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Abstract

Background: Geographic variations of an infectious disease characterize the spatial differentiation of disease
incidences caused by various impact factors, such as environmental, demographic, and socioeconomic factors. Some
factors may directly determine the force of infection of the disease (namely, explicit factors), while many other factors
may indirectly affect the number of disease incidences via certain unmeasurable processes (namely, implicit factors).
In this study, the impact of heterogeneous factors on geographic variations of Plasmodium vivax incidences is
systematically investigate in Tengchong, Yunnan province, China.

Methods: A space-time model that resembles a P. vivax transmission model and a hidden time-dependent process,
is presented by taking into consideration both explicit and implicit factors. Specifically, the transmission model is built
upon relevant demographic, environmental, and biophysical factors to describe the local infections of P. vivax. While
the hidden time-dependent process is assessed by several socioeconomic factors to account for the imported cases
of P. vivax. To quantitatively assess the impact of heterogeneous factors on geographic variations of P. vivax infections,
a Markov chain Monte Carlo (MCMC) simulation method is developed to estimate the model parameters by fitting the
space-time model to the reported spatial-temporal disease incidences.

Results: Since there is no ground-truth information available, the performance of the MCMC method is first
evaluated against a synthetic dataset. The results show that the model parameters can be well estimated using the
proposed MCMC method. Then, the proposed model is applied to investigate the geographic variations of P. vivax
incidences among all 18 towns in Tengchong, Yunnan province, China. Based on the geographic variations, the 18
towns can be further classify into five groups with similar socioeconomic causality for P. vivax incidences.

Conclusions: Although this study focuses mainly on the transmission of P. vivax, the proposed space-time model is
general and can readily be extended to investigate geographic variations of other diseases. Practically, such a
computational model will offer new insights into active surveillance and strategic planning for disease surveillance
and control.
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Background
Disease surveillance systems play important roles in con-
tinuously monitoring the occurrence of an infectious dis-
ease at different geographic locations [1, 2]. From the
perspective of spatial epidemiology, the dependence or
autocorrelations of disease incidences among nearby loca-
tions can be analysed from historical spatial-temporal
disease incidences [3]. Accordingly, risk maps of the dis-
ease can be generated using appropriate spatial inter-
polation methods [4]. However, in reality, the natural
transmission of an infectious disease can be potentially
caused and affected by many impact factors, including
but not limited to environmental, demographic, socioe-
conomic, behavioural, genetic, biophysical, and other
risk factors [5–8]. Specifically, some factors may directly
determine the risk of infection of the disease, namely,
explicit factors, while many other factors may indirectly
affect the disease incidences via certain unobservable
processes, namely, implicit factors. In view of this, it
would be desirable and essential to systematically assess
the integrated impact of heterogeneous factors on the
geographic variations of disease incidences [9, 10]. By
doing so, public health authorities can efficiently and
effectively perform active surveillance and control by
means of strategically planning and utilizing their limited
resources.
Technically speaking, many methods have been pro-

posed to analyse complex spatial-temporal distributions
of disease incidences, and determine multiple impact
factors underlying disease transmission. On the one
hand, statistical analysis on different types of impact
factors can produce risk maps of an infectious disease
with respect to vectors [11], reservoirs [12], and human
cases [13]. However, pure statistical analysis methods
(e.g., spatial regression methods) are limited in explor-
ing the real dynamics of disease transmission underlying
the observed disease incidences. On the other hand, by
systematically integrating various impact factors, vari-
ous disease transmission models have been incorporated
into the spatial statistics of infectious disease. Different
from statistical analysis, disease transmission models can
explicitly describe the underlying epidemiological pro-
cess from the perspective of transmission mechanism.
Taking the vector-borne diseases as an example, start-
ing from the Ross model [14], a variety of differential
equation models with different levels of complexity have
been proposed to investigate the roles of different fac-
tors [15]. For example, Shi et al. have adopted a spatial
transmission model to investigate the underlying disease
transmission networks among different locations [16].
Unfortunately, due to the intrinsic complexity of dis-
ease transmission dynamics, there are still some other
factors, the effects of which still cannot be explicitly
interpreted.

This paper focuses on geographic variations of malaria
incidences among 18 towns in Tengchong county, Yunnan
province, China (see Fig. 1). The IDs and names of these
towns are listed in Table 1. One reason that malaria is cho-
sen as a case study lies in that it is one of the most serious
and deadly infectious diseases all over the world, espe-
cially in developing countries [17, 18]. In China, Yunnan
province was ranked the first for the number of reported
malaria cases, and the second for the incident rate of
the disease from 1999 to 2004 [19]. While for Tengchong
county in Yunnan province, all 18 towns have been expe-
riencing high Plasmodium vivax transmission in the past
years, with annual incidence rate higher than 1 per 10,000
[20, 21]. With respect to the malaria elimination in Teng-
chong, it has been suggested by public health policy
makers and practitioners that active surveillance would be
an efficient strategy. Compared with passive surveillance
(i.e., patients come to public health agencies for diagnosis
and treatment), active surveillance aims to timely discover
malaria infections through actively conducting on-the-
spot investigation. However, in practice, active surveil-
lance are extremely cost-expensive and time-consuming,
which require massive experienced public health workers.
So far, very few experienced workers are available, par-
ticularly in remote and underdeveloped regions in China.
For instance, in Tengchong’s Centers for Disease Control
(CDC), no more than five full-time workers are available
to perform or coordinate the active surveillance for about
167 thousands households that are distributed in a wide
area of more than five thousands square kilometres [22].
Another important reason is that the situations of P.

