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Abstract 

Background:  South Africa is one of many countries committed to malaria elimination with a target of 2018 and all 
malaria-endemic provinces, including Mpumalanga, are increasing efforts towards this ambitious goal. The reduction 
of imported infections is a vital element of an elimination strategy, particularly if a country is already experiencing 
high levels of imported infections. Border control of malaria is one tool that may be considered.

Methods:  A metapopulation, non-linear stochastic ordinary differential equation model is used to simulate malaria 
transmission in Mpumalanga and Maputo province, Mozambique (the source of the majority of imported infections) 
to predict the impact of a focal screen and treat campaign at the Mpumalanga–Maputo border. This campaign is 
simulated by nesting an individual-based model for the focal screen and treat campaign within the metapopulation 
transmission model.

Results:  The model predicts that such a campaign, simulated for different levels of resources, coverage and take-up 
rates with a variety of screening tools, will not eliminate malaria on its own, but will reduce transmission substantially. 
Making the campaign mandatory decreases transmission further though sub-patent infections are likely to remain 
undetected if the diagnostic tool is not adequately sensitive. Replacing screening and treating with mass drug admin-
istration results in substantially larger decreases as all (including sub-patent) infections are treated before movement 
into Mpumalanga.

Conclusions:  The reduction of imported cases will be vital to any future malaria control or elimination strategy. This 
simulation predicts that FSAT at the Mpumalanga–Maputo border will be unable to eliminate local malaria on its 
own, but may still play a key role in detecting and treating imported infections before they enter the country. Thus 
FSAT may form part of an integrated elimination strategy where a variety of interventions are employed together to 
achieve malaria elimination.
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Background
Since the call for renewed efforts towards global malaria 
eradication in 2007, it has been acknowledged that new 
tools will be required to achieve this ambitious goal 
[1–5]. Drugs will need to be developed for a variety of 
purposes including use in elimination-focused strate-
gies like mass drug administration (MDA) and mass 

screen and treat (MSAT) campaigns, prophylactic use 
and transmission prevention [3]. New insecticides and 
formulations will need to be developed considering var-
ied vector biology and habits [5]. Importantly, diagnostic 
tools that are easily implemented with increased sensi-
tivity and a decreased processing time will be necessary 
to quickly and successfully diagnose both patent and 
sub-patent infections [2]. This is particularly important 
as the impact of MSAT is dependent on the screening 
tool. South Africa is one of many countries committed 
to achieving malaria elimination with a target set at 2018 
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and all malaria-endemic provinces, including Mpuma-
langa province, are increasing efforts towards this ambi-
tious goal. A malaria elimination strategy should aim 
to interrupt the transmission cycle and prevent it from 
being re-established. A successful interruption of malaria 
transmission ideally requires three elements: (1) the elim-
ination of the vector, (2) the blockade of imported infec-
tions and (3) the reduction of these imported infections 
at their source [6]. It is unlikely that the first element will 
be achieved absolutely [7]. It is possible that the second 
element can be achieved if imported infections are iden-
tified and treated before they can contribute to the local 
infectious reservoir and regional collaboration is key to 
the success of the third element [6]. Silal et al. have simu-
lated interventions in Mpumalanga using mathematical 
modelling techniques aimed towards elements (1) and 
(3) [8, 9]. The reduction of imported infections was dealt 
with at a broad level through the simulation of a focal 
screen and treat (FSAT) campaign at the Mpumalanga–
Maputo border in Silal et  al. [9]. This paper focuses in 
more detail on the proposed FSAT campaign at the Mpu-
malanga–Maputo border using a hybrid metapopula-
tion differential equation and individual based modelling 
(DE-IBM) approach.

Malaria in Mpumalanga has been documented exten-
sively [10–18]. Currently, malaria transmission occurs 
primarily in Ehlanzeni District on the border of both 

