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Abstract

with all bed nets manufactured in the country.

arabiensis was only 38%.

Background: The communities of Namawala and Idete villages in southern Tanzania experienced extremely high
malaria transmission in the 1990s. By 2001-03, following high usage rates (75% of all age groups) of untreated bed nets,
a 4.2-fold reduction in malaria transmission intensity was achieved. Since 2006, a national-scale programme has
promoted the use of longer-lasting insecticide treatment kits (consisting of an insecticide plus binder) co-packaged

Methods: The entomological inoculation rate (EIR) was estimated through monthly surveys in 72 houses randomly
selected in each of the two villages. Mosquitoes were caught using CDC light traps placed beside occupied bed nets
between January and December 2008 (n = 1,648 trap nights). Sub-samples of mosquitoes were taken from each trap to
determine parity status, sporozoite infection and Anopheles gambiae complex sibling species identity.

Results: Compared with a historical mean EIR of ~1400 infectious bites/person/year (ib/p/y) in 1990-94; the 2008
estimate of 81 ib/p/y represents an 18-fold reduction for an unprotected person without a net. The combined impact
of longer-lasting insecticide treatments as well as high bed net coverage was associated with a 4.6-fold reduction in
EIR, on top of the impact from the use of untreated nets alone. The scale-up of bed nets and subsequent insecticidal
treatment has reduced the density of the anthropophagic, endophagic primary vector species, Anopheles gambiae
sensu stricto, by 79%. In contrast, the reduction in density of the zoophagic, exophagic sibling species Anopheles

Conclusion: Insecticide treatment of nets reduced the intensity of malaria transmission in addition to that achieved by
the untreated nets alone. Impacts were most pronounced against the highly anthropophagic, endophagic primary
vector, leading to a shift in the sibling species composition of the A. gambiae complex.

Background

In much of Africa, where malaria transmission levels are
extremely high, substantial reductions in the intensity of
transmission are required for even a modest reduction in
human parasitaemia [1,2]. Over the past decade, a major
malaria control strategy has been the use of insecticide-
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treated nets (ITNs), which are perhaps the best-evaluated
and most cost-effective intervention for large-scale appli-
cation [3-7]. The distribution programmes used in differ-
ent countries have been as diverse as they have been
numerous; but the goal to increase the coverage of both
nets and insecticide levels has been common to all. In
recent years, a number of success stories have emerged
and the incidence of malaria has begun to decline in
many regions of Africa [5-7].
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The protective efficacy of ITNs results from both the
physical barrier and the insecticidal action of the net.
While it is intuitively clear that ITNs provide protection
to individual users, what is less obvious is the impact of
widespread ITN use at the community level. ITNs are
able to reduce the density, feeding frequency and survival
of mosquitoes [8-11] and wide-scale use can mediate pro-
tection of all community members, including the vulner-
able portion without a bed net [12-15]. With moderate
ITN coverage of the population, the 'mass effect' is at
least as important as the personal protection provided to
the user [12,14,16]. On the other hand, it has been sug-
gested that ITN use could increase malaria risk for
unprotected people by diverting mosquitoes away from
users and concentrating their host-seeking efforts upon
them [9,17,18]. Although theoretically possible, field
studies have demonstrated that the beneficial impacts on
malaria transmission outweigh any such inequitable bit-
ing burden for the unprotected [8,14,19,20].

The current study is a retrospective analysis examining
the impact of introducing a longer-lasting insecticide
treatment into a setting with pre-existing high coverage
of largely untreated nets. Two study villages in rural Tan-
zania experienced year-round, hyperendemic malaria
transmission in the 1990s [21]. By the early 2000s, high
coverage of untreated nets was achieved using a cost-
sharing scheme for subsidisation and promotion [22].
More recently, national-scale subsidisation programmes
co-packaged longer-lasting insecticide treatment kits
with all bed nets manufactured in Tanzania and pro-
moted their use from 2004 onwards [23,24]. The current
study investigated whether the treatment of bed nets with
longer-lasting insecticide produced any further impact on
the intensity of malaria transmission beyond the 4.2-fold
reduction observed from the use of untreated nets alone
[22]. In order to examine changes in the entomologic
inoculation rate (EIR) and the biodemographic profile of
vector mosquitoes, their biting-density, sporozoite preva-
lence and survival was estimated in these same two vil-
lages throughout 2008. Results were compared with data
collected from the same villages during 1990-94 before
bed net use was common and during 2001-03 after high
coverage of untreated bed nets had been achieved.