vivax transmission in Tengchong is complicated: first,
researchers have shown that environmental factors (e.g.,
temperature and rainfall) have a significant impact on the
population growth of mosquitoes, as well as their bio-
logical cycles [23, 24]. Accordingly, due to the suitable
climate in Tengchong, the force of infection of P. vivax
to human being in individual towns varies depending on
the dynamically changing environmental factors and its
demographic profiles (e.g., human population size). Sec-
ond, it was reported that the proportion of imported cases
of P. vivax in China in 2011 is about 62.9 % [21], where the
imported cases are defined as malaria infections whose
origin can be traced to an area outside the country. While
in Yunnan province, a large number of malaria incidences
are imported from Myanmar due to cross-border eco-
nomic activities [19, 25]. Moreover, evidences have shown
that the frequency of the cross-border activities is highly
related to socioeconomic profile of each individual town,
such as average income per capita [8, 26, 27].
To investigate the underlying causes of geographic vari-

ations of P. vivax incidences in Tengchong, this paper
focuses not only on the direct impact of environmen-
tal and demographic factors on P. vivax transmission in
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Fig. 1 An illustration of the geographic locations of the 18 towns in Tengchong, Yunan province, China. The towns are marked in red, which are
located near the national border between China and Myanmar

individual towns, but also the indirect impact of socioe-
conomic factors on the number of imported cases. To
achieve this, the following three critical challenges are
addressed:

• How can a computational model be built to
systematically characterize the impact of both explicit
and implicit factors on geographic variations of
disease incidences?

• How can the impact of imported cases on geographic
variations be assessed using various socioeconomic
factors by taking into consideration human
cross-border activities?

• What kinds of computational methods can be
developed to quantify geographic variations by fitting
model parameters to observed P. vivax incidences?

To tackle these challenges, a space-time model is pre-
sented by extending the idea of factor analysis, which has
been extensively adopted to investigate spatial-temporal
patterns of infectious diseases [28, 29].

Specifically, the space-time model consists of a linear
combination of a P. vivax transmission model and a hid-
den time-dependent process of a set of non-observed
common factors. First, a malaria transmission model is
built based on the notion of vectorial capacity (VCAP),
which characterizes the P. vivax transmission potential
based on dynamically changing temperature, rainfall, as
well as population size in each individual town [30, 31].
Then, socioeconomic factors are integrated into a hidden
time-dependent process of a set of common factors, which
help quantify the variations of different towns in terms
of the number of imported cases. To quantitatively assess
geographic variations of P. vivax incidences, a Morkov
chainMonte Carlo (MCMC) simulationmethod is used to
fit the proposed space-time model to the spatial-temporal
P. vivax incidences [32, 33].
To evaluate the performance of the proposed space-

time model, experiments are first conducted on a set of
synthetic data generated using predefined model param-
eters. The results show that the MCMC method can well
estimate all model parameters. Then, a real-world study

Table 1 The IDs and names of the studied 18 towns in Tengchong, Yunnan province, China

ID Name ID Name ID Name

1 Jietou 2 Qushi 3 Mingguang

4 Ruidian 5 Gudong 6 Mazhan

7 Houqiao 8 Beihai 9 Heshun

10 Tengyue 11 Zhonghe 12 Hehua

13 Qingshui 14 Mangbang 15 Wuhe

16 Puchuan 17 Xinhua 18 Tuantian
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is carried out to investigate the geographic variations of
P. vivax incidences among all 18 towns in Tengchong,
Yunnan province, China. Model parameters are estimated
by fitting the proposed model to monthly-reported P.
vivax incidences from 2005 to 2010. Based on the esti-
mated model parameters, the 18 towns are classified into
several groups in terms of the impact of their socioeco-
nomic factors on the number of imported cases. By doing
so, public health authorities can strategically allocate their
limited resources to specific groups of towns so as to
improve the efficiency of active surveillance.
In summary, even through this study introduce the

space-time model by taking P. vivax transmission in Teng-
chong as an example, the proposed model is not limited
to analysing geographic variations of P. vivax incidences.
Without loss of generality, it can also be extended to
analyse spatial-temporal data series of other diseases.

