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Abstract

Background: Campaigns for the continued reduction and eventual elimination of malaria may benefit from new
and innovative vector control tools. One novel approach being considered uses a push-pull strategy, whereby
spatial repellents are used in combination with outdoor baited traps. The desired effect is the behavioural
manipulation of mosquito populations to elicit movement of vectors away from people and into traps.

Methods: Here, a prototype push-pull intervention was evaluated using an experimental hut methodology to test
proof-of-principle for the strategy against two natural vector populations, Anopheles albimanus and Anopheles
vestitipennis, in Belize, Central America. A Latin square study design was used to compare mosquito entry into
experimental huts and outdoor traps across four different experimental conditions: 1) control, with no interventions;
2) pull, utilizing only outdoor traps; 3) push, utilizing only an indoor spatial repellent; and 4) push-pull, utilizing both
interventions simultaneously.

Results: For An. vestitipennis, the combined use of an indoor repellent and outdoor baited traps reduced average
nightly mosquito hut entry by 39% (95% Cl: [0.37 — 0.41]) as compared to control and simultaneously increased
the nightly average densities of An. vestitipennis captured in outdoor baited traps by 48% (95% Cl: [0.22 — 0.74]),
compared to when no repellent was used. Against An. albimanus, the combined push-pull treatment similarly
reduced hut entry, by 54% (95% Cl: [0.40 — 0.68]) as compared to control; however, the presence of a repellent
indoors did not affect overall outdoor trap catch densities for this species. Against both anopheline species, the
combined intervention did not further reduce mosquito hut entry compared to the use of repellent alone.

Conclusions: The prototype intervention evaluated here clearly demonstrated that push-pull strategies have
potential to reduce human-vector interactions inside homes by reducing mosquito entry, and highlighted the
possibility for the strategy to simultaneously decrease human-vector interactions outside of homes by increasing
baited trap collections. However, the variation in effect on different vectors demonstrates the need to characterize
the underlying behavioral ecology of target mosquitoes in order to drive local optimization of the intervention.
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Background

Recent achievements in decreasing the global burden of
human malaria have come about through the implemen-
tation of well-coordinated, multi-faceted and evidence-
based control programs of which vector control has
been an integral component [1-7]. Indeed, vector control
is widely recognized as an essential part of any viable
plan to further control, eliminate and eradicate malaria
[1,7,8]. However, current adult vector control tools, such
as indoor residual spraying (IRS) and long-lasting in-
secticidal nets (LLINs), are becoming increasingly inad-
equate to control disease for a variety of reasons, among
which are the emergence of insecticide resistance, vector
behaviors (e.g. daytime or outdoor-biting) that result in
reduced intervention efficacy, and local shifts in vector
species composition [1,9-13]. These inadequacies, coupled
with renewed calls for the global elimination and eradica-
tion of malaria in all of its complex transmission settings,
underscore the critical need for novel approaches for vec-
tor control [6,14,15].

One novel strategy currently being developed utilizes a
push-pull approach, which seeks to exploit the comple-
mentary effects of spatial repellents and mosquito traps,
used in combination, to decrease the probability of
human-vector interactions [16-19]. Developed initially as
a way to control agricultural and urban pests, push-pull
interventions work by combining the repellency action
of one component and the attractiveness of another in
order to elicit the movement of pests away from a pro-
tected resource and towards a trap for subsequent re-
moval from the environment [18,20,21]. Accordingly,
push-pull strategies for the control of mosquito vectors
of human disease would use repellents to deter host-
seeking mosquitoes from treated spaces (the ‘push’) and
towards a baited trap (the ‘pull’), which would result in
their capture and removal from the peridomestic envir-
onment and thereby decrease population densities for
added protection in the outdoor environment [16-18].

Although still in the proof-of-concept phase, it is easy
to appreciate that the dynamics of such a strategy are
complex and likely to vary according to local transmis-
sion ecologies. Nonetheless, preliminary work has been
encouraging. For example, Kitau et al. showed in a semi-
field environment that the combined use of personal re-
pellents (topically applied) and mosquito traps could
reduce the biting rates of laboratory reared Anopheles
gambiae more than the use of traps alone [17] and
Menger et al., also working with An. gambiae in a semi-
field setup, recently showed that a combination of spatial
repellents and baited traps can be used to reduce mos-
quito house entry [19]. Additionally, a number of re-
searchers [22-24] have made progress towards defining
the parameters of a push-pull intervention for the
control of the dengue vector Aedes aegypti, including
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studies demonstrating local interest in and community ac-
ceptance of the concept in both Latin America and South
East Asia [16]. In order to assess the potential role for
push-pull strategies in the prevention of malaria, the
present pilot study measured the impact of a prototype
push-pull intervention on natural populations of two
regionally important malaria vectors in Belize, Central
America: Anopheles albimanus and Anopheles vestitipennis
[25,26]. A field based, matched-control experimental hut
study design was used to measure and compare two im-
portant endpoints, 1) the reduction of host-seeking mos-
quito entry into the huts and 2) the numbers of mosquitoes
collected in the outdoor baited light traps.