Maputo in Mozambique and Swaziland. The five munici-
palities in Ehlanzeni District are most affected by malaria 
in the province (Figure  1). The sharp decline in malaria 
incidence and malaria-related deaths in the province 
between 2002 and 2012 has been attributed to a series 
of policy interventions including intense vector control 
through indoor residual spraying (IRS), the introduction 
of artemisinin-based combination therapy (ACT) policy 
of artesunate plus sulphadoxine-pyremethamine in 2003, 
followed by artemether-lumefantrine (AL) in 2006 and 
the Lubombo Spatial Development cross-border Initia-
tive (LSDI) between Mozambique, Swaziland and South 
Africa [12]. The LSDI malaria programme focused its 
activities primarily in Maputo Province in Mozambique 
and was later extended to Gaza Province resulting in sub-
stantial decreases in prevalence [19]. However the pro-
gramme was terminated early in September 2010 and the 
resultant reduced IRS in Maputo thereafter correlates 
with increased malaria incidence observed from 2011 
[20]. Between 2002 and 2012, 40 650 cases were noti-
fied, with the proportion of imported cases increasing 
from 39% in 2002 to 87% in 2012. Of the cases imported 
in 2012, 13% were sourced in South Africa and 85% 
were sourced from Mozambique (with the remaining 2% 
sourced from other African and Asian countries).

Compartment models and their applications in malaria 
in particular, have a history that spans more than 100 

Figure 1  A map of Mpumalanga Province in relation to Mozambique and Swaziland [source: Mpumalanga Malaria Elimination Programme 
(unpublished)].
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years [21]. Increases in computing power have led to 
the increased use of individual based models in recent 
years [22]. Metapopulation compartment models are an 
extension of compartment models where the popula-
tion under consideration is sub-divided into patches. 
A compartment model is run in each patch and the 
patches are linked together, usually along geographical 
lines [23]. There have been several metapopulation com-
partment model applications in malaria [24–31]. There 
have also been several applications of IBMs in malaria 
[32–35]. With regards to screening and treating, Crowell 
et al. modelled the cost effectiveness of MSAT as a dis-
ease reduction tool in various sub-Saharan African set-
tings [36]. MSAT was found to be effective in medium 
and high transmission settings and was recommended 
to complement and not replace interventions like active 
case detection and vector control. Griffin et al. [33] mod-
elled the impact of MSAT in an African setting at various 
transmission intensities and found MSAT to be a com-
plement to insecticide treated nets (ITN) usage and IRS. 
Maude et  al. [37] modelled the impact of MSAT in the 
face of artemisinin resistance and found that while MSAT 
was able to reduce artemisinin resistant infections in the 
short term, it was unable to eliminate them. White et al. 
[38] modelled the impact of MSAT in a comparison of 
simple and complex mathematical models. Applications 
of mathematical modelling of malaria in Mpumalanga 
have included a climate-based fuzzy distribution model 
[39], an eco-hydrological model for malaria outbreaks 
[40] and a cluster detection model [41]. Silal et  al. [8] 
investigated the impact of FSAT and other interventions 
to achieve malaria elimination in Mpumalanga using a 
population level compartment model and Silal et  al. [9] 
extended this application to a metapopulation model of 

the five municipalities in Ehlanzeni district and Maputo 
province. The hybrid metapopulation DE-IBM model 
presented in this paper is developed to simulate the 
impact of FSAT at the Mpumalanga–Maputo border as 
a means to decrease the inflow of imported infections. 
This is the first model designed for this purpose in Mpu-
malanga and the first to do so since the call for malaria 
elimination in South Africa.

Methods
Transmission model
The model presented in this paper is based on the meta-
population model described in Silal et al. [9]. The malaria 
transmission model has a metapopulation structure 
where the population of interest is divided into dis-
crete patches under the assumption that individuals in 
these patches exhibit homogenous behaviour. Rather 
than modelling transmission in these patches in isola-
tion, a metapopulation structure allows for transmission 
in a particular patch to be influenced by transmission 
in other patches. In this study, the area of interest is 
divided into six geographical patches: five patches for the 
five municipalities in Ehlanzeni District [Thaba Chewu 
(TC), Mbombela (MB), Umjindi (UJ), Nkomazi (NK) and 
Bushbuckridge (BB)] and one patch for Maputo prov-
ince (MP). Each patch is further divided into three sub-
patches representing (1) the local population currently 
in the patch, (2) the local population having returned 
from travel to a foreign place (Maputo, if the patch is 
South African and vice versa) and (3) the population 
from the foreign place currently in the patch (Figure 2b). 
A malaria transmission model is developed for each sub-
patch where the sub-patch population is divided into six 
compartments representing the population susceptible 