Methods
A space-timemodel
Disease surveillance systems usually monitor disease inci-
dences of different locations as a set of time series. Given
the observed disease incidences of N locations during
time period t = 1, · · · ,T , the spatial-temporal surveil-
lance data at time t can be represented by a vector yt =
(y1t , · · · , yNt)′. With respect to malaria transmission in
Tengchong, China, the number of P. vivax incidences of
each individual town consists of two parts: one is local
infections caused by the P. vivax transmission within the
town, which can be explicitly modelled based on environ-
mental and demographic factors; the other is imported
cases caused by a hidden time-dependent dynamics (e.g.,
human cross-border activities), which can be implicitly
affected by a set of socioeconomic factors. According to
the study in [34], the space-time model can be defined as
follows:

yt = ut + β · ft + εt , εt ∼ N(0,�) (1)
ft = � · ft−1 + wt , wt ∼ N(0,�) (2)

where ut describes the epidemiological dynamics of local
P. vivax transmission at time t, and β ·ft describes a hidden
time-dependent dynamics of imported cases. Specifically,
ut = (u1t , · · · ,uNt)′ represents the number of local infec-
tions at time t, ft is an m-dimensional vector of common
factors (i.e., the order of the factor model), and β =
(β(1), · · · ,β(m)) is the N × m factor loading matrix. Each
row of β describes the importance of common factors for
a given town, while each column of β (i.e., β(i)) shows
spatial dependence of different towns with respect to a
specific common factor. In this paper, it is assumed that
the values of common factors at time t depend only on
those at time t − 1, where the matrix � characterizes
the time-dependent dynamics of the common factors.

Finally, � and � are observational and time-dependent
variations. For simplicity, it is also assumed that � =
diag(σ 2

1 , · · · , σ 2
N ) and � = diag

(
λ21, · · · , λ2N

)
.

By fitting model parameters to spatial-temporal surveil-
lance data, the main objective is to evaluate the impact of
heterogeneous factors on geographic variations of P. vivax
incidences.

Epidemiological dynamics of malaria transmission
The notion of vectorial capacity (VCAP) is used to assess
P. vivax transmission potential using environmental and
demographic data, which is defined as “the number of
potentially infective contacts an individual person makes,
through vector population, per unit time [15].” The VCAP
was adapted from the basic reproductive number calcu-
lated based on the Macdonald model [35]. In each town i,
the value of VCAP is given by:

Vi = −(mia2i )p
ni
i

ln(pi)
, (3)

where mi represents the equilibrium mosquito density
per person, ai is the expected number of bites on human
beings per mosquito per day, pi is the probability of
a mosquito surviving through one whole day, and ni
is the entomological incubation period of malaria par-
asites. Based on the study of Ceccato et al. [30], all
these parameters are dependent on human population
Pi, as well as dynamically-changing temperature (T) and
rainfall (R) in each individual town. Here, the detailed
parameter descriptions and settings for calculating the
VCAP of each individual town are shown in Table 2,
which is adopted from the existing work [16]. As men-
tioned in [16], the values of relevant parameters are based
on a certain degree of assumptions and estimates, and
they could be adjusted when more accurate values are
available.
Based on the relationship of VCAP and entomolog-

ical inoculation rate (EIR), the number of infectious
bites received per day by a human being can be esti-
mated [31]. Accordingly, the number of local infections
at time t can be calculated based on the number of
infections at previous time t − 1. The formulation is as
follows:

ut = −bcVty′
t−1yt−1

Pi
+ yt−1I(1 − r + bcVt), (4)

where b represents the probability that a susceptible per-
son becomes infected after being bitten by an infectious
mosquito, c denotes the probability that an uninfected
mosquito becomes infected after biting an infectious per-
son, r is the human recovery rate, I is N × N identity
matrix, and Vt = (V1t , · · · ,VNt)′ is a vector of VCAP
for different towns at time t. It should be noted that
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Table 2 The parameter descriptions and settings for calculating vectorial capacity

Parameters Descriptions Values

Gonotrophic cycle length: U = 0.5 + fu/(T − gu)

fu The number of degree days needed for maturation 36.5 ([30])

gu The threshold below which gonotrophic development ceases 9.9 ([30])

T The average temperature of an individual town MODIS ([40])

The probability of daily survival: p = α1/U

α The proportion of vectors surviving each gonotrophic cycle 0.5 ([30])

Sporogonic cycle length: n = fn/(T − gn)

fn The number of degree days required for parasite development 105 ([24, 48])

gn The threshold below which parasite development ceases 18 °C ([30])

Human biting habit: a = h/U

h The human blood index 0.7 ([30])

The ratio of mosquitoes to human:m = 10R/P

R The average rainfall of an individual town TRMM ([41])

P The human population in an individual town Census ([22])

The table is adopted from the existing work [16]

the model parameters bc and r will be estimated by fit-
ting the proposed model to the spatial-temporal malaria
incidences.

Time-dependent dynamics of common factors
As in standard dynamic factor model [36], in this paper,
Equation 2 describes the dynamics ofm independent com-
mon factors, where � is set to be diag(γ1, · · · , γm). In
doing so, the factor loading matrix β characterize geo-
graphic variations of disease incidences with respect to
the set of common factors. In this paper, the jth column of
β is modelled as a Gaussian random field (GRF), that is,

β(j) ∼ GRF
(
μ

β
j , τ

2
j Rφj

)
, (5)

where μ
β
j is N-dimentional mean vector, τ 2j indicates

the scale of spatial dependence, Rφj is a symmetric and
positive definite covariance matrix. The element Rφj(l, k)
can be used to reflect the range of spatial dependence
in terms of geographic distances and socioeconomic fac-
tors. Specifically, (l, k)-element of the covariance matrix
is given by Rφj(l, k) = ρφj(slk), where ρφj(·) is a correla-
tion function and slk represents the spatial heterogeneity
between towns l and k [34]. Here, the correlation function
is assumed to be exponential, i.e.,