Methods

Ethics statement

Permits and approval for this study were obtained from
the Ministry of Health, Belize (IRB 01/12(02)) and the
Pesticides Control Board, Belize (Ref. PCB/EXP/MOH/01/
12). No protected species were sampled during these studies.

Study site and design

The study site was established in an open pasture sur-
rounded by freshwater lagoons and seasonal swampland
near the village of Progresso in Corozal District, Belize
(N18°11'52“ W88°26'6”) (Figure 1A). A Latin square study
design was used to compare mosquito entry into experi-
mental huts and outdoor traps across four different
experimental conditions: 1) control, with no interventions;
2) ‘pull,” utilizing only outdoor traps; 3) ‘push,” utilizing
only an indoor spatial repellent; and 4) ‘push-pull,” utiliz-
ing both interventions simultaneously. Experimental treat-
ments and collection teams were independently rotated
through each of the four huts with each specific combin-
ation occurring exactly once, a total replication of 16
nights (Additional file 1). Collections were carried out on
non-consecutive nights during the rainy season of 2012,
which corresponds to the annual period of peak anophel-
ine densities in the region [27-29]. Baseline collections
lasted from July to August and experimental collections
from September to November, during which the region
experienced an average of 160 mm/month of precipitation
(range 305 mm/month in August to 50 mm/month in De-
cember) [30]. Temperature and humidity inside the huts
were measured using HOBO® Pro Series Weatherproof
Data Loggers (Forestry Suppliers Inc., Jackson, MS). Wind
speed, relative humidity, temperature, and precipitation
were recorded outdoors with a Davis Vantage Vue® wire-
less weather station (Davis Instruments, Vernon Hills, IL).

Experimental huts and interception traps

Four identical experimental huts were constructed on
site, approximately 50 meters apart along a straight,
north-south transect (Figure 1B). Based on previously
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Figure 1 The experimental field site. (A) The location of Belize in Central America, and the location of the site near Progresso Village (B) Satellite
imagery of the site showing the experimental huts locations and with the nearest anopheline larval habitats indicated.

= anopheline larval habitat
Jo0reR 50 m

described methodologies [31], huts were built using lo-
cally acquired materials and in a style typical of homes
in rural Belize (Figure 2A). Briefly, each structure mea-
sured 3.6 m x 3.6 m and had an average roof height of
2.36 m, creating an internal volume of roughly 30.6 m>.
Huts were raised 30 cm from the ground, resting on a
cinderblock and pine wood platform. Walls and floors
were constructed of an untreated pine lumber frame
with plywood panels. Roofs were fashioned out of corru-
gated, galvanized steel panels. Each hut had one door
(182 ¢cm x 76.2 cm), cut into the eastern facing wall, and
three windows (76.2 cm x 76.2 cm), one in each of the
remaining walls. Windows were built to accommodate
interception traps for capturing mosquitoes entering the
hut (Figure 2B). Based on the designs of Muirhead-
Thomson and by Grieco et al. [32,33], interception traps
measured 76.2 cm x 76.2 cm x 76.2 cm and were made
of a steel frame (3.2 mm diameter rebar) covered with a
green polyester netting (BioQuip Products Inc., Rancho
Dominguez, CA) bag. A beveled opening prevented trapped
mosquitoes from escaping, while a 20 cm diameter portal

enabled the aspiration of trapped specimens from inside
the hut. White polyethylene tarpaulin sheets (A&R Enter-
prises, LTD, Belize City, BZ) were installed on hut floors
and baseboards to facilitate the monitoring of knocked
down mosquitoes. To control for residual chemical con-
tamination from repellent treatments, all huts and inter-
ception traps were cleaned after every four collections,
prior to the rotation of treatments among huts. Hut sur-
faces and trap netting were sprayed and washed with a
10% bleach solution and windows and doors were left
open for 24 hours.