Methods

Study area

The study was conducted in Namawala and Idete villages,
located in the Kilombero Valley (8.1°S and 36.6°E) in
south-eastern Tanzania (Figure 1). These communities
experience hyper endemic malaria transmission [25],
mostly transmitted by large populations of mosquitoes
from the Anopheles gambiae sensu lato complex (Diptera:
Culicidae) [26,27]. In this area, this species complex is
represented by two morphologically identical, but behav-
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Figure 1 Kilombero and Ulanga districts (8.1°S and 36.6°E) in Tan-
zania showing Namawala and Idete villages.

iourally distinctive, sibling species: A. gambiae sensu
stricto (hereafter referred to as A. gambiae) and Anophe-
les arabiensis. A third, locally important vector species is
Anopheles funestus. The ecosystem is dominated by a low
lying river valley, 150 km long and up to 40 km wide,
which is inter-dispersed with villages and rice farms.
Annual flooding occurs during the rainy season (Decem-
ber - May) when large tracts of aquatic habitat suitable for
immature mosquitoes are formed.

The epidemiology of malaria in the study villages has
been well characterised over the past 15 years [e.g.
[21,22,28-34]. Extremely high transmission intensities
were recorded during the 1990s [21]. Since 1997, various
cost-sharing schemes for subsidizing and promoting bed
nets, as well as home insecticide treatment kits have been
implemented in an effort to alleviate the malaria burden.
The crux of the various programmes has been the generic
branding of recommended nets and insecticides products
which were sold in line with a price-fixing scheme that
reflected a public subsidy (34% of retail value at US $5).
To improve access to vulnerable pregnant women and
infants, a further subsidy (17% of retail value) was pro-
vided through the use of a voucher scheme. The pregnant
women and mothers of young children who attended
antenatal or immunisation clinics were entitled to a dis-
count voucher.
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The initial pilot programme, KINET, distributed bed
nets within the Kilombero Valley and achieved remark-
ably high bed net coverage of all community members
[16,22,25,35-37]. Although all KINET distributed bed
nets were pre-treated with 20 mg/m? deltamethrin [37],
by 2001, insecticide levels had fallen below 5% and most
nets were in poor condition containing many holes
[22,38]. Various national-scale distribution programmes
have been implemented, commencing with PSI's Social
Marketing of Insecticide Treated Nets (SMITN) pro-
gramme which was run at a regional-scale during 1998-
2000 and a national-scale during 2000-02 and promoted
the use of nets and standard insecticide treatment Kkits
(KO Tab, Icon"and Fendona). The sequential programme
was SMARTNET from 2002, which the Tanzanian
National Voucher Scheme (TNVS) was built upon in
2004. SMARTNET ensured that all bed nets manufac-
tured in Tanzania were co-packaged with longer-lasting
insecticide treatment kits, which were registered for use
from 2004 onwards (Initially: KO Tab 123, target dose: 25
mg deltamethrin/m?2 [39,40]; and from 2008: Icon’
MAXX, target dose: 50 mg lambda-cyhalothrin/m? [41]).

Experimental design

In each village, 72 households were randomly selected for
mosquito collection from the household list of the Ifakara
Health Institute (IHI) Demographic Surveillance System
(DSS) [25]. Each house was visited once a month (6
houses/day, 4 days/week and 3 weeks/month) over a
period of 12 months (January to December 2008). Mos-
quitoes were collected inside houses using one CDC light
trap that was placed beside a person sleeping underneath
a bed net and left to run for 12 hours (7 pm - 7 am) [42].
The light trap, fitted with an incandescent bulb, was
placed 1 - 1.5 m above the floor and close to the feet of a
bed net occupant. The bed net provided to the participat-
ing households was a new long-lasting insecticidal bed
net (Olyset, A to Z Textile Mills Ltd., Tanzania). Although
permethrin-treated bed nets exhibit modest excito-repel-
lency, they have surprising little effect on the relative effi-
ciency of light traps when compared with untreated bed
nets [22,43].