ρφj(slk) = exp
(−slk/φj

)
, (6)

where φ can be generated from an inverse gamma distri-
bution.
The spatial heterogeneity S = {slk}N×N is defined as

the Hadamard product of a geographic distance matrix D
and a socioeconomic distance matrix M, i.e., S = D ◦ M,

where M is given by the Cosine distances between differ-
ent towns with respect to a list of n implicit impact factors
x = (x1, · · · , xn). Therefore, each element in M can be
calculated as follows:

Mlk = 1− xl · xk
‖xl‖ · ‖xk‖ = 1−

∑n
i=1 xlixki√∑n

i=1 x2li
√∑n

i=1 x2ki
, (7)

where xl represents a vector of impact factors ofz loca-
tion l. To generate D, geographic distances between the
18 towns in Tengchong are extracted using Google Maps
API. Meanwhile, five socioeconomic factors are used to
calculate the socioeconomic distance matrix M, they are:
per capita arable land, per capita food production, per
capita meat production, per capita government revenue,
and personal income. Clearly, Equation 6 indicates that
the pairwise covariance and hence dependence between
any two towns decreases as the heterogeneity between
them increases. It should be note that although only five
socioeconomic factors are used in this paper, the calcu-
lation of spatial heterogeneity can be extended to involve
more implicit factors.

Inferring model parameters
In this section, anMCMC simulationmethod is presented
to estimate model parameters by fitting the proposed
space-time model to disease incidences data.
Mathematically, the space-time model can be reformu-

lated in matrix notation as y = u + Fβ ′ + ε, where
y = (y1, · · · , yT )′ is a T ×N matrix, u = (u1, · · · ,uT )′ is a
T×N matrix, and F = (f1, · · · , fT )′ is a T×mmatrix. The
matrix ε is of dimensionT×N , and follow amatrix-variate
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normal distribution, i.e., ε ∼ N(0, IT ,�) [34]. Thus, given
m number of common factors, the posterior probability of
y can be calculated as follows:

p(y|F ,β ,�) = (2π)−TN/2|�|−T/2 × (8)

exp
(
tr

(
−

(
y− u− Fβ ′)′ (y − u − Fβ ′)

2�

))
,

where � consists of parameters in the time-dependent
dynamics of common factors, i.e., σ = (σ 2

1 , · · · , σ 2
N ), λ =(

λ21, · · · , λ2m
)
, γ = (γ1, · · · , γm) ,μ =

(
μ

β
1 , · · · ,μβ

m
)
, τ =(

τ 21 , · · · , τ 2m
)
,φ = (φ1, · · · ,φm), as well as parameters in

the epidemiological dynamics of P. vivax transmission, i.e.,
bc and r. Accordingly, the joint posterior distribution of
(F ,β ,�) is given by:

p (F ,β ,�|y) ∝
T∏
t=1

p
(
yt|ft ,β , σ

)
p(bc)p(r)p(f0) (9)

×
T∏
t=1

p
(
ft|ft−1, λ, γ

)

×
m∏
j=1

p
(
β(j)|μβ

j , τ
2
j ,φj

)
p

(
γj

)
p

(
μ

β
j

)
p

(
τ 2j

)

× p
(
φj

) N∏
i=1

p
(
σ 2
i
) N∏
i=1

p
(
λ2i

)
,

where the prior information of the model parameters
(F ,β ,�) will be discussed in detail in the Results section.
To simultaneously estimate the model parameters, an

MCMC simulation method is developed. The proce-
dure of the method is as follows: First, all independent
model parameters �(0) = (σ , λ, γ ,μ, τ ,φ, bc, r, f0) are
initialised based on their prior distributions. Then, the
values of factor loadingmatrix β(0) and the values of com-
mon factors f1 are generated based on Equation 6 and
Equation 2, respectively. By doing so, the posterior dis-
tribution p(F(0),β(0),�(0)|y) can be estimated based on
Equation 9. For each iteration, new values of parameters
�∗ will be generated from an adaptive proposal distribu-
tions q(�∗|�) [32, 33]. Accordingly, new values of F∗ and
β∗ will be calculated. All the new values F∗, β∗ and�∗ will
be accepted with probability:

min
(
1,

p (F∗,β∗,�∗|y) q (�|�∗)
p (F ,β ,�|y) q (�∗|�)

)
. (10)

After a total number ofM iterations, the statistics of the
factor loading matrix β and other model parameters can
therefore be analysed. The detailed method is shown in
Algorithm 1.