Outdoor baited traps

Preliminary (2011) trials at the field site indicated that
CDC Miniature Light Traps (CDC LT) (John W. Hock
Company, Gainesville, FL), baited with human foot ema-
nations collected on cotton socks [34,35], captured the
greatest numbers of An. vestitipennis and An. albimanus
[29]. Prior to use as a mosquito lure all socks were worn
for 12 h by the same individual and were utilized for a
maximum of 72 h after initial collection. During use,

Figure 2 Hut configuration. (A) An experimental hut at the field site and (B) a window interception trap inside the same hut.
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socks were placed on top of the CDC LT rain guard, and
when not in use, were stored away from sunlight in sealed
plastic bags at ambient temperature. During the collec-
tions, baited CDC LTs were positioned and operated ac-
cording to manufacturer’s recommendations and previous
methodologies. Traps were hung outside the huts, 2 m
above the ground and 1 m from each of the three open
windows (Figure 3A) [29]. Traps were baited, positioned
and turned on 30 min before sunset (~1730 h) and oper-
ated until shortly after sunrise (~0600 h). During each
12 h replicate, CDC trap bags were replaced with clean
bags every 2 h by the on-site study coordinator, who was
working from a central processing station located approxi-
mately 60 m from the experimental hut transect. Collec-
tion bag contents were sorted and captured mosquitoes
were stored in plastic collection cups labeled by time, hut
and unique CDC LT identifier.

Spatial repellent

Transfluthrin (S.C. Johnson and Son, Inc., Racine WI)
(2,3,5,6-tetrafluorobenzyl (1R)-trans-3-(2,2-dichlorovinyl)-
2,2-dimethylcyclopropanecarboxylate), a volatile synthetic
pyrethroid with spatial repellent (SR) efficacy against sev-
eral classes of arthropod pests including anopheline mos-
quitoes [36-38], was selected as the chemical repellent.
Following industry guidelines for a recommended dosage
of 30 mg active ingredient per 9.3 m” area (M.C. Meier,
personal communication, 16 August 2011) each experi-
mental hut (13.4 m? floor space) received a total 43.2 mg
of transfluthrin emanating passively from two 55.6 cm®
strips of nylon organdy cloth (G-Street Fabrics, Bethesda
MD). Each cloth strip was treated with 21.6 mg of tech-
nical grade transfluthrin diluted in 1 mL of acetone
(Ace Hardware Corp., Oak Brook, Illinois) applied
evenly and allowed to air dry for 15 min following previ-
ously described methodologies [9,39,40]. Control treat-
ments consisted of nylon strips treated with acetone
only. Transfluthrin solution was prepared and cloth
strips treated at 1200 h in advance of each collection
night. Strips were sealed in labeled plastic bags and kept
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in a light proof box (Soft 6 Cooler, Igloo Products Corp.,
Katy, Texas) at ambient temperature and humidity in
preparation for transport to the field site. In the field,
strips were attached to a central wood bean two meters
high in the center of designated huts one hour prior to
the start of mosquito collections (Figure 3B).

Mosquito collection

In each experimental hut, mosquitoes were sampled by a
two-person team during 12 h overnight collections.
Throughout all collection periods, the door of each hut
remained closed while the open windows (with intercep-
tion traps attached) provided the only entry portals
for host-seeking mosquitoes. Thirty minutes before dusk
(~17.30 h), collection teams entered each structure in
order to prepare for trap processing and to establish in-
door host cues. Starting at approximately 18.00 h and re-
peating every 30 min, one collector spent a five minute
timed interval aspirating mosquitoes from each window
interception trap, collecting for a total of 15 minutes.
Trap openings were temporarily blocked with three inch
polyurethane foam (Landy’s and Sons, Ltd., Orange
Walk Town, Belize) during each collection interval and
were immediately re-opened after. Captured mosquitoes
were stored in plastic collection cups labeled by time,
hut and unique window identifier. Each 12 h collection
period was divided into three hour shifts during which
collectors took turns alternately processing traps and
resting. All anopheline mosquitoes were identified to
species using a site appropriate key [41]. Ovarian dissec-
tions were conducted on a subset of target vector species
collected during the study (a total of 473 An. vestitipen-
nis (5% of the total) and 250 An. albimanus (9% of the
total) to estimate age structure using parity characteris-
tics (parous vs nulliparous) [42].

