794) 49 (55.7) 4 (4.5)

2008 2.1 (8,571) 38 (43.2) 11 (12.5)

2009 1.6 (8,752) 55 (62.5) 10 (11.4)

Total 2.9 (96,022)
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Figure 3 Location of spatial-only primary clusters of P. falciparum prevalence in Gezira state in each year from 1999 to 2009. Primary spatial 
clusters are shown as pink circles of varying radius or red zeros (when a cluster radius is indeterminate). The location of all primary spatial-
only clusters, except in 2007 and 2009, appears not vary by large distances and are concentrated in area in south of the Gezira state.
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Discussion
Eleven years of data on P. falciparum infection prevalence
among children aged two to ten years in 88 villages in
Gezira state were assembled. Over this study period,
overall infection prevalence reduced from approximately
five-fold to just below 2% in 2009 with infection rates
dropping to 4% by 2000, the second year of the study, and
remaining below this level in all subsequent years (Table
1 and Figure 2). Importantly, using the Kulldorff scan sta-
tistics [20,37] it was possible to show the presence of spa-
tial-only and space-time clustering of infection
prevalence in Gezira state. In each year, there was at least
one significant primary spatial-only cluster containing
from one to 26 villages and a single overall single signifi-
cant primary space-time cluster (Table 2, Figures 3 and
4). The mean prevalence of infection in the villages con-
tained in the primary spatial-only or space-time clusters
was consistently higher than that of the overall data or of
those villages outside the clusters throughout the study
period. All spatial-only clusters either overlapped or were
contained with the primary space-time cluster in all the
years except in 2007, a year in which the cluster was of
indeterminate radius.

The analysis of spatial and temporal clustering of
malaria has predominantly been examined in areas of sta-
ble or low stable endemic transmission [2,28,29]. This
study, however, represents spatial-temporal cluster analy-
sis of malaria infections in a very low unstable transmis-
sion area where disease risk manifests as "hotspots" and is
associated with occasional epidemics. The results have a
number of implications for malaria control in Gezira

state. First, the primary space-time cluster identified in
this study is located on the southern tip of the state in an
area near a sugar plantation close to the Sennar dam
which irrigates the very large Gezira scheme. In addition,
almost all the spatial-only clusters observed in each year
were either within or intersected the primary space-time
cluster in the south of Gezira state, indicating a highly
focal concentration of infections which can be addressed
by focused targeting of interventions. Second, while it is
difficult to empirically determine the reason for the peaks
in infection prevalence in an otherwise declining trend
over the study period using the available data, it is inter-
esting that these coincided with the period when reports
of vector resistance to malathion-deltamethrin emerged
and its use was discontinued in 2002; when vector resis-
tance to pyrethroid-permethrin had increased to sub-
stantial levels in 2006 just before its replacement with
bendiocarb in 2007; and in 2008 when the IRS pro-
gramme was wound up (Figure 2). Therefore, malaria
control in Gezira needs to maintain and scale-up its
efforts on prevention of disease among the agricultural
population in the Gezira irrigation scheme and those
along the southern and central Blue Nile River, expand
control efforts to the neighbouring Sennar state where
the Sennar dam is located.

Although the data assembled for this study provide a
useful basis for tracking the changing infection preva-
lence among the population in Gezira state, there are
some caveats and opportunities for strengthening future
surveillance. First, the temporal resolution of the data of
one survey each year limits the analysis of seasonal peaks

Table 2: Primary spatial-only P. falciparum clusters, their radius, the number of villages and cases contained in the clusters and the 
significance of the Kulldorff scan statistic in Gezira state from 1999 to 2009

Year Number 
of 
clusters

Number of 
Villages in 
cluster

Radius of 
cluster (Km)

% 
Examined 
inside 
cluster

% P. falciparum 
cases inside 
cluster

Relative 
Risk

P-Value % P. falciparum 
positive inside 
cluster

% P. falciparum 
positive outside 
cluster

1999 1 25 26.3 28.1 47.8 2.34 0.0001 14.7 6.3

2000 1 19 23.0 21.3 42.6 2.74 0.0001 8.0 2.9

2001 1 20 21.4 23.0 39.7 2.20 0.0004 3.6 1.6

2002 1 26 31.7 29.8 62.8 3.98 0.0001 7.9 2.0

2003 1 24 26.8 27.2 69.4 6.08 0.0001 7.3 1.2

2004 1 1 0.0 1.1 8.4 7.97 0.0001 15.0 1.9

2005 1 6 20.8 6.9 41.1 9.43 0.0001 69.7 7.4

2006 1 17 20.4 19.2 46.5 3.66 0.0001 86.9 23.7

2007 1 1 0.0 1.1 13.0 13.12 0.0001 14.9 1.1

2008 1 7 12.8 7.9 29.0 4.76 0.0001 40.8 8.6

2009 1 1 0.0 1.1 14.5 14.66 0.0001 16.9 1.2

1999
-
2009

1 24 26.8 27.3 49.2 2.59 0.0001 5.3 2.0
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of transmission and potentially misses a significant pro-
portion of infections. Second, understanding the micro-
geographic (households and individual) heterogeneity of
malaria infections has potentially important implications
for small-area targeting of malaria control. The survey
data, however, could not be assembled at the household
or individual levels because hardcopy survey data at
household and individual level could not be located from
the GMCP archives. Future surveys should be digitized to
make them amenable to detailed microgeographic analy-
ses that account for potential risk factors such as age,
housing structure, behavioural and environmental vari-
ables. Third, in the context of elimination and given the
low levels of malaria transmission, data on all ages exam-
ining not only the asexual stage infections but also the
sexual stages are required [38]. Finally, in areas of low
malaria transmission microscopy or rapid diagnostic tests
have low detection rates [39,40] thereby underestimating
the overall infection prevalence. Alternative approaches
such as long-term active and passive case-detection from
a spatially representative sample of communities and
health facilities and use of polymerase chain reaction
(PCR) [39] to detect low level infections and serological
markers to assess Plasmodium antibody exposure [40,41]
should be explored. One of the best examples of such a
detailed investigation is represented by the 11 year longi-
tudinal study of malaria in one village, Daraweesh in East-
ern Sudan [42], which provided important observations
on the epidemiology [43], seasonality [44], presence of
sub-microscopic chronic P. falciparum infections [45];
ethnic and genetic susceptibility [42,46] and immunity

[47] to malaria under conditions of very low transmission
intensity.

Conclusion
This study demonstrates the potential of space-time clus-
tering techniques to identify areas of high malaria infec-
tion rates in an area of generally low transmission in
Gezira state. The success of malaria elimination in the
Gezira, the stated aim of the GMFI, depends critically on
sustained control and the establishment of high quality
surveillance to measure disease patterns. All of these are
linked to the availability of adequate funding but there are
already shortfalls in the financing of both control and epi-
demiological surveillance [33]. The development of better
surveillance systems to document any changes in malaria
epidemiology of the disease should consider the estab-
lishment of health facility, school and community sentinel
sites for the prospective assembly of high quality active
and passive case detection data.
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