Algorithm 1: The MCMC Algorithm
Input: The total number of iterationsM; the prior

distributions for �, bc, and r;
Output: The samples of β and �

1 Initialize �(0) based on prior distributions of
σ , λ, γ ,μ, τ ,φ, bc, r, and f ;

2 Generate β(0) based on Equation 6;
3 Calculate p(F(0),β(0),�(0)|y) based on Equation 9;
4 foreach i = 0 : (M − 1) do
5 Sample �∗ from proposal density q(�∗|�(i));
6 Generate β∗ based on Equation 6;
7 Calculate p(F∗,β∗,�∗|y) based on Equation 9;
8 With probability

min
(
1,

p(F∗,β∗,�∗|y)q(�(i)|�∗)
p(F(i),β(i),�(i)|y)q(�∗|�(i))

)
set �(i + 1) = �∗, β(i + 1) = β∗, and
F(i + 1) = F∗;

9 otherwise, set �(i + 1) = �(i), β(i + 1) = β(i),
and F(i + 1) = F(i).

10 end

Results
Simulated study: the evaluation of the MCMC simulation
method
To evaluate the performance of the MCMC method, a
synthetic dataset is simulated based on the proposed
space-time model with a set of predefined model param-
eters. Then, the ability of the method to estimate model
parameters is assessed by treating the predefined model
parameters as ground-truth values.

Data generation
To simulate the synthetic dataset, the geographic envi-
ronment and the parameters of the proposed space-time
model are set as follows:

• Similar to the study in [34], N = 25 locations are
uniformly allocated in a two-dimensional square
[ 0, 1]×[ 0, 1], that is, the longitudes and latitudes of
individual locations are (0.20, 0.20), (0.20, 0.40), · · · ,
(1.00, 0.80), (1.00, 1.00), respectively.

• After surveying existing literatures about the
dynamics of malaria transmission, epidemiological
parameters are set to be bc = 0.007 and r = 0.05.

• The observational and the time-dependent variations
are set to be � = diag(0.02, 0.02, 0.02) and
� = diag(0.02, 0.03, 0.01), respectively. Moreover,
the matrix � is set to be � = diag(0.60, 0.40, 0.30).

• Without loss of generality, it is assumed that there
are three common factors (i.e.,m = 3). The factor
loading matrix β is generated from a Gaussian
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process of exponential correlation function with
φ = (0.15, 0.40, 0.25). In other words,
Rφj(l,k) = exp(−dlk/φj).

• The value of μβ
j is only relevant to distance in the

simulated experiments. Accordingly, it is reasonable
to set μ

β
j = Xμj, where X = (1N , LongitudeN ,

LatitudeN ), and μ1 = (5, 5, 4)′, μ2 = (5,−6,−7)′,
and μ3 = (5,−8, 6)′. The scalar τ is set to be
τ = (1.00, 0.75, 0.56).

The objective is to evaluate whether the proposedMCMC
simulation method can help estimate the time-dependent
diagonal matrix �, the scalar τ , the epidemiological
parameters bc and r, as well as the number of common
factorsm.

Parameter settings
The model parameters are estimated by fitting the space-
time model to the generated data using the proposed
MCMC algorithm. Specifically, the following prior distri-
butions are adopted with respect to each parameter in the
MCMCmethod:

• The observational and time-dependent variations
follow inverse gamma distribution, i.e.,
σ 2 ∼ IG(0.01, 0.01) and λ2 ∼ IG(0.01, 0.01).

• The parameters in � are assumed to follow a normal
distribution, i.e., γi ∼ N(0.5, 1).

• The initial values of common factor f0 is set to be
f0 = (0.6, 0.4, 0.3).

• According to literature review, the epidemiological
parameters bc and r are assumed to follow uniform
distributions, where bc ∼ U(0.0036, 0.01248) and
r ∼ U(0.02222, 0.11110).

• The factor loading matrix is modelled as a Gaussian
random field, i.e., βj ∼ N(μ

β
j , τ 2j Rφj), where μ

β
j is a

known hyperparameter and follows a normal
distribution with mean value equal to true value and
variance equal to 25, the scale of spatial dependence
τ 2j follows an inverse Gamma distribution, i.e.,
τ 2j ∼ IG(1, 0.75), and the prior distribution of
φ ∼ IG(2, b) for b = max(S)/(−2 ln(0.05)) and
max(S) is the largest element for all slk (see [37, 38],
for more detail).

Simulation results
The MCMC algorithm is run for 100,000 iterations, and
the posterior inference is built upon the last 80,000 draws.
Figure 2 shows the estimated parameters of γ and τ

using the proposed MCMC simulation method, while
Fig. 3 demonstrates the estimated values of epidemiolog-
ical parameters bc and r. In all these figures, the true
value of each parameter is illustrated using a blue line,
while the estimated mean value is shown using a dark line.