Follow-on study

After the completion of the push-pull evaluation, an
additional four-night follow-on study was performed to
test if there was an observable interaction between the

-

Figure 3 Experimental treatments. (A) An outdoor baited CDC light trap and (B) a spatial repellent emanator inside an experimental hut.
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spatial repellent and attractant volatiles from the out-
door lure that was diminishing the spatial repellency ef-
fect. A two-hut Latin square procedure was employed to
evaluate the difference in window intercept catches be-
tween two experimental hut conditions: a control hut
that utilized the standard push-pull intervention with in-
door transfluthrin and outdoor baited CDC LTs and an
experimental intervention that utilized indoor transflu-
thrin and outdoor, non-baited (clean socks) CDC LTs.

Data analyses

Unless otherwise noted, Excel 2007 (Microsoft, Red-
mond WA) was used to log, transform the raw numbers
of mosquitoes collected and to calculate means, interval
endpoints and standard errors. Following standard me-
thods [43], these data were then back-transformed to
calculate geometric means of mosquito densities col-
lected, which are presented with standard error of the
mean (SEM). To differentiate the mean numbers of
mosquitoes entering each of the four huts via window
intercept traps, IBM SPSS Statistics v20.0 (Armonk, NY)
was used to perform ANOVA with Tukey’s test of
Honestly Significant Differences (HSD). An additional
post-hoc analysis used Wilcoxon’s Signed Rank test to
examine the median nightly differences in mosquito
entry between the push and push-pull treatments only.
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Student’s t-test (a=0.05) was also used to compare
differences in the mean number of mosquitoes trapped
in CDC LTs hanging outside huts with and without
repellent treatments (pull vs push-pull treatments), and
to compare the mean numbers of mosquitoes collected
in window intercept traps at huts utilizing outdoor CDC
LTs with and without lure during the follow-on study.

Results

Baseline site characterization, performed in July and
August of 2012, showed An. vestitipennis (72%) and An.
albimanus (7%) to represent the largest proportions of
mosquito species collected (Additional file 2), as had
been previously observed in 2011 [29]. Other mosqui-
toes encountered included Anopheles crucians (5%),
Anopheles punctimacula (1%), Anopheles gabaldoni (1%),
and a number of other culicines (15%) (Additional file 2)
which were not identified to species but included the fol-
lowing genera: Culex, Psorophora, and Mansonia. In
addition, pre-intervention collections indicated both hut
and collection team comparability for both An. albimanus
and An. vestitipennis (Additional file 3). During treatment
evaluations, a total of 21,494 mosquitoes were collected
and identified, 15,411 from indoor window interception
traps and 6,083 from outdoor CDC LTs (Table 1). Again,
the two most abundant mosquitoes collected were An.

Table 1 Nightly mosquito densities collected during the push-pull experimental hut evaluation

Indoor interception trap collections

Outdoor baited CDC LT" collections

An. vestitipennis

An. albimanus

An. vestitipennis An. albimanus

Night Control>  PulP® Push? P-p° Control  Pull Push P-P Pull P-P Pull P-P
1 417 149 152 223 6 5 3 2 27 47 8 1

2 161 103 47 165 50 2 0 7 23 29 17 5

3 336 95 42 76 106 10 3 5 29 14 34 5

4 160 122 17 22 18 29 6 4 19 6 14 12
5 77 100 45 48 42 27 4 30 3 18 7 35
6 69 68 68 64 329 114 103 171 4 14 22 30
7 43 24 26 81 13 4 I 48 3 19 1 7

8 114 124 63 132 124 123 25 89 9 32 17 26
9 49 37 27 47 29 12 30 40 19 20 13 36
10 189 119 105 127 102 43 40 60 17 54 13 62
11 451 841 397 237 43 20 39 17 232 106 15 15
12 270 396 176 271 9 26 10 13 105 87 25 33
13 168 237 114 214 54 116 44 77 29 39 24 14
14 150 137 15 45 14 18 1 0 30 36 18 5
15 34 53 9 4 1 3 1 1 11 9 3 1
16 25 35 11 30 9 11 12 3 3 6 1 1
Geo Mean (SE) 122 (24) 107 (25) 48 (29) 74((3.0) 27 4.1) 18(36) 948 13(57) 1635 24 (24) 10 (2.9) 10 (3.9)

'CDC LT =CDC Light Trap 2Control = no treatment.
3pull = outdoor CDC LT alone *Push = indoor spatial repellent alone.
5P-P = Push-Pull; combined use of outdoor CDC LT and indoor spatial repellent.
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vestitipennis (total n=9,522) and An. albimanus (total
n = 2,933). Ambient outdoor temperatures ranged from an
average nightly high of 26.9°C (range 21.7°C - 39.8°C) to
an average nightly low of 22.3°C (range 16.6°C - 25.1°C)
with relative humidity averaging greater than 90% (range
57% - 100%). A spearman’s rank correlation analysis on
mosquito densities and climate variables indicated only
one significant trend: a positive correlation (Spearman’s
rho = 0.525, p =0.037) between nightly precipitation and
the number of An. albimanus collected in window inter-
ception traps.

