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Abstract

synergistic partners for anti-malarial drug combinations.

Background: Emergence of drug-resistant parasite strains has surfaced as a major obstacle in attempts to ameliorate
malaria. Current treatment regimen of malaria relies on the concept of artemisinin-based combination therapy (ACT).

Methods: Fluoroquinolone analogues, compounds 10, 12 and 18 were investigated for their anti-malarial interaction in
combination with artemisinin in vitro, against Plasmodium falciparum 3D7 strain, employing fixed-ratio combination
isobologram method. In addition, the efficacy of these compounds was evaluated intraperitoneally in BALB/c mice
infected with chloroquine-resistant Plasmodium berghei ANKA strain in the Peters’ four-day suppressive test.

Results: Promising results were obtained in the form of synergistic or additive interactions. Compounds 10 and 12
were found to have highly synergistic interactions with artemisinin. Antiplasmodial effect was further verified by the
convincing EDsq values of these compounds, which ranged between 231 and 3.09 (mg/kg BW).

Conclusions: In vivo studies substantiated the potential of the fluoroquinolone derivatives to be developed as

Keywords: Fluoroquinolone derivatives, artemisinin, isobologram, antiplasmodial activity

Background

Drug-resistant malaria has emerged as the most undefi-
able obstacle in the battle against this deadly disease
[1,2]. Artemisinin and its analogues, once regarded as
the most powerful drugs that cure chloroquine-resistant
Plasmodium falciparum infections, have also fallen to
resistance [3-6]. Therefore, the need of the hour is to
ward off the deployment of artemisinin and its analogues
as monotherapy, to support WHO’s resolution of advo-
cating artemisinin-based combination therapy (ACT),
and ensure their methodical and practicable implemen-
tation in all afflicted areas. As the available ACT is only
a handful, there is tremendous possibility of the selec-
tion of Plasmodium strains with acquired resistance
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towards them. Therefore, the current focus should be di-
rected towards devising alternative ACT. The underlying
mechanism behind the therapeutic effect of artemisinin-
based combinations is that the artemisinin component
rapidly and effectively wipes out most of the parasites,
while those that remain are successively annihilated by a
high concentration of the partner drug [7]. The efficacy
and short half life (< one hour) of the artemisinin com-
ponent confers protection against development of drug
resistance. The long half life companion drug is required
to ensure no parasite is left unperturbed. In this manner,
the probability that mutant parasites survive and emerge
after co-administration of these two drugs is very low.

In spite of the availability of several potent drugs as part-
ners in ACT, quinolones are one of the cardinal classes as
they can target both the blood and liver parasite stages [8].
The current status of quinolones as anti-malarials can be
traced back to 1962 when Lesher et al [9] discovered
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nalidixic acid as a by-product of the synthesis of the anti-
malarial drug, chloroquine. This discovery paved the way
for further development of a vast array of quinolone com-
pounds, along with those in clinical use [10,11]. Presently,
primaquine and atovaquone are the only anti-malarials
available commercially that target liver stage parasites as
well [12,13]. The first quinolone identified to possess ac-
tivity against multiple parasite forms was endochin, 4
(1H)-quinolone compound, in avian malaria models [14].
A long time after its discovery back in the 1940s, other
fluoroquinolones, such as norfloxacin, ciprofloxacin, pe-
floxacin, grepafloxacin, trovafloxacin, enoxacin, and clino-
floxacin were evaluated against the malaria parasite
in vitro [9,15,16] and in vivo [17-19]. Although these com-
mon antibiotics were found efficacious against both
chloroquine-sensitive and -resistant parasites, highly ef-
fective concentrations and prolonged treatment regimen
(14 days) have restricted their use as sole therapy. These
findings support further screening of newer fluoroquino-
lone compounds as partner drugs.