The detailed values and their corresponding 95 % credible
intervals are shown in Table 3. It can be observed that all
estimated mean values are very close to their true values
(Figs. 2 and 3), and the estimated mean values of all model
parameters are within their corresponding 95 % credible
intervals (Table 3).
Besides themodel parameters, another important factor

needs to be determined is the value of m in the time-
dependent dynamics of common factors (i.e., the order of
the factor model). In this simulation study, several mod-
els with up to five common factors (i.e., m = 2, 3, 4, and
5) are tested with respect to four measurements. They
are two measurements about fitting errors (i.e., the mean
absolute error (MAE) and the mean square error (MSE))
and two criteria about model selection (i.e., the Akaike
information criterion (AIC) and the Bayesian information
criterion (BIC)), whereMAE = 1

NT
∑N

i=1
∑T

t=1 |yit − ŷit|,
MSE = 1

NT
∑N

i=1
∑T

t=1(yit − ŷit)2, AIC = 2m − 2 ln(L),
andBIC = m ln(n)−2 ln(L). Here, L is the value calculated
by Equation 8, and n is the number of observed data.
Table 4 shows the performance of the simulated studies

with respect to models with different number of common
factors. It can be found thatm = 3 reaches the best perfor-
mance in terms of above-mentioned four measurements,
which is exactly the number of common factors used for
generating the synthetic dataset.
In summary, the above results suggest that the MCMC

simulation method can well estimate the values of the
model parameters and the order of the factor model.

Real-world study: the P. vivax transmission in Tengchong,
Yunnan, China
This section focuses on the investigation of the effects of
various impact factors on the geographic variations of P.
vivax incidences among 18 towns in Tengchong, Yunnan
province, China.

Data collection
With respect to monthly malaria incidences from 2005 to
2010, different towns show different temporal patterns.
There are two major reasons: first, due to the environ-
mental and demographic heterogeneity of these towns,
malaria transmission potential in each individual town
is different. Second, due to the socioeconomic hetero-
geneity, human cross-border activities in individual towns
are different, which may affect the number of imported
malaria incidences. The following data are involved in
constructing the space-time model.

• Malaria incidences. The reported cases of P. vivax
infection are collected from the China Information
System for Disease Control and Prevention, which
cover all the 18 towns in Tengchong from 2005 to
2010 [39].
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Fig. 2 The estimates of model parameters � and τ using the proposed MCMC simulationmethod. a, b, c The estimatedmean values of γ1, γ2, and γ3
(black lines) and their corresponding true values (blue lines); d, e, f The estimated mean values of τ1, τ2, and τ3 (black lines), and their corresponding
true values (blue lines). a The values of γ1. b The values of γ2. c The values of γ3. d The values of τ1. e The values of τ2. f The values of τ3

Fig. 3 The estimates of epidemiological parameters bc and r using the proposed MCMC simulation method. a The estimated mean values of bc
(the dark lines) and its true value (the blue line); (b) The estimated mean values of r (the dark lines) and its true value (the blue line). a The values of bc.
b The values of r
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Table 3 The estimates of model parameters and their 95 % credible intervals

γ1 γ2 γ3 τ1 τ2 τ3 bc r

True values 0.60 0.40 0.30 1.00 0.75 0.56 0.0070 0.0500

Mean 0.61 0.80 0.73 0.997 0.66 0.55 0.0074 0.0479

Variance 0.60 0.49 –0.47 0.14 0.096 0.09 0.0009 0.0113

5 % –0.48 –0.02 –0.13 0.79 0.51 0.41 0.0058 0.0304

50 % 0.66 0.84 0.78 0.98 0.65 0.54 0.0074 0.0473

95 % 1.54 1.61 1.44 1.24 0.83 0.71 0.0089 0.0679

• Temperature and rainfall. The temperature and
rainfall data of Tengchong from 2005 to 2010 are
collected to estimate the P. vivax transmission
potential for individual towns. For the temperature,
the Moderate Resolution Imaging Spectroradiometer
(MODIS) is used to estimate near-surface air
temperature [40]. For the rainfall, the Tropical
Rainfall Measuring Mission (TRMM) product is used
to estimate daily precipitation [41].

• Population size. The population size of each town is
based on the sixth national census of China in
2010 [22].

• Geographic distances. The geographic distances
between individual towns are identified as the
shortest road distances using Google Maps API.

• Socioeconomic factors. Suggested by public policy
makers and practitioners, five typical socioeconomic
factors are adopted to characterize socioeconomic
heterogeneity of the studied towns from 2005 to
2010, they are, per capita arable land, per capita food
production, per capita meat production, per capita
government revenue, and personal income. All these
data are collected from Tengchong Statistics Bureau.
It should be noted that many other factors from
heterogeneous data sources can also be involved into
the calculation of matrix M in the proposed
space-time model.

Parameter settings
To estimate model parameters, the same prior distribu-
tions as that in simulated study are used for parameters
σ 2, λ2, γ , bc, r, τ 2 and φ. The other two parameters f0 and
μ

β
j are set as follows:

Table 4 The effects of the number of common factors

m MAE MSE AIC BIC

2 0.42 0.36 3072.33 3265.35

3 0.19 0.07 718.04 1004.56

4 0.23 0.09 1114.45 1494.46

5 0.25 0.11 1456.99 1930.50

• The initial values of f0 are drawn from a normal
distribution, i.e., f0 ∼ N(1, 1).

• The factor loading matrix is modelled as a Gaussian
random field, i.e., βj ∼ N(μ

β
j , τ 2j Rφj). Here, μβ

j
follows a normal distribution with the same mean
and variance as that of yt − ut for all t, where the
values of ut is calculated using randomly generated
bc and r from their prior distributions.