The total number of An. vestitipennis and An. albima-
nus collected per night from window interception traps at
each of the four experimental huts during the push-pull
evaluation is shown in Table 1, with the nightly average
number (geometric mean) by treatment shown in Figure 4.
For each vector species, the highest mosquito densities
(geometric mean per hut) were collected from control
huts: 122 (SEM 2.4) per night for An. vestitipennis and 27
(4.1) per night for An. albimanus. For An. vestitipennis the
pull treatment (CDC LTs outside windows) did not signifi-
cantly reduce mosquito entry into huts, 107 (2.5) per
night, compared to the control hut, 122 (2.4) per night
(Tukey’s HSD p =0.906) (Figure 4). Similarly, the time of
peak entry was unaffected (Figure 5). For An. albimanus
the effect of CDC LTs on the numbers of mosquitoes en-
tering the hut, though also statistically insignificant
(Tukey’s HSD p = 0.488), was greater: a reduction from 27
(4.1) per night in the control to 18 (3.6) per night with the
pull intervention (Figure 4). An. albimanus hourly entry
patterns showed this trend to be consistent throughout
the night (Figure 5), as has been previously reported with
An. albimanus and baited CDC light traps at this field site
[29]. The use of the spatial repellent reduced nightly mos-
quito entry of An. vestitipennis by 60% (95% CI: [0.58 —
0.62]) compared to the control hut (48 [2.9] vs. 122 [2.4];
Tukey’s HSD p <0.001) (Figure 4). Similarly, a reduction
of 69% (95% CI: [0.58 — 0.80]) was observed in nightly
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An. albimanus entry, from 27 (4.1) to 9 (4.8) (Tukey’s
HSD p =0.003) (Figure 4). These reductions were signifi-
cant and consistent throughout the entire collection
period (Figure 5).

The combined push-pull treatment also reduced mos-
quito entry compared to the control hut, but the impact
was slightly less than the effect of using spatial repellent
alone (Figure 4). For An. vestitipennis, the push-pull re-
duction in mosquito entry was 39% (95% CI: [0.37 —
0.41]), from an average of 122 (2.4) per night to 74 (3.0)
per night (Tukeys HSD p=0.047) (Figure 4), while for
An. albimanus the reduction was 54% (95% CI: [0.30 —
0.68]), from an average of 27 (4.1) to 13 (5.7) per night
(Tukey’s HSD p = 0.072) (Figure 4). The reduced repellent
effect seen at the push-pull huts, as compared to the push
huts, was not statistically significant in terms of the abso-
lute numbers of mosquitoes collected indoors (Tukey’s
HSD p=0.196 for An. vestitipennis and p=0.600 for
An. albimanus). However, a Wilcoxon signed-rank test
comparing the difference of means between the repellent
alone and the combined intervention indicated that the
trend was significant: the push-pull hut collected more
mosquitoes in window interception traps than the push
hut on 13 out of 16 night for An. vestitipennis (p = 0.016)
and on 10 out of 16 nights for An. albimanus (p = 0.038).
Results from the follow-on study indicate no effect of
outdoor CDC LT bait on the spatial repellent effect of in-
door transfluthrin: the numbers of mosquitoes captured
entering the window interception traps at each hut
were not statistically different nor were there any consist-
ent trends observed (Figure 6). For An. vestitipennis and
An. albimanus, no differences in parity rates were ob-
served between mosquitoes captured indoors or outdoors,
or in the presence or absence of a spatial repellent, on any
night (Additional file 4).