Mosquito sampling and processing

After each night of trapping, all mosquitoes were mor-
phologically identified to sex and species then visually
classified as being unfed, partially fed, fully fed or gravid
[27,44]. Throughout the study, sub-samples of up to 9
individual mosquitoes were taken from each trap to
determine parity status, sporozoite infection and sibling
species identity. Mosquito survival was assessed using
ovarian dissection for parity (parous versus nulliparous)
[45], sporozoite infection was determined using ELISA
[46] and the sibling species identity of the A. gambiae

Page 3 of 14

complex specimens were determined using PCR [47].
Prior to molecular analysis, individual mosquitoes were
stored at -20°C in micro centrifuge tubes containing a
small amount of silica drying agent separated from the
mosquito by a thin layer of cotton.

Housing and climatic conditions

The physical structure and size of eave openings for each
randomly selected house was recorded directly. The use
of bed nets and cattle ownership was estimated by the IHI
DSS [25] during an annual survey of all households in the
study villages. Each household head was asked: 1) how
many people slept in the house, 2) how many people slept
under a bed net the previous night, 3) how many bed nets
the household had, 4) how many bed nets were treated, 5)
in which month and year was the insecticide applied to
each treated bed net and 6) how many head of cattle does
the household own.

Rainfall data was collected on the nearby Kilombero
Agricultural Training and Research Institute (<12 km
from Idete village). The hourly variation in temperature
was recorded using a data logger (Tinytag TV-1500,
Gemini Data Logger, UK) placed inside a local house in
nearby Lupiro village [22].

Statistical analysis

Indoor mosquito sampling with CDC light traps is con-
sidered to be proportionally representative of true adult
exposure [22,42,48,49] so the biting rate (B) was not
adjusted for the number of household inhabitants. To
account for the lower efficiency of CDC light traps rela-
tive to human landing catch, which we consider to be
equivalent to the exposure of an unprotected person lack-
ing a net, the biting rate was calculated by dividing the
number of mosquitoes caught by species-specific relative
efficiency, being 0.30 for the A. gambiae complex, 0.68 for
A. funestus and 0.59 for Culex spp. [22].

The annual EIR was calculated using the equation: EIR
= S x B x 365 [1,2,21,22]. Where, S (sporozoite preva-
lence) = no. of sporozoite positive mosquitoes/no. of
mosquitoes tested, and B (biting rate) = no. of mosquitoes
collected/(no. of trap nights x species-specific relative
efficiency). The biting rate was calculated as an absolute
mean opposed to the William's mean [33]. This approach
provides a more realistic representation of the true total
exposure of humans to malaria infection, as the majority
of transmission events are due to a fraction of vectors
that are commonly associated with high densities in over-
dispersed data [50,51].

The above approach is consistent with previous surveys
of these villages allowing these data to be directly com-
pared with previous estimates [21,22,30,33]. Comparable
S, B and EIR values were available from previous surveys
in 1990-94 [22,29-34] and 2001-03 [22]. Each sampling
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period analysed represented a different phase of bed net
coverage: 1990-94 preceded any substantive uptake of
bed nets in this area [52] while 2001-03 followed a long-
term programme of bed net promotion resulting in wide-
scale use of untreated nets [22] and 2008 saw significant
uptake of longer-lasting insecticide treatment kits as a
result of national-scale efforts to promote them. Bed net
coverage was calculated as the proportion of people
sleeping under a bed net on the previous night. The yes/
no question asking if a bed net had even been treated was
answered by all of the respondents, but only some of the
positive respondents were able to delineate the time-
frame for bed net treatment. As such, the proportion of
treated bed nets was estimated by weighting the propor-
tion of bed nets that had ever been treated by the propor-
tion that were treated within the past 12 months.