a b
Figure 2  Hybrid Metapopulation DE-IBM Model flow. a Compartment transmission model for each patch i (1–6) with sub-patch j (1–3) at time 
step t with compartments S susceptible, I infectious and treated (tr), C infectious, symptomatic and untreated (u), A infectious, asymptomatic and 
untreated, M Infectious, sub-patent and untreated and P susceptible with prior asymptomatic infection. b) Metapopulation structure highlighting 
human movement between each local patch i ǫ {1, 2, 3, 4, 5} and foreign patch 6. Other parameters are described in Table 1 and Additional file 1.
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to malaria (S), the population at the infectious stage 
that receives treatment (I), the untreated symptomatic 
population at the infectious stage (C), the untreated 
asymptomatic population at the infectious stage (A), the 
untreated asymptomatic, sub-patent (< 100 parasites/µL) 
infectious population (M) and the population suscepti-
ble to malaria, but with prior asymptomatic infection (P) 
(Figure 2a). The liver and blood stages of the infection are 
incorporated as a delay in the flow between the suscep-
tible and infectious stage compartments. Flows between 
compartments are governed by parameters described 
in Table 1. While the seasonal nature of transmission is 
incorporated in the model using forcing functions, the 
mosquito population is not modelled directly as it is 
assumed that the mosquito dynamics operate on a faster 
time-scale than the human dynamics and hence the mos-
quito population may be considered to be at equilibrium 
with respect to changes in the human population [42]. 
Transmission is modelled in weekly time steps.

Human movements between patches are modelled 
in two ways. Local travel may occur between the five 
Mpumalanga patches (from all five compartments in all 
three sub-patches). Foreign travel may occur between the 
Maputo patch and the five Mpumalanga patches (from 
all five compartments) as illustrated in Figure 2b. These 
movements are inversely weighted by distance so that 
movements between patches that are closer together are 
more likely than movements between patches that are 
further apart. A full description of the metapopulation 
transmission model is presented in Additional file 1.

FSAT model
Figure  2b shows that only movement of the local Mpu-
malanga population returning from Maputo (patch 6, 
sub-patch 3 to patches 1–5, sub-patch 2) and the for-
eign population travelling to Mpumalanga from Maputo 
(patch 6, sub-patch 1 to patches 1–5, sub-patch 3) are 
subject to the FSAT campaign as the purpose of the cam-
paign is to prevent infections from entering Mpuma-
langa. The FSAT model has an individual-based model 
structure so that individual characteristics of the par-
ticipants may be taken into account. Figure 3 depicts the 
algorithm applied to individuals in the FSAT model. The 
flow of local and foreign populations from Maputo into 
Mpumalanga at each time step (week) is captured and 
geographical destination patch, the sub-patch and dis-
ease status (susceptible, infectious, sub-patent etc) are 
stored for each individual in that flow. The first step is 
to simulate a parasite count for each individual depend-
ent on their disease status. The log-normal distribution 
was selected with distribution parameters in Table 2 as it 
captures the skewness of parasite count distribution. To 
test the impact of take-up proportion, the campaign is 

modelled as being optional. Should an individual not wish 
to be part of the campaign, their disease status is main-
tained and the simulation is stopped. Depending on the 
diagnostic tool used, the processing times and hence the 
number of tests able to be performed per week will differ. 
Should capacity be available and an individual agrees to 
participate in the campaign, the individual is screened. A 
positive screen occurs if the individual’s simulated para-
site load is greater than the detection threshold of the 
diagnostic tool in use. A positive screen will result in the 
individual being treated. As the treatment is likely to be a 
multiple-dose regimen, there is a chance that the individ-
ual may not adhere to the full course and may run the risk 
of failing treatment. In the event of successful treatment, 
the individual’s disease status is updated (e.g. Infectious 
to “Infectious having received FSAT” where the individ-
ual is cured from malaria at a rate of recovery dependent 
on the parasite clearance time of the drug) and the simu-
lation stops. The model parameters governing this IBM 
algorithm are displayed in Table 2.

Hybrid metapopulation DE‑IBM model
The metapopulation DE model and the IBM model 
are linked such that the IBM model is nested in the DE 
model. At each time step, the DE model generates flows 
of a population that leave one compartment and enter 
another compartment (in the various sub-patches and 
patches). The IBM model takes the flow value at each 
time step once it has been negated from a compartment, 
discretises it into individuals in a population, executes 
the IBM algorithm, re-groups the individuals back into 
a population flow, and adds the flow to its destination 
compartment. In this application, only the flows of local 
and foreign people entering the five Mpumalanga patches 
from Maputo are interrupted to perform FSAT using 
the IBM model. Further details on this hybrid modelling 
approach are available in the Additional file 1.