The synthesis of two series of fluoroquinolone analogues
has been reported previously, amongst which several com-
pounds exhibited significant anti-malarial activity, with
very low to negligible toxicity [20]. These are substituted
fluoroquinolones with normal and branched chain alkyl
groups as well as some polar groups such as -OH, -CN
and -C=CH etc. In the present study, three most active
compounds (Figure 1) from the aforementioned series
were selected, which yielded least inhibitory concentra-
tions, i.e., inhibited the parasite multiplication rate to 50%
(ICs0) at concentrations of <3 pg/ml (2.56 + 0.30, 1.33 +
0.67 and 2.73 +£0.23 pg/ml + SE (equivalent to 8.69, 3.79
and 6.93 uM), and exhibited in vitro host cell cytotoxicity
ICs5o values of 142.81, 171.37 and 129.24 uM for com-
pounds 10, 12 and 18, respectively. These values are strik-
ingly lower than that of the fluoroquinolones in clinical
use. While the reported ICs values (M) of ciprofloxacin,
clinafloxacin, and norfloxacin against 3D7 strain of P. fal-
ciparum in vitro are 27.77, 37.45 and 53.86, respectively,
those of enoxacin and ofloxacin rise up to 121.13 and
152.10. Therefore, it was considered interesting to investi-
gate the fixed-ratio combinatorial interactions of each
of these three novel fluoroquinolone derivatives with
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artemisinin, for treating the erythrocytic stages of P. falcip-
arum strain 3D7. A modified isobologram method [21]
was followed to assess the synergistic, antagonistic or
additive interactions of the combinations. Additionally, on
account of their convincing antiplasmodial activity under
in vitro conditions, it was imperative to assess their effi-
cacy in vivo, employing a rodent malaria model.

Methods

Antiplasmodial interaction assay of artemisinin and
fluoroquinolone analogue combinations

Parasite culture

Stock culture of malaria parasite P. falciparum 3D7
strain (chloroquine sensitive) was continuously maintained
in vitro using a CO, incubator under low-oxygen concen-
tration (3%) and high carbon dioxide atmosphere (4%)
along with nitrogen (93%), incubated at a temperature of
37°C. The parasites were maintained on O human red
blood cells suspended in a complete culture medium. Each
litre of RPMI-1640 aqueous culture medium was prepared
with 10.4 g of powdered RPMI-1640 (with glutamine but
without sodium bicarbonate), 5.94 g of HEPES buffer, 1 g
of dextrose and 40 mg of gentamicin. Complete medium
was constituted just before use by adding sterile 5% sodium
bicarbonate at the rate of 4 ml per 96 ml, and supple-
mented with 10% (v/v) pooled O" human serum. Infected
erythrocytes were suspended in this culture media initiated
at a haematocrit value of 5% and parasitemia was kept be-
tween 2 and 4% with sub-culturing done beyond 5%.
Medium was changed once a day and percentage parasit-
emia was monitored using Giemsa stained slides.

Stock solution of compounds

Artemisinin (Sigma Aldrich, USA) was prepared in
DMSO to get the stock solution of 1 mg/ml strength.
Compounds 10, 12 and 18 were synthesized according
to the procedure described by Dixit et al. [20] and each
compound was made to strength of 1 mg/ml stock solu-
tion in DMSO. The stock solutions were diluted on the
day of experiment to get the desired concentrations for
each compound. The highest amount of DMSO in di-
luted concentrations was 0.125%, and had no effect on
parasite growth.

10

Figure 1 Chemical structures of compounds 10, 12 and 18.
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Preparation of fixed-ratio combinations

In each combination assay, two compounds (Compound
A, artemisinin and Compound B, a fluoroquinolone de-
rivative or norfloxacin) were combined in four fixed ratios
(4:1, 3:2, 2:3, and 1:4). Approximately eight-fold IC5, com-
pound concentration of the respective compound A or B
was taken as 100% (calculated to be 32 nM, 69.50 uM,
30.34 uM, 55.40 pM, and 430.88 uM for artemisinin, com-
pound 10, compound 12, compound 18 and norfloxacin,
respectively), so that ICsq of the individual compound falls
in between third and fourth two-fold serial dilution.