Simulation results
The MCMC algorithm is run for 100,000 iterations with
a burn-in of the first 20,000 runs. First, the appropriate
number of common factors m is incrementally evaluated
in terms of the four measurements, i.e., MAE, MSE, AIC,
and BIC. It can be found that better performances can
be achieved when m = 5. Figure 4 shows the fitting
results of monthly P. vivax incidences of the 18 towns
in Tengchong, from 2005 to 2010. The red lines cor-
respond to the observed numbers of incidences, while
the green lines show the estimated numbers of inci-
dences based on the proposed space-time model. It can
be observed that for most towns, the proposed model
preforms very well in terms of fitting the real-world obser-
vations, except for certain special towns, such as the town
Heshun in Fig. 4d. The possible reason is that P. vivax
incidences in Heshun are temporally sparse. Therefore,
historical malaria incidences play limited roles in estimat-
ing future incidences, in other words, the time-dependent
process will dominate the final estimation. However, such
misestimate is tolerable in real world because the num-
ber of P. vivax incidences in these towns is relative
small.
According to the definition of factor loading matrix β ,

each row of β represents the importance of common fac-
tors for a given town, and each column of β shows spatial
dependence among different towns. In this case, each col-
umn of β can be treated as an “attribute” of individual
towns so as to classify the 18 towns based on the impact
of their “attributes” on geographic variations of P. vivax
incidences. Table 5 shows the estimate of the factor load-
ing matrix β with the number of common factors m =
5. Along this line, the well-known K-means algorithm is
adopted to do classification based on the estimated factor



Shi et al. Malaria Journal  (2015) 14:216 Page 10 of 14

Fig. 4 The observed and estimated numbers of Plasmodium vivax incidences of the 18 towns in Tengchong, Yunnan province, China, by month from
2005 to 2010. The red lines correspond to the observed numbers of Plasmodium vivax incidences, while the green lines show the estimated numbers
of Plasmodium vivax incidences based on the proposed space-timemodel. (a) Zhonghe, (b) Wuhe, (c) Beihai, (d) Heshun, (e) Tuantian, (f) Gudong, (g)
Xinhua, (h) Mingguang, (i) Qushi, (j) Qingshui, (k) Houqiao, (l) Ruidian, (m) Jietou, (n) Tengyue (o) Mangbang, (p) Hehua, (q) Puchuan and (r) Mazhan

loading matrix β . Figure 5 demonstrates the classification
results of the 18 towns by setting K = 2, 3, 4, and 5,
where different colors represent different clusters. It can
be found that when K = 2, some adjacent towns are
grouped into one cluster (e.g., the brown cluster and the
green cluster in Fig. 5a), which means that geographic
distances may dominate variations of malaria incidences.
This is inline with the analysis of certain spatial statis-
tics methods, such as the a smoothed surface map in [16].
Specifically, several towns adjacent to Tengyue is classified
into the same cluster (i.e., the brown cluster in Fig. 5). The

reason may be that Tengyue is the center of Tengchong
county, and have relatively better economic status. Peo-
ples in these towns may seldom travel to high risk region
in Myanmar. As the value of K increases, some special
towns (i.e., Wuhe and Mangbang) will gradually separate
from brown cluster, possibly due to the integrated impact
of socioeconomic factors. By doing so, active surveillance
and targeted intervention strategies can be implemented
for groups of towns based on the amount of available
resources, which may significantly improve the effective-
ness and efficiency of malaria control and elimination.
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Table 5 The estimate of the factor loading matrix β with the number of common factorsm= 5

Town ID Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

1 –0.03 1.52 –1.22 –0.03 –0.78

2 –0.78 3.02 –0.06 –0.46 –1.09

3 2.15 1.16 –0.36 –0.52 0.19

4 0.55 –0.17 0.50 0.75 –0.17

5 –3.16 1.73 2.28 0.13 –0.33

6 –0.87 0.27 1.07 0.15 –0.19

7 –0.52 –1.21 –0.91 2.08 0.18

8 –0.44 0.41 0.35 –0.09 –0.37

9 –0.03 0.10 0.17 –0.19 –0.09

10 1.35 –0.31 4.11 –0.05 –1.77

11 0.47 0.60 0.43 0.06 0.24

12 0.61 0.43 –0.72 0.20 0.35

13 –0.50 0.32 0.95 –0.19 –0.32

14 –0.37 1.92 1.91 2.01 2.88

15 1.05 0.59 –0.78 4.81 –2.39

16 2.48 0.36 –0.11 0.96 0.55

17 0.54 0.85 –0.48 0.31 –0.45

18 0.22 0.40 0.06 0.67 0.31

Discussion
Data mining and spatial statistics methods play essential
roles in understanding spatial-temporal patterns of dis-
ease incidences, which can provide valuable information
for disease surveillance and control. First, local clusters
or hot spots of disease transmission can be identified
through geostatistical analysis on the time series of disease
incidences, where targeted intervention strategies can be
applied to improve the efficiency of disease control. For
example, researchers have adopted the SaTScan software
to detect local malaria clusters based either on confirmed
malaria cases [42], or other related impact factors [43].
Second, spatial dependence between different locations
can be quantified to reveal the relationships between the
severity of an infectious disease and its relevant impact
factors. For example, Osei and Duker have studied the
spatial dependence of Vibrio cholera prevalence on open
space refuse dumps [44]; Gemperli et al. have investigated
environmental and age dependence of malaria transmis-
sion in West and Central Africa [45]. Third, incidences at
unobserved locations can be estimated using appropriate
spatial interpolation methods based on confirmed inci-
dences at observed locations. For example, Kriging linear
spatial interpolation method has been adopted to visual-
ize geographic and temporal trends in rotavirus activity
in the United States [46]. Regarding the above-mentioned
problems, most existing methods have focused solely on
the impact of several typical factors. While the aim of this
paper is to systematicallymodelling geographic variations