In the outdoor baited CDC LTs, the indoor spatial
repellent treatment increased the nightly density of
An. vestitipennis captured by 48% (95% CI: [0.22 — 0.74]),

>
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Figure 4 Reductions in mosquito entry. The nightly averages (geometric mean, n = 16) of female mosquitoes collected from window interception
traps at each hut for (A) An. albimanus and (B) An. vestitipennis. Control = no intervention, Pull = outdoor light trap, Push = indoor spatial repellent,
Push-Pull = combined intervention. Error bars show SEM, different lower case letters indicate significantly different means (Tukey's post-hoc tests of
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Figure 5 Effect of push-pull components on mosquito hut entry. Aggregate nightly patterns of mosquito entry into control (no treatment),
pull (outdoor light traps), push (indoor spatial repellent only) and push-pull (indoor spatial repellent and outdoor baited traps) huts for both
(A) Anopheles vestitipennis and (B) An. albimanus throughout study (n = 16 nights). Geometric means are presented in 2 h intervals, error bars
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—Push Hut
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from 16.3 (3.5) per night at the pull hut to 24.1 (2.4) per
night at the push-pull hut (t=1.78, df=30, p=0.043)
(Figure 7); however, no effect was seen in An. albimanus
populations (10.2 [2.9] vs. 9.5 [3.9] at the pull and push-
pull huts, respectively) (Figure 7). Concerned that the lack
of effect seen with An. albimanus could have been an
artifact of the smaller population densities collected, a
post-hoc sample size calculation based on observing a
response similar in magnitude to that observed with
An. vestitipennis (an increased CDC LT yield of 48%, or 5
An. albimanus mosquitoes per night) using a =0.05 and
[ =0.80 was performed. Calculations indicated a required
sample size of 6 nights for both treatments, fewer than the
16 nights evaluated here, supporting the conclusion that
this particular differential response between vector species
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Average Mosquitoes Collected Indoors per Night
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Figure 6 No interaction between outdoor mosquito lure and indoor
repellent. The nightly (n=4) average numbers of mosquitoes
collected from indoor window intercept traps in huts deploying
baited (Lure) and unbaited (No Lure) CDCLTs. Geometric means are
presented, error bars show the SEM. An. vestitipennis t-test: t=-0.080,
df =6, p=0939; An. albimanus t-test: t =-0.866, df =6, p = 0.420.

is real and not confounded by the comparatively low num-
bers of An. albimanus collected in CDC LTs.

Discussion

This pilot study is among the first field-based evalua-
tions of a prototype push-pull system to control natur-
ally occurring vectors of human malaria. The use of
multiple experimental huts allowed for the assessment
of the impact of each of the components of the interven-
tion, an indoor spatial repellent and an outdoor baited
trap, separately and in combination. Additionally, the
study site provided an opportunity to assess the impact
of the same experimental interventions concurrently on
two anopheline species of public health importance, the
more endophagic and anthropophagic An. vestitipennis

40
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Figure 7 The impact of indoor spatial repellent use on outdoor
light trap catches. The nightly (n=16) average numbers of
mosquitoes collected from outdoor CDCLTs at the pull (outdoor
light traps only) and push-pull (combined use of indoor transfluthrin
and outdoor light traps) huts. Geometric means are presented, error
bars show the SEM, * = difference was statistically significant (t-test:
t=1.78,df =30, p=0.043).
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and the more exophagic and zoophagic An. albimanus
[33,44,26,45].

Outdoor baited light traps: the pull

Data indicate that the use of baited CDC LTs had no sta-
tistically significant effect on the entry of either species
into the experimental huts, although a moderate de-
crease in entry for An. albimanus was noted. These re-
sults are in line with previous observations made at this
study site [29] and seem to indicate that an outdoor
baited light trap, in the absence of any other mosquito
control intervention, was more likely to impact the
hut entry behaviors of the more naturally exophagic
An. albimanus. Conversely, the hut entry behaviors of
the endophagic vector An. vestitipennis, which is inher-
ently more attracted to the internal environment of an
experimental hut, were not impacted by the presence of
an outdoor baited light trap.

Indoor spatial repellent: the push

The impact of indoor transfluthrin emanators was clear
and consistent for both species, resulting in sharp reduc-
tions in the numbers of host-seeking mosquitoes that
entered window interception traps. These results are in
line with previous reports of experimental hut studies
from Belize in which indoor applications of DDT elicited
SR behaviors in An. vestitipennis and An. albimanus
[46,33] and with previous knowledge that transfluthrin
repels several other anopheline mosquito species [37,38].

The combined push-pull system

Against An. vestitipennis, results show that the combined
push-pull treatment simultaneously reduced mosquito
entry into experimental huts, compared to control huts,
and increased the numbers of mosquitoes collected in out-
door baited CDC LTs, compared to CDC LTs operating
outside huts with no spatial repellent treatment. For
An. albimanus, results indicate a similar reduction in
mosquito hut entry associated with the push-pull treat-
ment, but there was no comparable effect of indoor spatial
repellent on increasing outdoor light trap collections.