The temporal change in annual village-level S, B, EIR,
proportion parous and A. gambiae complex sibling spe-
cies composition was analysed using generalised linear
models (GLMs) with a categorical explanatory variable
for study period. For the response variables B and EIR,
the GLM used a negative binomial distribution and a log
link function. For the variables S, proportion parous and
sibling species composition, the GLM used a binomial
distribution and a logit link function. For these parame-
ters, comparing annual village-level means over entire
calendar-years averaged out short term temporal and
spatial heterogeneity and thereby the analysis focused on
long-term changes in these entomological parameters. As
sporozoite prevalence is a property of entire communities
rather than individual sampled houses [53], the village-
level was considered to be the experimental unit (n = 2)
for which B and S were both estimated as means of all
samples from all houses over the entire year.

The construction of houses is known to influence the
indoor densities of mosquitoes [54,55] so an additional
analysis was conducted to examine this effect at the
household level. The effect of closing eaves on the annual
biting rate of Anopheline mosquitoes (B) for 2008 was
analysed using a generalised linear mixed model
(GLMM) [56] with eaves as a fixed factor and household
and month as a random factor to account for repeated
sampling. This GLMM model used a negative binomial
distribution and a log link function. All analyses were
conducted using the R package V2.9.1.

Ethics

Ethical approval for the study was obtained from the IHI
Institutional Review Board (IHRDC/IRB/No. A-32) and
the Medical Research Coordination Committee of the
National Institute for Medical Research (NIMR/HQ/
R.8a/Vol. 1X/764) in Tanzania. When the study com-
menced, permission was obtained from each household
owner who was informed about the potential risks and

Page 4 of 14

benefits of participation both orally and via provision of a
written pamphlet. After consenting, the household head
signed an informed consent form stating their willingness
to participate in the study.

Results

During the 12 month survey 1,648 CDC light trap nights
of sampling were conducted. A total of 97,437 female
mosquitoes were caught, of which 98.5% were unfed and
thus considered to have been mostly caught in the act of
host-seeking. Of these mosquitoes, 30.9% were A. gam-
biae complex (n = 30,111) comprising 85.8% A. arabiensis
and 14.2% A. gambiae senso stricto (n = 2,924 PCR ampli-
fications). The remaining mosquitoes were 2.0% A. funes-
tus (n = 1,950), 62.0% Culex spp (n = 60,442), 2.4%
Mansonia spp (n = 2,302) and 2.7% other species includ-
ing Aedes and Cogquillettidia spp (n = 2,605).

The density of mosquitoes was temporally and spatially
heterogeneous with the bulk of the mosquitoes (97.4%)
being caught between January and May. During this time
there were multiple short-term peaks of mosquito emer-
gence that occurred after rainfall (Figure 2). Members of
the A. gambiae complex dominated the biting burden
while A. funestus contributed to only 3% of the total
Anopheles bites occurring in these two villages (Table 1).

The sporozoite prevalence of A. funestus (1.71%
infected, n = 527) and A. gambiae (1.18% infected, n =
507) were not different (x2 = 0.197, p = 0.656). Whereas,
the sporozoite rate for A. arabiensis (0.16% infected, n =
3,116) was nearly 5-fold lower than both A. funestus (x2 =
24.29, p < 0.0001) and A. gambiae (x2= 11.88, p = 0.0005).
There was no difference in prevalence between villages
for any of the species (A. gambiae complex: x2= 0.57, p =
0.45; A. funestus: x2 = 2.28, p = 0.13).

The intensity of transmission experienced by unpro-
tected people without a bed net provides the most direct
indicator of community level transmission and protec-
tion. Overall, the EIR for non-users of bed nets was 81.9
infectious bites per person per year (ib/p/y, Table 1).
Eighty-six percent of malaria transmission was attribut-
able to the A. gambiae complex and 14% to A. funestus,
with the majority of transmission (90%) occurring
between January and May. Malaria transmission intensity
was approximately 2-fold higher in Namawala than Idete,
due to the high Anopheline biting rate in Namawala vil-
lage.