of disease incidences by taking into consideration various
impact factors from heterogeneous data sources.
Factor analysis is one kind of statistical methods to

systematically describe a large number of correlated vari-
ables using a potentially small number of unobserved
variables (i.e., factors). Generally speaking, the main pur-
pose of factor analysis on spatial epidemiology is to either
reduce the overall dimension of observations at each geo-
graphic location, or describe temporal dynamics of all
locations using a small set of common factors [34, 36]. Dif-
ferent from existing studies, the observations of disease
incidences is univariate (i.e., the spatial-temporal distri-
bution of disease incidences) and the main focus is to
investigate the impact of heterogeneous impact factors
on geographic variations of disease incidences. In this
paper, the space-time model is one of the first attempts
to study both explicit and implicit factors by integrating
the epidemiological dynamics of disease transmission and
the time-dependent dynamics of unobserved common
factors.
Although the experimental results have shown that the

proposed space-time model can perform well in fitting
to the reported spatial-temporal P. vivax incidences in
Tengchong, it should be noted that the model can still
be able to be generalized in the following ways: first, in
this paper, it is assumed that the values of common fac-
tors ft at time t depend on those at previous time ft−1. In
reality, the duration of time window should be justified
based on the real-world situations, such as the incubation
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Fig. 5 The classification results of the 18 towns in Tengchong, Yunnan province, China. Different colors to represent different clusters. (a) The
number of clusters K = 2; (b) The number of clusters K = 3; (c) The number of clusters K = 4; and (d) The number of clusters K = 5

period of the infectious diseases. Second, the entries in
matrix � is constant throughout the paper. Theoretically,
it can be generalized to involve time-dependent entries
of � such that dynamic patterns of common factors

(e.g., seasonal patterns) can be investigated. Third, in the
MCMC method, the number of common factors is incre-
mentally evaluated. While in the future, a customized
reversible jump MCMC method [47] can be utilized to
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learn the appropriate value ofm. Lately, it can be observed
from the experimental results (e.g., Fig. 4d) that when
the P. vivax incidences is temporally spare, the proposed
model cannot well fit the observed numbers of inci-
dences. Therefore, some specialized methods should be
developed when the observed disease incidences in most
geographic locations are temporally sparse.
Last but not the least, the proposed space-time model

is a linear combination of a disease transmission model
and a hidden time-dependent process. In the future, vari-
ous data mining methods can be involved to design more
complicated space-time model by explicitly revealing the
impact of other heterogeneous factors. Moreover, in addi-
tion tomining geographic variations of disease incidences,
the proposed model can also be extended to conduct the
following problems:

• Incidence forecasting. Based on the estimated model
parameters, the proposed model can also be used to
forecast disease incidences in the near future.
Mathematically, the h-steps ahead predictive density
p(fT+h|fT ,β ,�) can first be learned. Then,
p(yT+h|fT+h,β ,�) can be estimated.

• Spatial interpolation. Based on spatial
interdependence, disease incidences in unobserved
locations may be estimated by analysing locations
with similar values of impact factors. To achieve this,
new inference methods need to be proposed to
estimate unobserved rows in factor loading matrix β .

All these issues are worth further pursuing so as to achieve
effective and efficient disease surveillance and control.

Conclusions
In this paper, a space-time model is presented to investi-
gate geographic variations of disease incidences by taking
into consideration two types of impact factors: one is
the explicit factors that can directly affect the dynamics
of malaria transmission; the other is the implicit factors
that may indirectly affect the number of imported cases.
Without loss of generality, the model is implemented to
investigate geographic variations of P. vivax incidences
among 18 towns in Tengchong, Yunnan province, China.
Specifically, the notion of vectorial capacity is adopted
to model the P. vivax transmission potential with respect
to environmental and demographic factors. Meanwhile,
the spatial heterogeneity of different towns is charac-
terized in terms of their geographic distances and five
types of socioeconomic factors. Based on the space-time
model, these factors may result in geographic variations
of P. vivax incidence through the time-dependent dynam-
ics of a set of common factors. To estimate the model
parameters, an MCMC simulation method is used by fit-
ting the model to the spatial-temporal disease incidences.
A synthetic study is carried out to assess the ability

of the MCMC method in estimating model parameters.
Then, the proposed model is applied to conduct a real-
world study on investigating geographic variations of P.
vivax incidences among the 18 towns in Tengchong. It is
expected that the computationally obtained methods and
results may offer public health authorities with further
insight into, as well as new tools for, active surveillance
and control of infectious diseases.
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