Plate preparation for antiplasmodial interaction assay
Compound dilutions of each combination solution were
made in sterile, flat-bottomed, 96-well tissue culture plates
as described by Fivelman et al. [21]. Six times two-fold
serial dilution was done for each combination in triplicate.
Each well contained a total volume of 200 pl of complete
culture medium with or without compound and pre-
synchronized infected red blood cells (1% parasitemia at
2.5% haematocrit). Control cultures (without compound)
were maintained on the same plate in triplicate. Two 96-
well plates (for six combinations) were used for each com-
bination experiment. The plates were stacked in a CO,
incubator and incubated at 37°C for 48 hours.

Slide preparation, staining and assessment

After 48-hour incubation, thin blood smear slides were
prepared, air dried, methanol fixed, and stained in
Giemsa solution for 40 min. After staining, slides were
removed from coupling jar, washed in running tap water
and air dried. The Giemsa-stained slides were examined
for counting the number of parasites in random adjacent
microscopic fields, equivalent to about 4,000 erythro-
cytes at 1,000 x magnification. Per cent parasitemia was
calculated. Reproducibility of counts was checked by
two other readers to maintain the quality control.

Isobologram preparation and data analysis
For each combination assay, IC5o was calculated from
two sets of concentration response graphs, each contain-
ing compound alone curve and four combination curves.
The sum FIC of each combination ratio of two com-
bined compounds shows that the drug-drug schizontoci-
dal interaction between them [22] was determined by
the following equation:

IC50 of A in mixture
FI ( FI ) -
Sum FIC Z ¢ IC50 of A alone *

IC50 of B in mixture
IC50 of B alone

2FIC <1 represents synergism, 2FIC > = 1 and <2 repre-
sents additive interaction, >FIC > = 2 and <4 represents
slight antagonism while 2FIC > = 4 represents marked an-
tagonism [23-25]. Mean FICs of the combinations were
compared by frequency distribution using GraphPad
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Prism 5, to define if a compound was superior to the
other one, when combined with artemisinin.

In vivo efficacy of fluoroquinolone analogues using
rodent malaria model

Evaluation of the curative potential of the fluoroquino-
lone derivatives was done using the method described by
Ryley and Peters, 1970 (rodent malaria four-day suppres-
sive test; Peters’ four-day suppressive test) [26,27]. Rodent
malaria parasite Plasmodium berghei ANKA was used.

Experimental animals

Immuno-compromised BALB/c inbred albino mice (25—
30 g) of the male sex were obtained from the Animal
Facility Centre of the Department of Zoology, University
of Delhi. The animals were fed ad libitum with standard
feed and had free access to water. They were maintained
under standard conditions of humidity, temperature (25°C)
and 12 hours light/darkness cycles. The animals were accli-
matized for two weeks before the commencement of the
study and were ensured to exclude all zoonotic agents.

Test procedure

Day 0: Heparinized blood was withdrawn from an infected
donor mouse with approximately 25-30% parasitemia, and
diluted in 1x PBS to 10® parasitized erythrocytes per mL.
An aliquot of 0.2 mL (=2 x 107 parasitized erythrocytes) of
this suspension was injected intraperitoneally (ip) into ex-
perimental groups of five mice each. One to three hours
post-infection, the experimental groups were treated with
varying doses of each of the test compounds (0.5, 1, 10,
25 mg/kg BW) by the ip route. Each compound was made
to strength of 5 mg/ml stock solution in 10% DMSO and
administered according to desired concentration and indi-
vidual body weight. Artemisinin was given to the standard
drug group and 0.2 mL of normal saline to the negative
control group.

Day 1, 2 and 3: 24 hours, 48 hours and 72 hours post-
infection, the experimental groups of mice were treated
again with the same dose and by the same route as on
day 0.