Similar entomological surveys using light traps were
conducted in the same villages between 1990 and 1994
(before wide-spread bed net use) and again between 2001
and 2003 (after high coverage of untreated nets had been
achieved), allowing a comparison of current malaria
transmission intensities with historical rates. In 2008, bed
net coverage levels were extremely high with 91.5% of the
population sleeping under a net the previous night and
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Table 1: The estimated malaria transmission intensity attributable to the Anopheles gambiae complex and Anopheles

funestus, computed for each village separately and the 2008 overall average

Species Idete Namawala Overall
Sporozoite prevalence (S; %)

A. gambiae complex 0.22 0.33 0.32

No. tested by ELISA 1,858 3,148 5,006
A. funestus 213 <0.09 1.71
No. tested by ELISA 422 105 527

Biting rate (B; b/p/n)

A. gambiae complex 33.51 89.66 60.90

A. funestus 2.40 1.05 1.74

No. of trap nights 916 732 1,648
Entomological inoculation rate (EIR; ib/p/y)

A. gambiae complex 26.3 124.8 711

A. funestus 18.7 0.3 10.8

Total 45.0 125.1 81.9
Proportion parous

A. gambiae complex 0.45 0.54 0.51

No. dissected 353 736 1,089
A. gambiae complex sibling species proportion

A. arabiensis 0.87 0.84 0.86

A. gambiae 0.12 0.15 0.14

No. PCR amplifications 1,481 2,599 4,080
Bed net usage (%)

Untreated 41.0 473 44.8

Treated 47.0 46.6 46.8

Overall 87.9 94.0 91.5

No. of bed net users 4,112 6,551 10,663

S = no. of sporozoite positive mosquitoes/no. of mosquitoes tested

B = no. of mosquitoes collected/no. of trap nights/calibration factor of 0.30 for A. gambiae complex and 0.68 for A. funestus; and EIR =S x B x

365

aCalculated as the percentage of people who slept under a bed net the previous night; bed nets were considered to be treated if insecticide

had been applied in the previous 12 months

46.8% sleeping under an ITN. Since 1990-94 there has
been an 8.4-fold reduction of the sporozoite prevalence of
the A. gambiae complex, but surprisingly little change in
the sporozoite prevalence of A. funestus (Table 2, Figure
3). The biting rate of the A. gambiae complex has reduced
by 2.5-fold and for A. funestus by 13-fold. Between 1990-
94 and 2001-03 the EIR was reduced by 4.2-fold [22] and
between 2001-03 and 2008 by a further 4.6-fold. Thus,
compared with the exposure of non-users in 1990-94 by
2008 there had been an 18-fold (95%) overall community
level reduction in transmission intensity for non-users of
bed nets. Considering that users of bed nets receive both
personal and community level protection, the exposure of
bed net users was calculated by adjusting for personal

protection from 40% of bites for an untreated net user
and 70% of bites for an ITN user [57]. As such, users of
untreated nets probably experienced a 30-fold (97%)
reduction and users of ITNs experienced a 60-fold (98%)
reduction. In 2008, the mean EIR of an average commu-
nity member calculated as an average weighted according
to the recorded bed net use (Table 1) was 33.9 ib/p/y.
Temporal changes in malaria transmission intensity
may be mediated by changes in a range of fundamental
biological determinants of the mosquito population
including the age distribution or species composition of
the mosquito populations. Wide-spread bed net use
appears to have mediated a drop in vector survival rates
which was subsequently followed by population decline
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Table 2: Differences in the historical and recent estimates of sporozoite prevalence (S), biting rate (B) and entomological
inoculation rate (EIR) for the Anopheles gambiae complex, Anopheles funestus and overall

Year OR2or RRP[95% ClI] p value

Sporozoite prevalence (S)2

A. gambiae complex

1990-1994¢ 1.00 NA
2001-20034 0.450[0.392,0.518] <0.0001
2008 0.128[0.075, 0.218] <0.0001
A. funestus

1990-1994¢ 1.00 NA
2001-20034 0.716 [0.609, 0.842] <0.0001
2008 0.735[0.377,1.432] 0.366
Overall

1990-1994¢ 1.00 NA
2001-20034 0.530[0.477,0.589] <0.0001
2008 0.185[0.122,0.281] <0.0001

Bites per person per night (B)®

A. gambiae complex

1990-1994¢ 1.00 NA
2001-20034 0.486 [0.241, 0.983] 0.044
2008 0.405 [0.200, 0.821] 0.012
A. funestus

1990-1994¢ 1.00 NA
2001-20034 0.396 [0.233, 0.673] 0.0006
2008 0.072[0.024, 0.214] <0.0001
Overall

