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Abstract

Background: Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of
cases in last few years. To strengthen the country’s prevention and control measures, this study was carried out to
develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time
series and ARIMAX.

Methods: This study was carried out retrospectively using the monthly reported malaria cases from the health centres
to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit,
Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from
1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal
autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to
2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and
the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the
monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed.
The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month.

Results: It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and
seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q
the moving average parameters and seasonal moving average parameters, respectively and s representing the
length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each
district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted
monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149
cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The
ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts.
In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased
malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor
in one district, whereas no variable could predict malaria cases for two districts.

Conclusions: The ARIMA models of time-series analysis were useful in forecasting the number of cases in the
endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model
with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning
and managing malaria prevention and control programme in Bhutan.
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Background
There are an estimated 300-500 million clinical cases of
malaria reported each year [1-4]. One factor contribut-
ing to this problem is the known global climate change;
this is considered as a big challenge in fight against the
scourge of malaria [5-7]. In Bhutan, despite many years
of prevention and control measures, malaria still
remains a public health problem in low lying areas of
the country adjacent to India. In some districts, the
transmission persistently occurs throughout the year.
Besides its impact on social, demographic and economic
disruptions, malaria is considered a threat as it may
introduce malaria into all temperate climates and non-
malarious areas across Bhutan.
Historically, the first malaria survey in Bhutan was

conducted in 1962 [8]. There was a steady increase in
the number of cases rising from 518 in 1965 to reach a
peak of 39,852 cases with 62 deaths in 1994, followed by
a decline to 392 cases with two deaths in 2008 as a
result of intensive prevention and control measures. The
highest number of cases was recorded in 1994 with
39,852 cases, and the highest number of deaths was also
recorded in 1994 with 62 deaths. The Annual Parasite
Incidence (API) per 1,000 population at risk of malaria
in Bhutan was 3.98% in the year 2006 [9]. However, the
numbers of cases remain persistently high in seven
endemic districts of Bhutan with malaria transmission
occurring throughout the year. The seven endemic dis-
tricts of Bhutan are: Chukha, Dagana, Pemagatshel,
Samdrup Jongkhar, Samtse, Sarpang and Zhemgang.
Malaria transmission is clearly associated with the

rainy season [10-13]. Prevention and control measures
have been intensified during the summer months- May
to July, since the transmission is increased during these
months. The control measures also have changed over
the years. Indoor residual spraying (IRS) using dichloro-
diphenyltrichloroethane (DDT) was implemented since
1964 with three rounds and later two rounds until 1994.
With reports of resistance to DDT in some parts of the
world, and global concern over environmental concerns,
DDT was replaced by Deltamethrin (synthetic pyrethoid)
from 1995. However, DDT is used in the neighbouring
state of Assam in India which borders five of the seven
malaria endemic districts of Bhutan, since the main vec-
tor Anopheles minimus is still sensitive to DDT [14].
Insecticide treated-bed nets (ITN) became the main
control strategy from 1998 with focal IRS being used
during outbreaks and emergencies, and in high Plasmo-
dium falciparum transmission areas with API >10% [8].
With the growing evidence of the effectiveness of LLINs
in reducing the mortality and morbidity of malaria by
preventing man-mosquito contact [15], from 2006 Bhu-
tan distributed over 100,000 long-lasting insecticidal

nets (LLIN), supported by grants from Global Fund to
Fight AIDS, Tuberculosis and Malaria (GFATM). Early
diagnosis and prompt treatment (EDPT) remains a cor-
nerstone of malaria control and is provided by micro-
scopy facilities at all levels of health centres and
supplemented by rapid diagnostic kits (RDT). The pre-
sent treatment regimen of Plasmodium falciparum is
the combination of artemether and lumefantrine (Coar-
tem®) administered over three days (except for pregnant
woman). Plasmodium vivax is treated with chloroquine
(25 mg/kg) for three days and primaquine (0.25 mg/kg)
administered over 14-days [16,17].
Although there has been a marked reduction of

malaria cases due to the implementation of these inte-
grated control measures by the VDCP for the whole
country, the malaria problem is still a major threat to
the country and requires a well developed strategic plan
and resource preparation for prevention and control,
and eventual elimination. Forecasting malaria enables
suitable allocation of resources and forestalls outbreaks
and epidemics. There has been no such modelling of
malaria in Bhutan before. This study aimed to propose a
forecasting model based on the time series analysis. In
addition, this study also aimed at proposing a prediction
model incorporating climatic factors such as tempera-
ture, humidity and rainfall; which are important in the
development of malaria parasites and vector bionomics
[18-21].