The use of an indoor spatial repellent significantly and
consistently reduced entry into the window interception
traps for both target species, whether used alone or in
conjunction with outdoor baited light traps. Considering
this, along with the statistically negligible (albeit variable)
effect on hut entry of outdoor light traps used alone, sug-
gests that the reduced mosquito entry observed at the
push-pull huts can be attributed directly to the spatial
repellent activity of the transfluthrin treatment. This infer-
ence is supported by general observations that, at least
given the currently available technologies, spatial repel-
lents can be very effective at reducing local biting pres-
sures [47,48] while trapping of adults has remained largely
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ineffective at doing so, except when conducted on much
larger scales, over longer periods of time and using more
sophisticated traps than were evaluated here [49-53]. It
should also be noted that the fluctuation in mosquito
densities collected over the course of the study, including
relatively high numbers collected during the baseline sam-
pling and very low numbers captured during the follow-
on study, was expected as the result of normal seasonal
variation in mosquito populations in the region and are in
line with previous multi-year seasonal studies [27-29]. An
abbreviated (6 h) baseline (no intervention) collection per-
formed after the midpoint of the study checked for the
possibility of residual repellent effects after hut and trap
cleaning, and revealed no decreases in window entry into
huts that had previously received repellent treatments
compared to control-only huts (Additional file 5).

Interestingly, results in the current study also showed
a tendency for the presence of outdoor baited CDC LTs
to slightly, but consistently, decrease the repellent effect
of indoor transfluthrin against both target vectors. This
effect remains largely unexplained, although a follow-on
study comparing two huts with spatial repellent treat-
ment and CDC LTs (one hut using baited traps and one
hut using unbaited traps) indicated no negative inter-
action between mosquito lures and the spatial repellent
treatment, based on no significant differences in the num-
ber of mosquitoes captured in window traps at the two
huts. Further study of this tendency is warranted, includ-
ing whether or not the effect remains if different repellent
delivery mechanisms, such as a commercially available
product with optimally formulated active ingredient, and/
or different trap types and positions are utilized.

There is some contrast between these results and those
obtained recently by Menger et al. [19] during a somewhat
similar push-pull evaluation in Kenya, where a greater im-
pact on mosquito hut entry resulted from baited traps and
a lesser effect resulted from the repellent treatment. There
are critical differences, however, in the experimental
approaches taken that are likely to have influenced study
results and preclude direct comparisons. In addition to
using a semi-field set-up with the controlled release of
laboratory-reared An. gambiae into a screened-in area with
an experimental hut constructed inside, the study in Kenya
utilized different traps (Mosquito Magnet® X [MM-X]), dif-
ferent lures (CO2 in conjunction with a five-component
odor blend), and different repellents (the non-pyrethroids
para-menthane-3,8-diol, delta-undecalactone, and catnip
essential oil) that were deployed outdoors using an active
dispersal mechanism [19]. Additionally, the system evalu-
ated here used human collectors inside the huts, while in
Kenya an additional baited MMX trap acted as a proxy for
an indoor human blood meal [19]. Ultimately, considering
these differences, it is exciting that the interpretations of
both studies are largely in accord: the combined use of
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spatial repellents and baited traps in a coordinated push-
pull system can achieve targeted control of malaria vectors
better than either component used alone. The principle
differences in the results reflect mostly variations in ex-
perimental design and highlight how the increased com-
plexity of real-world transmission settings can impact
intervention results.

One of the novel advantages of a push-pull vector con-
trol strategy is the potential to simultaneously decrease
human-vector interactions both inside and outdoors. En-
couragingly, the densities of An. vestitipennis captured
in outdoor CDC LTs increased in the presence of the in-
door spatial repellent, compared to when CDC LTs were
used alone. However, such an effect was not seen with
An. albimanus. Reasons for this observation might again
be explained based on species-specific behaviours. More
endophagic species, like An. vestitipennis, will be more
strongly attracted to the internal environment of an oc-
cupied hut during host-seeking. If the indoor environ-
ment is found to be unsuitable, it may also be more
likely displaced from its endophagic host-seeking path
into the immediate peridomestic environment, thus in-
creasing the probability of capture by an outdoor trap
positioned adjacent to the host-occupied structure. Upon
detection of an unsuitable indoor environment, an exo-
phagic species like An. albimanus may simply continue to
search for a blood meal in a wider area outdoors, not
impacting (or perhaps lowering) the probability of contact
with the same outdoor traps.