1990-1994¢ 1.00 NA
2001-20034 0.474[0.250, 0.899] 0.022
2008 0.359[0.188, 0.686] 0.0019

Entomological inoculation rate (EIR)P

A. gambiae complex

1990-1994¢ 1.00 NA
2001-20034 0.214[0.075,0.612] 0.004
2008 0.061[0.021, 0.176] <0.0001
A. funestus

1990-1994¢ 1.00 NA
2001-20034 0.241 [0.052, 1.100] 0.066
2008 0.039[0.008, 0.188] <0.0001
Overall

1990-1994¢ 1.00 NA
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Table 2: Differences in the historical and recent estimates of sporozoite prevalence (S), biting rate (B) and entomological
inoculation rate (EIR) for the Anopheles gambiae complex, Anopheles funestus and overall (Continued)

2001-20034
2008

0.218[0.089, 0.531] 0.0008

0.057[0.023,0.141] <0.0001

Village-level data were compared with a generalise linear model (GLM) using a binomial distribution with identity logit link for S and a

negative binomial distribution with log link for B and EIR.
a0dds Ratio,

bRelative Rate,

[29-34], 4[22]

of highly anthropophagic species particularly once insec-
ticide treatment became common. Overall, the propor-
tion of parous mosquitoes has decreased from 0.62 in
1990-94 [30,31] to 0.43 in 2008 (Table 3). The proportion
of A. gambiae among the complex decreased from 0.46 in
1990-94 [29,30,34] to 0.14 in 2008 (Table 3). During the
initial six years of bed net use (commencing 1997) the
parity rate of the mosquitoes declined, but at this time the
proportions of A. gambiae and A. arabiensis remained
fairly constant. By the time insecticide coverage had
increased in 2008, additional reductions in the parity rate
were very modest, but the population density of A. gam-
biae declined relative to that of A. arabiensis.

The widespread use of ITNs placed a high level of stress
on vectors that are highly endophagic and dependent on
humans for blood [58], mediating a 79% reduction in A.
gambiae density (69.9 b/p/n in 1990-94 versus 8.4 b/p/n
in 2008). The reduction in A. gambiae density was pre-
sumably mediated by reduced survival. The proportion of
parous A. gambiae, was very low at 0.39 (n = 76). On the
other hand, bed net use has not had the same level of
impact on the exophagic, zoophagic A. arabiensis, the
density of which was only reduced by 38% since 1990-94
(82.0 b/p/n in 1990-94 versus 51.6 b/p/n in 2008). The
proportion of parous A. arabiensis was 0.45 (n = 466) and
higher than A. gambiae, but the difference in parity
between the sibling species was not significant (x2 =
0.730, p = 0.393). The change in the composition of the A.
gambiae complex resulted in 39% of transmission being
attributable to A. arabiensis (calculated by adjusting both
the sporozoite prevalence and biting rate), with 47% due
to A. gambiae and 14% due to A. funestus. For the previ-
ous sample periods, we were unable to calculate the pro-
portion of transmission attributable to the sibling species
of the A. gambiae complex because species-specific
sporozoite prevalence data was unavailable.

When interpreting the decline in malaria transmission
over time, it is important to acknowledge other factors,
such as increases in population density [59,60] or envi-
ronmental changes [61-63], which can contribute to
declines in malaria transmission. The population has
increased dramatically from ~1,000 people per village in
1990-94 [52] to 4,673 people in Idete and 6,970 in

Namawala in 2008. In 1990-94 there was an absence of
cattle in the villages [52], but by 2008 there 306 head of
cattle in Idete and 6,667 in Namawala. House construc-
tion may affect mosquito densities and consistent with
published literature [54,55] the biting rate of the A. gam-
biae complex (Relative Rate (RR) [95% Confidence Inter-
vals (CI)] = 0.689 [0.539, 0.882], p = 0.005) and A.
funestus (RR [95% CI] = 0.858 [0.776, 0.948], p = 0.005)
was lower in houses with closed eaves. The randomly
selected houses during 2008 were built from clay-fired
bricks (58%), mud (38%), grass thatch (2%) or clay unfired
bricks (2%), with roofing of grass thatch (53%) or corru-
gated iron (47%). The majority (71%) had open eaves with
a mean eave size of 14.6 + 0.7 cm. In 1990-94, all of the
houses were constructed from mud walls with thatched
roofs [52], but importantly the portion of houses with
open eaves was similar [54,55]. Although it rained heavily
during 2008 (Figure 2a; total annual rainfall 2,401 mm)
this would only have served to inflate the observed EIR
values and provides further support to the results.