Methods
Study area
Seven malaria endemic districts of total 20 districts in
Bhutan were selected for this study as they have been
identified since malaria transmission occur throughout
the year; these districts are Chukha, Dagana, Pemagat-
shel, Samdrup Jongkhar, Samtse, Sarpang and Zhem-
gang districts (Figure 1). These districts lie in the
foothills of Himalayas neighbouring India. There are
four seasons in Bhutan, each season lasts about three
months. The general climate in these districts is sub-tro-
pical with heavy rainfall in the summer season lasting
from May to July. Malaria transmission is intense during
the summer season, the gradual decline in malaria trans-
mission is observed during winter season when the
ambient temperature is cooler. The total population of
these seven districts, as of 2008, was 277,257. However,
populations from different parts of Bhutan usually come
to these districts for business and other works because
major commercial hubs are located there.

Malaria data
The monthly incidence of malaria cases were obtained
from Vector-borne Disease Control Programme (VDCP),
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Department of Public Health, Ministry of Health, Royal
Government of Bhutan. Malaria cases from various levels
of health centres are reported to the programme every
month. These health centres provide free malaria diagno-
sis either by microscopy or by using rapid diagnostic test
(RDT). All malaria cases are treated with the national
standard regimen.

Malaria distribution varies greatly between the districts
and sub districts. Figures 2 and 3 shows the malaria case
and incidence rate distribution down to the sub district
level with some sub districts reporting as many as 438
cases, where as other some sub districts do not report
any malaria cases. Figure 3 shows the malaria incidence
rate per 1000 population at the sub district level.

Meteorological data
A climatic record from 1996 to 2008 was obtained from
the Meteorological Unit, Department of Energy, Minis-
try of Economic Affairs, Royal Government of Bhutan.
Daily reported climatic variables include mean mini-
mum and maximum temperature, humidity and rainfall;
these variables are collected and recorded at the weather
stations in each districts. The meteorological Unit main-
tains the records of all the district climatic variables at
the central level. Overall, the maximum temperature of
the whole region varies between 20°C and 30°C; mean
minimum temperature ranges between 10°C and 20°C.
Monthly relative humidity ranges between 60% and 90%.
Amount of rainfall greatly varies from month to month,
ranging from zero to 1000 mm per month (Figure 4).

ARIMA Modelling Methods
The forecasting model proposed in this study was the
multiplicative seasonal Auto-regressive Integrated

Figure 1 Study site, map of Bhutan and the endemic districts.

Figure 2 Malaria case distributions of the endemic sub districts
of Bhutan from 2004 to 2008.

Figure 3 Malaria incidence rates of the endemic sub districts
of Bhutan from 2004 to 2008.
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Moving Average (ARIMA). A seasonal ARIMA (p, d, q)
(P, D, Q) s model where:

▪ p and P- the auto regressive and seasonal autore-
gressive, respectively;
▪ d and D- the non-seasonal differences and seaso-
nal differencing, respectively;
▪ q and Q- the moving average parameters and sea-
sonal moving average parameters, respectively.
▪ s representing the length of the seasonal period.

A stationary time series is a time series whose statis-
tics do not change over time. Such statistics are typically
the mean and the variance. There are three types of

non-stationarity; series that have a non-stationary mean;
series that have a non-stationary variance; and series
with a periodic or seasonal component [22].
In this research, the data series was non-stationary

(Figure 5-Top) but after taking first difference, the mean
is constant (Figure 5-Bottom). But, there is no evident
that the original data series has a variance that gets lar-
ger over time. However, in our study non-stationary
mean was dealt by taking first differences and a strong
seasonal component with a season of length by taking a
seasonal difference.
From the autocorrelation functions (ACF) and partial

autocorrelation functions (PACF), plausible models were
identified. The forecasting models were developed for

Figure 4 Monthly malaria cases of the overall districts with temperature, humidity and rainfall from 1996 to 2008.
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each selected district as well as the overall endemic dis-
tricts. Time series data from 1994 to 2006 were used as
a training set while data from 2007 to 2008 were used
as a testing set (Figure 6). The model diagnostic was
performed using Bayesian Information Criteria (BIC)
and p-value. The lowest BIC values with p value less
than 0.05 was considered good model [23-25].
The good ARIMA models from different data series

were explored in which the actual cases and predicted

cases were closely matched as shown in Figure 6. The
mean average percentage errors (MAPE) were com-
puted. The best model with the least MAPE was used to
forecast the malaria cases for the year 2009 and 2010,
respectively.