Finally, though only a subset of An. vestitipennis and
An. albimanus were age graded via ovarian dissection
during each collection, it is important to mention that
there were no obvious differences in the crude age struc-
tures of target vector populations with regards to the lo-
cation of their capture on any night. While parity rates
did fluctuate temporally throughout the duration of the
study, there was no evidence that any of the interven-
tions had a differential impact on nulliparous or parous
mosquitoes.

Field optimization

The goal of this study was to evaluate general proof-of-
principle for a combined push-pull strategy for the control
of natural malaria vectors in the field. As such, the best lo-
cally available tools (repellent and trap type) were selected
for use in a multi-component intervention at an experi-
mental hut site in northern Belize, Central America.
While the results are encouraging, further optimization
and validation of the approach are clearly warranted. It is
difficult to imagine a mature public health intervention
that utilizes repellent treated nylon strips and baited CDC
LT’s in the current prototype configuration, but discussion
of the present data does highlight that combined push-
pull effects are possible thereby providing a critical basis

Page 9 of 11

for continued study and development of the strategy.
Based on this prototype, the clearest indication for use of
an outdoor trap in addition to an indoor repellent might
be when there is documented transmission outdoors in
the peridomestic area around homes. It is also likely,
however, that any capture of mosquitoes would impact
overall vector densities by removing a proportion of the
population through a mechanical (non-insecticidal)
mechanism that would not select for insecticide resist-
ance. Current modeling efforts are beginning to tackle
many of these questions and they are active points of
discussion in the community, but more work is clearly
needed and a thorough discussion of them is well be-
yond the scope of this study.

Indeed, the true field optimization of a push-pull sys-
tem for vector control will involve a host of complex is-
sues, including under which circumstances the use of
both the repellent and trapping components would be
preferable to the use of repellent alone. This will require
an understanding of local transmission dynamics, such
as the differentiation between indoor and outdoor biting
rates and risks of infection, as well as cost benefit ana-
lyses, assessments of ease and general feasibility studies.
The validation of the strategy in any location will have
to include rational selection of the best available tools in
relation to that particular environment, and a thorough
understanding of the local vector (and human) ecologies
will be essential in shaping each intervention, e.g. which
repellent products and traps to use and where to pos-
ition them relative to the population at risk and vector
breeding, resting and feeding sites. Considering this, it is
doubtful that an optimized push-pull intervention tar-
geting an endophagic species like An. vestitipennis will
be exactly the same as an intervention tailored to target
a more exophagic species like An. albimanus. Also, it is
likely that in order to truly achieve maximum impact
from a push-pull strategy we need to develop better
traps and new repellents. Again, investigations of these
complex issues are ongoing and continued discussions
will be critical to the further development of novel vec-
tor control strategies including push-pull.

Conclusion

The experiments reported here demonstrate the potential
for push-pull strategies to reduce the probability of human-
vector interactions both inside (by reducing mosquito
entry) and outside (by increasing the yields of outdoor bai-
ted traps) of homes, and support further investment into
the optimization and validation of the approach for disease
vector control. However, the variation in effect seen on dif-
ferent target species highlights the need to identify the
underlying behavioral ecology of local vectors to tailor the
strategy to different transmission settings. Additionally, fur-
ther elucidation of the species-specific mechanisms that
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drive mosquito responses to spatial repellent chemicals and
baited traps is needed to properly evaluate the potential
role for push-pull vector control strategies as part of any
malaria prevention programme.

Additional files

Additional file 1: The Graeco-Latin square study design. Each
specific combination of experimental treatment and collection team was
rotated through each one of the huts.

Additional file 2: Adult female mosquito composition at the study site.
From baseline (pre-intervention) characterization of the site from July to
August, 2012.

Additional file 3: Baseline (pre-intervention) comparability of
experimental huts. During the baseline characterization of mosquito
activity, no significant differences were observed in the number of
mosquitoes collected according to (A) hut location (ANOVA: F = 0.330,
df =15, p=0.804 for An. vestitipennis; F = 0484, df =15, p =699 for

An. albimanus) or (B) collection team (ANOVA: F=0.333, df=15, p=0.802
for An. vestitipennis; F = 0.210, df = 15, p = .887 for An. albimanus). Nightly
(n=4) geometric means are shown; error bars represent the standard
error of the mean.

Additional file 4: Parity rates for subset of captured An.
vestitipennis and An. albimanus that were age graded via ovarian
dissection, by collection night.

Additional file 5: Midpoint (06 October 2012) baseline collections.
Window trap densities were not diminished in huts that had previously
received repellent treatments, indicating no residual effects after cleaning.
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