Discussion

The study showed that in a setting where coverage of
untreated bed nets was already high, the addition of lon-
ger-lasting insecticide treatment of bed nets was associ-
ated with a further 4.6-fold reduction in malaria
transmission. This was in addition to the 4.2-fold reduc-
tion already associated with the use of untreated nets
alone. Overall, an 18-fold reduction in transmission rela-
tive to the historical norms was recorded, demonstrating
that combining the impacts of bed nets and insecticide, at
high coverage rates, has a multiplicative effect along a lin-
ear scale or additive along a log scale [64,65].

The bed net distribution programmes which this area
has been included in (the local pilot KINET and the vari-
ous national-scale programmes) were based on a cost-
sharing scheme that supported a commercial ITN distri-
bution system combined with targeted subsidies for the
most vulnerable community members. The programme
is cost-effective [23] and was successful at achieving
91.5% use of bed nets by all community members, rather
than just target groups, by 2008 (Table 1). Further, 46.8%
of people slept under bed nets that were treated with lon-
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ger-lasting insecticide within the last 12 months. It is
important to note that the use of bed nets in the study vil-
lages is higher than the national average (40.8%) [66]

since coverage was high before the national-scale pro-
grammes commenced.
The ITN coverage has reached the theoretical thresh-

old (35 - 65%) required to mediate community level sup-
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Table 3: The parity and sibling species composition of the Anopheles gambiae complex populations in averaged across

Idete and Namawala villages

Year Proportion (n/total) Odds ratio [95% Cl] pvalue
Parity
1990-19942 0.62 (9,690/15,541) 1.00 NA
2001-2003b 0.47(2,995/6,372) 0.535[0.504, 0.568] <0.0001
2008 0.51(448/641) 0.4221[0.372,0.478] <0.0001
Sibling A. gambiae sensu stricto
1990-19942 0.46 (101/220) 1.00 NA
2001-2003b 0.38(60/157) 0.812[0.532, 1.240] 0.336
2008 0.14 (584/4080) 0.196 [0.148, 0.260] <0.0001
2[29-34], b[22]

pression of malaria mortality and morbidity [12]. The
community-wide entomological impacts observed are
consistent with epidemiological outputs in Idete village,
where ITN use protected non-users from anaemia and
splenomegaly [16]. Similarly, previous trials in sub-Saha-
ran Africa have demonstrated a reduction in malaria
mortality and/or morbidity of unprotected children who
reside in or near clusters of households with high ITN use
[14,15,19]. This study reflects the impact of ITN use on
transmission under programmatic conditions where dis-
tribution is uneven, with protected and unprotected peo-
ple inter-dispersed throughout the villages.

A substantial reduction in the intensity of malaria
transmission, or EIR, was most likely associated with the
ability of both untreated and treated nets to confer pro-
tection to the wider community, not just individual users.
The EIR is the product of mosquito biting-densities (B)
and the sporozoite rates (S) and both were reduced in the
survey villages. The estimate of a reduced EIR by 95% for
non-users is similar to previous estimates (90 - 94%) for
ITN trials in Africa [67,68]. The most obvious mecha-
nisms through which ITNs could have reduced vector
density and survival are mortality when attacking an
occupant of a ITN [8,67-69] and longer and more hazard-
ous searches for blood-meals [70]. Regarding the sporo-
zoite prevalence of the A. gambiae complex, this may
have declined as a result of the reduced proportion of A.
gambiae relative to A. arabiensis, since the sporozoite
prevalence of A. arabiensis is consistently lower than that
of A. gambiae. Other mechanisms that may also have
contributed are the diversion of mosquitoes to alternative
hosts [20,71,72], reduced feeding frequency [9,73] or
reduced survival [67,68]. Surprisingly, the sporozoite
prevalence of A. funestus did not change over time and in
2008 the sporozoite prevalence of A. gambiae was not dif-
ferent to A. funestus, suggesting that the sporozoite prev-

alence of A. gambiae had not changed with time either.
The discrepancy between reduced mosquito survival cor-
responding with minimal impact on sporozoite preva-
lence may possibly be due to manipulation of infected
mosquitoes by malaria parasites to extend their lifespan
and increased feeding frequency [74].