ARIMAX Modelling Methods
ARIMAX model is an extension of ARIMA modelling in
attempt to predict the malaria cases using the climatic
factors and the number of cases in a previous month.
The predictors in the model included the number of
cases in the previous month, mean maximum and mini-
mum temperature, relative humidity and rainfall lagged
at one month.
The modelling of ARIMA and ARIMAX models were

performed using STATA Intercooled 9. The use of data
was permitted by the Ministry of Health and Ministry of
Economic Affairs in Bhutan.

Results
Overall malaria incidence
The number of malaria cases of the seven malaria ende-
mic districts decreased from 38,735 in 1994 to 6,781 in
1998. An outbreak of malaria was observed in 1999
when the incidence dramatically increased to 12,109. A
significant decrease in malaria cases was observed again
since the year 2005. The number of malaria cases fell to
a low of 292 in 2008. Malaria distribution also varies
greatly across the districts and sub districts (Figure 3).
Some sub district reported malaria as many as 438
malaria cases, while some districts did not observe any
malaria cases.

Time-series Forecasting Models
The best-fit models for the different districts and the
predicted cases with the actual cases for the year 2007
and 2008 are shown in Table 1. The best-fit model for
Chukha and Samdrup Jongkhar districts were ARIMA
(2, 1, 1) (0, 1, 1)12, where the error percentage were
3.64% and 2.52%, respectively. Dagana, Pemagatshel,
Sarpang and Zhemgang district had the best-fit model
of ARIMA (1, 1, 1) (0, 1, 1)12 with error percentages of
2.43%, -7.72%, 0.70% and 5.90%, respectively. Samtse
had ARIMA (1, 1, 0) (0, 1, 1)12 as the best-fit model
with an error percentage of 24.80%. The best-fit model
for the overall districts was ARIMA (2, 1, 1) (0, 1, 1)12.
This had an error percentage of -8.12% (Table 1).
The best model was fitted to forecast the malaria cases

for 2009 and 2010. Sarpang district was forecasted to
report the highest number of cases with 350 and 915, fol-
lowed by Samdrup Jongkhar district with 131 and 258
cases, respectively. The lowest cases were forecasted to
be reported by Zhemgang district with nine cases for
2009 followed by Samtse district with 11 cases,

Figure 5 Malaria cases without any differencing (Top) and with
first degree and seasonal differencing of the overall endemic
districts of Bhutan from 1994 to 2008.

Figure 6 Actual malaria cases from 1994 to 2008 and
predicted cases from 2007 to 2008 of the overall endemic
districts of Bhutan.
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respectively. In 2010, Samtse was predicted to report the
least cases with five followed by Pemagatshel district with
13 cases, respectively (Figure 7 and Tables 2 and 3).

Prediction Models with Covariates
The covariates fitted in the models included the num-
ber of malaria cases in the previous month, mean
maximum and minimum temperature, humidity and
rainfall, all lagged at one month period. Pemagatshel
and Zhemgang did not have any significant predictors
(climatic variables and the previous month’s malaria
cases) of malaria for the subsequent month. The best
model for Chhukha district was the model II with a
BIC of 1107.768. The significant predictors was mean
minimum temperature (p = 0.002) when the malaria
cases of the previous month, mean minimum tempera-
ture and humidity lagged at one month were fitted.
Previous month’s malaria cases were a significant pre-
dictor of subsequent month’s malaria cases for Dagana
districts in all the five models. However, model III was
the best model with the lowest BIC of 748.5172. The

different predictors that were fitted in the model III
were malaria cases, maximum temperature and rain-
fall. Model III with previous month’s malaria cases,
maximum temperature and rainfall was the best
model for Samdrup Jongkhar district. But two of the
covariates, maximum temperature (p < 0.001) and
rainfall (p < 0.001) were significant predictors for
Samdrup Jongkhar in the Model IV. Samtse, Sarpang
and all endemic districts in the model I consisting of
previous month’s malaria cases, and mean minimum
temperature was the best model. However, only signif-
icant predictor was mean minimum temperature
(Table 4).