Day 4: 24 hours after the last treatment (ie., 96 hours
post-infection), blood was drawn from the tail region of
mice and smears were prepared. These were stained with
Giemsa for microscopic analysis by counting four fields
of approximately 500 erythrocytes per slide, for five rep-
licates of each sample, to determine the parasitemia per-
centage and hence assess the anti-malarial efficacy of the
test compounds. Differences in parasitemia percentage
between treated groups and untreated animals were ana-
lysed by a one-way ANOVA test using IBM SPSS Statistics
16.0 and differences considered significant if P < 0.05. Fur-
thermore, the difference between the mean value of the
negative control group (taken as 100%) and those of the
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experimental groups was calculated and expressed as per
cent inhibition (= activity) using the equation below and
hence EDs, value was calculated graphically.

Per cent inhibition (activity) = 100 — (Mean parasitemia/control) x 100

Untreated control mice typically died approximately
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LDs, Test

LDs test was carried out on BALB/c mice using differ-
ent dosages of various compounds: 50, 100, 200, 500,
600, 800 and 1000 mg/kg BW ip and the animals were
observed for 7 days. Therapeutic Index (TI) values were
determined by the formula:

Median lethal dose (LDsg)

one week after infection. Treated mice were observed Therapeutic Index(TT) = Median effective dose (EDsp)
for a period of 30 days, and the survival time (in days)

was recorded. The mean survival time was calculated in

comparison to untreated (Normal saline) and standard Results

drug (artemisinin) treated groups. Differences in survival
time between treated groups and untreated animals were
analysed by Log-rank (Mantel-Cox) test using GraphPad
Prism 5 and differences considered significant if P <0.005.
Observations concerning adverse effects due to the com-
pounds were recorded.

Antiplasmodial interactions between artemisinin and
fluoroquinolone analogues

Various substituted fluoroquinolones were synthesized
by the earlier reported procedure [20]. The pharmaco-
phore of fluoroquinolones shows striking similarity with
chloroquine, which has been the forerunner for malaria

Table 1 Interaction between artemisinin and various fluoroquinolones analogs (compounds 10, 12 and 18) against
Plasmodium falciparum (3D7 strain) at six different preparations

Combination solution (Ratio A:B)

Drug A (Artemisinin) Mean FICsq + SE?

Drug B (Compound-10) Mean FIC5o+ SE* X FICs, interaction®

1 (5:0) 1.02 £0.04 0

2 (4 0.61+001 0.15+0.02 0.76 SYN

332 058+0.03 022+0.02 0.80 SYN

4(2:3) 048 £0.02 0.53+0.03 1.01 ADD

5(14) 0.17£0.03 041+0.03 0.58 SYN

6 (0:5) 0 0.93+0.04

Combination solution (Ratio A:B)  Drug A (Artemisinin) Mean FICso + SE*  Drug B (Compound-12) Mean FICso+ SE® ¥ FICs, interaction®
1 (5:0) 1.0+0.02 0

2 41) 0.63+0.03 0.15+0.003 0.78 SYN

3(32) 0.60+0.03 023 +0.02 0.83 SYN

4(2:3) 0.50+0.02 0.77 £0.03 1.27 ADD

5(1:4) 0.25+0.004 032+001 0.56 SYN

6 (0:5) 0 1.11+0.08

Combination solution (Ratio A:B)  Drug A (Artemisinin) Mean FICs, + SE* Drug B (Compound 18) Mean FICso + SE® X FICs, interaction®
1 (5:0) 0.97+0.07 0

2.(40) 0.58+0.02 0.16£0.01 0.73 SYN

332 0.55+0.03 047 +0.03 1.02 ADD

4(2:3) 049+ 0.04 0.66+0.03 1.15 ADD

5(1:4) 022 +£0.01 033+0.02 0.55 SYN

6 (0:5) 0 0.97+0.08

Combination solution (Ratio A:B) Drug A (Artemisinin) Mean FICso + SE* Drug B (Norfloxacin) Mean FICs, + SE® T FICs, interaction®
1(50) 1.13£0.06 0