With only two village-scale experimental unit replicates
tracked through three time periods, the greatest limita-
tion of this study is that it is essentially descriptive and
observational. This study is a retrospective analysis of
non-experimental data and, therefore, represents plausi-
ble rather than probable evidence [75] of community
level suppression of transmission. It was not possible to
contrast the results of this study with a control site where
bed nets remained untreated, since preventing people
from accessing ITNs would have been ethically inappro-
priate. Nonetheless, clear changes to the EIR and the bio-
demographic profile of the vector species have been asso-
ciated with the introduction of bed nets and insecticide
treatments.

The biodemographic profile of mosquito populations
may have also been altered by changes in land-use or
landscape ecology [61-63]. With time, the population and
geographic size of the villages has increased. During this
process, some of the remote farming regions from 1990-
94 have been urbanized. Regardless the general layout of
the villages remains similar with a densely populated
town centre and many people still residing in rural farm-
ing regions on the outskirts. During each study period,
mosquito sampling was conducted in both farming and
town houses, accounting for some of the biases caused by
changes in landscape ecology over time. The highest den-
sities of mosquitoes were captured in the farming regions
where houses are constructed in close proximity to the
larval habitats found in rice paddies. However, the
observed reduction in EIR was much stronger than what
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would be expected due to changes in population size
alone, as increases in population density can only mediate
an equivalent reduction in transmission intensity [59,60].
Improvements in socio-economic status could also have
contributed to the decreased risk of malaria transmission
[76-78]. In general the socio-economic status of the vil-
lages has improved since 1990-94, as indicated by
changes in house construction, a commonly used proxy
measurement [79].

The introduction of bed nets, enforced with insecti-
cides, had a stronger impact on the density and survival
of the anthropophagic, endophagic A. gambiae than its
zoophagic, exophagic sibling species A. arabiensis. The
change in the proportional biting of the sibling species
was not attributable to competitive displacement of A.
gambiae by A. arabiensis [80], but merely a more severe
reduction in A. gambiae density and survival. It is clear
that the A. arabiensis population has been stressed by the
use of ITNs, but this species may have adapted by either
taking a higher portion of blood-meals from animal
sources [81-83], or by biting earlier in the night when
humans are outdoors and unprotected [84,85]. Similar
shifts in sibling species composition due to selective pres-
sure of domestic insecticide interventions were previ-
ously recorded for A. gambiae relative to A. arabiensis in
Kenya [86,87] following sustained ITN use and for A.
funestus relative to Anopheles rivulorum and/or Anophe-
les parensis in South Africa, Kenya and Tanzania follow-
ing indoor-residual spraying [88,89]. Consequently, there
is need for additional vector control tools that target
exophagic, zoophagic vectors, such as A. arabiensis, to be
integrated into existing malaria control programmes; for
example zooprophylaxis [70], insecticide treated cattle
[90], outdoor resting traps [91], or push-pull strategies
[92].

Conclusion

Insecticide treatment of nets reduced the intensity of
malaria transmission in addition to that achieved by the
untreated nets alone. Overall, an 18-fold (95%) commu-
nity level reduction in transmission intensity was
recorded for non-users of bed nets. These results clearly
demonstrate that vector control in rural areas with high
densities of mosquitoes is possible. The predominantly
polyester-based net technologies currently used in these
villages may be improved upon and further reductions
are possible since the "catch up" programmes for free
polyethylene-based long-lasting insecticidal bed net dis-
tribution commenced in late 2009. Impacts of insecti-
cide-treated net use were most pronounced against the
highly anthropophagic, endophagic primary vector, lead-
ing to a shift in the sibling species composition of the A.
gambiae complex. Since almost 40% of transmission is
now attributable to the exophagic, zoophagic A. arabien-
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sis, additional vector control tools that specifically target
this cryptic sibling species need to be integrated into
existing malaria control programmes.
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