Discussion
Models based on the time series (ARIMA)
This study provides an example of applying a simple
ARIMA model to forecast malaria cases in a low
malaria-transmission area, where targeted interventions
are highly recommended for most effective malaria con-
trol. This model was developed according to the trend
of the malaria cases over the years and presuming pat-
tern stability of all other conditions such as climatic fac-
tors, control and preventive measures, treatment seeking
behaviour and migration of people. The developed mod-
els were validated and appeared to fit well at both each
district level and the overall districts, providing tolerable
error levels in forecasting.
Different ARIMA models were found for different dis-

tricts, which is consistent with the findings of the study
by Briet et al [26]. This suggests that each district would
have its own particular trend. Districts close to each
other are likely to have similar disease transmission pat-
terns corresponding to their spatial and climatic similar-
ity. However, the ARIMA models of the selected
endemic districts in Bhutan did not follow this hypoth-
esis in terms of spatial location. In some areas, the high
malaria incidence district is adjacent to the very
low malaria incidence district. On the other hand, differ-
ent malaria trends were observed among districts that
have similar climatic characteristics. The difference in
malaria trends across districts may be partly explained
by the difference in control measures or patients’ seek-
ing behaviours. The control measures in these endemic
districts remain same. However, the actual implementa-
tion of the control measures such as IRS may vary from
districts to districts. This difference could be due to
logistic reasons such as the availability of the people to
carry out this activity.

Models based on time series with covariates (ARIMAX)
In exploring different prediction models by fitting cov-
ariates to the time series data, no single best model
was found; some covariates were found significant in

Table 1 Actual and predicted malaria cases in endemic
districts of Bhutan for two years from 2007 to 2008

Districts Model Malaria cases Error
percentage

Actual
cases

Predicted
case

Chukha (2,1,1)(0,1,1)12 80 77.09 3.64

Dagana (1,1,1)(0,1,1)12 51 49.76 2.43

Pemagatshel (1,1,1)(0,1,1)12 41 44.17 -7.72

Samdrup
Jongkhar

(2,1,1)(0,1,1)12 366 356.78 2.52

Samtse (1,1,0)(0,1,1)12 76 57.16 24.80

Sarpang (1,1,1)(0,1,1)12 386 383.30 0.70

Zhemgang (1,1,1)(0,1,1)12 7 6.59 5.90

All districts (2,1,1)(0,1,1)12 1007.00 1088.80 -8.12

Figure 7 Forecasted malaria cases of the endemic districts and
the overall endemic districts for 2009 and 2010.
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one model but not in another model. These covariates
included number of cases in previous month, mean
maximum and minimum temperature, rainfall and
humidity. These climatic covariates were lagged at one
month to allow for sufficient time to complete life
cycle of vector which takes around two weeks and
subsequently complete the generation of parasites in
the new host for two weeks. The number of malaria
cases observed in the previous month reflect the level
of human reservoir within the area, while other
meteorological factors such as temperature, humidity
and rainfall are an important extrinsic factors that are
directly associated with the development of vectors.
The temperature is also an important factor that
determines the rate of development of parasites in the
mosquitoes.
Two districts did not have any significant covariates as

predictors of malaria cases. This can be explained by the
fact that the malaria cases in these districts were rather
low with no malaria cases in certain months, therefore
the malaria cases of the preceding month was not a sig-
nificant predictor, or at worst could lead to inaccurate
prediction, similar to a study in Sri Lanka [26]. Similar
findings in which monthly malaria cases in the previous
month were not effective in forecasting were reported
by Hay et al [27]. The climatic factors that were not sig-
nificant predictors particularly in these two districts

could be explained such that the meteorological stations
collecting climatic factors are from a different location
from where malaria cases usually occurred. This indi-
cates as one of the main limitations of using the climatic
factors as the predictors for forecasting in certain situa-
tion/location [28].
Temperature was found as an important predictor for

three districts and overall districts. Temperature affects
- the mosquito bionomics through the time required for
development of the ookinete, the egg of the parasite, in
the midgut of the anopheline mosquito, which decreases
as temperature increases from 21°C to 27°C [29].
Increase in temperature also decreases the interval
between mosquitoes’ blood meals there by shortening
the incubation periods of the plasmodium parasites in
the mosquitoes and the number of times eggs are laid
by the mosquitoes [5,21]. A decrease in temperature
would have the opposite effect.
When more climatic variables were added, rainfall was

found as one of the significant predictors for only two
districts. Rainfall provides aquatic medium for the
growth and development of mosquitoes. But excessive
rainfall might have a negative effect by washing off the
breeding sites [30]. In all, using climatic factors as pre-
dictors for malaria occurrence were different from one
location to another; this pattern has been observed by
several other studies [27,28,30-35].