2 40) 091+0.03 045 +0.02 1.36 ADD

3(3:2) 029+0.02 052+0.04 081 SYN

4(2:3) 0.66+0.02 0.87+0.03 1.53 ADD

5(1:4) 0.14£0.01 0.60+0.02 0.74 SYN

6 (0:5) 0 0.98 +£0.04

2Standard error (n = 3); ®PADD, additive; SYN, synergistic.
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treatment for the past 50 years [28]. Both fluoroquino-
lones and choloroquine contain chlorine at position 7. A
vast array of fluoroquinolones have been investigated
and henceforth proven effective against P. falciparum.
Here, three substituted fluoroquinolone compounds, 10,
12 and 18 were chosen from previous in vitro study
[20], and were tested in combination with artemisinin
in vitro against P. falciparum chloroquine-sensitive 3D7
strain, using norfloxacin as the standard drug. These
compounds were found to have synergistic and additive
drug-drug interactions. In every combination assay I1Csq
was determined from two sets of drug response curves
obtained from each replicate, each set representing four

combination curves and a curve of drug/compound
alone. Mean FICs, values derived from these curves are
tabulated in Table 1, for each fluoroquinolone derivative
combination with artemisinin, and combination of nor-
floxacin with artemisinin. Sum of FICs are presented in
isobolograms (Figure 2). The isobolograms show that
anti-malarial interaction of the fluoroquinolone deriva-
tives in vitro with artemisinin is not antagonistic. Com-
pound 10 in combination with artemisinin shows
synergistic antiplasmodial interaction in three of the four
fixed-ratio combinations evaluated and additive in the
remaining one. Similarly the combination of compound
12 and artemisinin displays synergistic interaction in

0.5 mg/Kg BW of Compounds

Artemisinin

3 Compound 10
Compound 12
Compound 18
A Normal saline

Mean % Parasitemia

Artemisinin

Compound 10
Compound 12
Compound 18

Normal saline

Mean % Parasitemia

Figure 3 Effects of various compounds and artemisinin on established P. berghei infections in mice. The experimental hosts were infected
on day 0 and treated intraperitoneally with normal saline; compounds 10, 12, 18 and artemisinin at 05, 1.0, 10, or 25 mg-Kg ™' BW-day™' on days
0 to 3, as described by Ryley and Peters. Data expressed as Mean + SD of five mice per condition.
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Table 2 Antiplasmodial activity of fluoroquinolone
derivatives against Plasmodium berghei strain ANKA

Compound Mean ED;s, (mg/kg BW) + SE?
10 231+0.19
12 3.09+£0.22
18 260+0.18
Artemisinin 1.72£0.15

Standard error (n =5).

three combinations and additive in one. Interaction of arte-
misinin with compound 18 was found to be synergistic in
two combinations, while additive in the other two. The
standard drug used in the study, norfloxacin, when com-
bined with artemisinin shows synergistic interaction in two
combinations, while additive in the remaining two. Com-
bination of compound 10 with artemisinin tended most to-
wards synergism, with respect to all the other compounds
(Mean 2FIC+SD=0.788+0.177), as observed by fre-
quency distribution. Combinations of all fluoroquinolone
analogues were superior to that of norfloxacin (Mean
2FIC+ SD =1.11 +0.394), which tended slightly towards
antagonism.

In principle, components of anti-malarial combina-
tions should target different metabolic pathways. This
condition is being theoretically met in the combinations
being evaluated. The hypothesized mechanisms of ac-
tion of artemisinin include haem alkylation, inhibition
of PfATP6 (SERCA-type enzyme), parasite membrane
damage [29-31]. On the contrary, fluoroquinolones are
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the only class of antimicrobial agents that are direct in-
hibitors of bacterial DNA synthesis. They inhibit two
bacterial enzymes: DNA gyrase, particularly the A sub-
unit, and topoisomerase IV, which have essential roles
in DNA replication [32]. Plasmodium falciparum con-
tains a functional apicoplast, an organelle of prokaryotic
origin. The 27-35 kb circular genome of apicoplast re-
quires bacterial type DNA gyrase for its duplication
[33-35]. This is the most likely explanation for inhibi-
tory activity of fluoroquinolones against the parasite,
which is being enhanced on interaction with artemisinin
either synergistically or additively, analysed using fixed-
ratio isobolograms. However, the exact mode of action
of fluoroquinolones against malaria parasites is still
ambiguous.

Antiplasmodial activity of synthetic fluoroquinolones
against Plasmodium berghei in vivo

It was observed that there was a reduction in the levels
of parasitemia in all the test groups, as well as that of
the standard drug (artemisinin) group. However, the re-
verse was the case for the negative control group, as
there was a marked increase in parasitemia level. The
in vivo anti-malarial activity of the various test com-
pounds, after conducting Peters’ four-day suppressive
test, is presented in Figure 3. Results were significant as
analysed by ANOVA (P <0.05). The EDso values were
calculated to be 2.31, 3.09, 2.60, and 1.72 mg/kg BW for
each of the compounds 10, 12, 18, and artemisinin, re-
spectively, as indicated in Table 2, and represented
graphically in Figure 4. The mean survival time (MST)
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Figure 4 Dose-response curves of fluoroquinolone derivatives and artemisinin, against in vivo blood stages of Plasmodium berghei
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Survival Curve of Compound 10
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Figure 5 Kaplan Meier survival analysis curves of BALB/c mice, administered drugs once daily ip for four consecutive days (5 mice per
group). Results between test and control were significant by P < 0.005 as analysed by Log-rank test.
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values of the treated groups were significantly higher
than that of control and were comparable to that of the
standard drug, artemisinin (Figure 5). The mice treated
with varying doses of each of the fluoroquinolone deriva-
tives survived beyond one week, but 0.5 mg/kg BW treated
mice died nine to 12 days post treatment. Artemisinin-
treated mice on the other hand, survived beyond two weeks
in all the groups.

The results show that two out of the three compounds
(10 and 18) exhibited appreciable antiplasmodial activ-
ity, reflected by their EDs5, values, comparable to that of
the standard drug, artemisinin. The study on MST dem-
onstrated a dose-dependent increase in the number of
days the mice survived in various groups survived post-
four-day treatment. MST values for compound 10 (with
lowest EDsg = 2.31 mg/kg BW) were the most proximal
to those obtained for artemisinin, while the next to fol-
low was compound 18 (EDs5y =2.60 mg/kg BW). All the
results were significant (P <0.005) as analysed by Log-
rank (Mantel-Cox) test. Therefore, they serve as promising
candidates for further research. No significant adverse side
effects, i.e., physical signs such as gasping for air, loss of
appetite, feeling sleepy, or weight loss were observed in
compound-treated groups, even at the highest dose ad-
ministered, indicating that the compounds are well toler-
ated by the biological system and may be toxic at doses
much higher than those required for their therapeutic ef-
fects. Thus, compounds 10 and 18 could be excellent can-
didates for combination therapy.

LD50 Test
BALB/c mice died at 1000 mg/kg BW of all the com-
pounds and could tolerate 500 mg/kg BW. However, at

800 mg/kg BW, half the population of mice died. Thera-
peutic indices were determined as 346.32, 258.90, 307.69
for compounds 10, 12 and 18, respectively.

Conclusions

Substantial evidence has been furnished that the fluoro-
quinolone analogues under assessment show inhibitory
activities against the blood stages of the malaria parasite,
with EDs, values in single-digit, micro-molar range. The
above analogues have been shown to display a synergis-
tic mode of interaction with artemisinin, in majority of
fixed-ratio combinations analysed in vitro. The results of
this work further justify the use of novel, synthetic fluor-
oquinolones in the treatment of malarial infection. It is
therefore concluded that compounds 10, 12 and 18 have
appreciable anti-malarial activity that can be exploited
for the production of modern anti-malarial pharmaceuti-
cals. Drugs that target both the liver and blood stages of
malaria are urgently required to reduce the disease's ex-
tensive worldwide morbidity and mortality [33]. Hence, it
would be highly intriguing to evaluate the possibility of
these compounds to target the liver stage parasites and
dormant hypnozoites as well, which would strengthen
their position as potential, all-purpose anti-malarial drug
candidates. To find a lead molecule for drug development,
extensive SAR is needed and further investigation in this
direction is under progress.
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