Table 2 Forecasted monthly malaria cases of endemic districts from January to December 2009

District Forecasted malaria cases Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chukha 2 1 2 11 4 5 7 3 3 5 4 4 50

Dagana 1 1 1 4 2 1 2 1 4 3 1 3 24

Pemagatshel 0 1 0 5 0 2 0 1 1 2 0 0 12

Samdrup Jongkhar 3 2 3 18 11 7 19 15 7 21 13 12 131

Samtse 0 0 0 3 2 1 3 2 0 0 0 0 11

Sarpang 14 11 9 39 25 22 33 42 36 38 47 34 350

Zhemgang 0 0 0 1 0 0 2 0 2 1 1 1 9

All district 19 16 15 82 45 40 68 65 53 70 67 55 595

Table 3 Forecasted monthly malaria cases of endemic districts from January to December 2010

District Forecasted malaria cases Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chukha 5 5 5 14 8 9 11 8 7 10 9 9 101

Dagana 2 2 2 5 3 2 3 2 5 4 2 4 35

Pemagatshel 0 1 0 5 0 2 0 1 1 2 0 0 13

Samdrup Jongkhar 10 10 11 27 21 18 30 26 19 33 27 26 258

Samtse 0 0 0 2 1 0 2 1 0 0 0 0 5

Sarpang 48 47 48 80 69 68 81 92 89 94 105 95 915

Zhemgang 1 1 1 2 1 1 4 2 3 2 2 2 22

All district 67 67 70 140 106 104 136 137 128 149 149 140 1393
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Conclusions
These forecasting models developed in the study provide
the VDCP with expected malaria cases in advance,
which would be a useful guidance for timely prevention
and control measures to be effectively planned. The
knowledge of the spatial distribution of the malaria at
the sub districts would also greatly aid in the targeting
the control measures, even though the forecasting is fea-
sible at the district level data due to the small number
of cases at the sub district level. Thus, VDCP can use
the forecasting model to estimate the number of malaria
cases at the district while targeting the control measures
at the sub district using the spatial distribution of
malaria cases of the previous years.
The prediction model based on the time series and

climatic factors were developed and showed different
predictors for different districts. Some districts did not
have any covariates as predictor of malaria. Model based
on time series would provide forecasting for longer per-
iod unlike the models fitted with other covariates like
climatic factors, which is best suited for forecasting in
shorter period.
The main limitation of models based on time series

is that they provide forecasting for longer period. In
contrast, the models that are fitted with other covari-
ates such as climatic factors may be best suited for
forecasting within a shorter period. The time series
model proposed in the study can be applied to other

diseases such as dengue. However, further research is
recommended to evaluate the effectiveness of integrat-
ing the forecasting model into the existing malaria
control programme in terms of its impact in reducing
the disease occurrence and also the cost of control
interventions.
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Table 4 P-values and BIC of significant covariates of malaria case in different ARIMAX models for each of the endemic
districts and the overall endemic districts of Bhutan

Models Covariates Districts*

1 2 4 5 6 All districts

I Cases 0.000 0.000 0.000 0.04 0.000

BIC Temp min 792.3911 1524.363 1337.595 1731.596 1812.401

II Cases, 0.002 0.000 0.000 0.000 0.033 0.000

BIC Temp min, Hum 1107.768 792.5185 1528.834 1341.371 1735.813 1815.411

III Cases, 0.001 0.000 0.000
0.000

0.001
0.004

0.038 0.000

BIC Temp max, Rainfall 1112.112 784.5172 1505.547 1343.952 1734.896 1812.601

IV Cases, 0.000 0.001

Temp max, Rainfall 0.004 0.000 0.038 0.042 0.000

Hum

BIC 1126.668 796.214 1514.975 1345.209 1744.511 1817.437

V Cases, 0.000

Temp max, 0.001

Temp min, Rainfall, 0.001

Hum

BIC 789.4534 1514.97

* Districts: 1-Chukha, 2-Dagana, 3-Pemagatshel, 4-Samdrup Jongkhar, 5-Samtse, 6-Sarpang, 7-Zhemgang.

Note:- p-value significant at 0.05.

The blank space means it is not significant at p = 0.05.

Districts 3 and 7 did not have any climatic variables significant at p = 0.05, and thus were not included in the table.

Cases-previous month malaria cases, Temp max-monthly mean maximum temperature, Temp min-monthly mean minimum temperature, Hum-humidity.
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