Data fitting
The metapopulation transmission model is fitted to 
weekly case notification data from Mpumalanga and 
Maputo Province from 2002 to 2008, and then validated 
with data from 2009 to 2012. Ethical approval for use of 
this secondary data was obtained from the Mpumalanga 
Department of Health and the University of Cape Town 
Human Research Ethics Committee. The Mpumalanga 
case data displays a characteristic triple peaked pattern 
in the malaria season with peaks occurring in Septem-
ber/October, December/January and April/May while 
the Maputo Province malaria season exhibited peaks in 
December and April only [10]. The seasonal forcing func-
tions, used to determine seasonal variation in transmis-
sion, for the six patches are derived from the data using 
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seasonal decomposition of time series by LOESS (STL) 
methods for extracting time series components [43]. 
ACT drug therapy and the impact of IRS implemented 
between 2002 and 2008 are also included in the model. In 
order to reach a steady state the model is run determin-
istically from 1990 before being fitted to data from 2002. 
The model output (predicted weekly treated cases) is fit-
ted to the data from 2002 to 2008 using the maximum 
likelihood approach by assuming an underlying Poisson 
distribution with rate � as the number of treated cases 
per week. Several parameters as detailed in Table  1 are 
estimated through the data fitting process using the pop-
ulation-based global search algorithm of particle swarm 
optimisation [44, 45]. The model with the estimated 
parameter values is then validated with a further 3 years 

of data (2009–2012). A full description of the data fitting 
method is presented in Additional file 1. All model devel-
opment, fitting and subsequent analysis was performed 
in R v3.02 [46]. The particle swarm optimisation routine 
was performed using the R package hydroPSO v0.3-3 [47, 
48].

Simulated FSAT
An FSAT campaign is tested on a stochastic version of 
the fitted model; the same intervention is applied to mul-
tiple model runs such that its impact on local infections 
can be described with a mean effect and a 95% confi-
dence interval. Stochastic uncertainty and parameter 
sensitivity has been accounted for as follows. The model 
is run stochastically by treating each flow between com-
partments at each time point t as a random realisation of 
a Poisson process with rate �, the deterministic flow value 
at that time, and by simulating the parameter values 
uniformly from their 95% confidence intervals. The pre-
dicted impact of an FSAT campaign at the Mpumalanga–
Maputo border is presented with respect to coverage 
levels, thresholds of detection, take-up proportions, tar-
get levels and typical diagnostic tools. To facilitate accu-
rate comparison of coverage levels, targets, thresholds 
and diagnostic tools, the take-up proportion of FSAT is 
fixed at 100%. Take-up proportion itself is explored at 
low, intermediate and high levels. The FSAT campaign is 
assumed to run for 8 h a day, seven days a week with a 
maximum of three tests being conducted simultaneously. 
This number of simultaneous tests is also considered at 
different levels in the simulation. As malaria elimination 
is defined by the World Health Organisation as zero inci-
dence of locally contracted cases, the impact of the simu-
lated FSAT campaign is measured as the decrease in local 

Table 2  Values, descriptions and sources of the parameters driving the FSAT Individual Based Model

Parameter Description Value Source

fson Focal Screen and Treat Switch Binary

cov FSAT coverage 25; 50; 75; 100% Values to be tested

Baseline FSAT coverage 70% Assumed

fsprop[t] Proportion Screened and Treated through Border Control fson × cov

opt Take-up proportion for FSAT 25; 50; 75; 100% Values to be tested

adh Probability of adherance 0.90 [51]

fail Probability of treatment failure 0.01 [51]

rep Number of screens tests performed simultaneously 3 Assumed

µC Geometric mean of log-normal parasite distribution for clinical infections 25,000 [71, 72]

σC Log standard deviation of log-normal parasite distribution for clinical infections 1.3 [71, 72]

µA Geometric mean of log-normal parasite distribution for asymptomatic infections 1,000 [71, 73]

σA Log standard deviation of log-normal parasite distribution for asymptomatic infections 1.5 [71, 73]

µS Geometric mean of log-normal parasite distribution for sub-patent infections 50 [55]

σS Log standard deviation of log-normal parasite distribution for sub-patent infections 0.75 Assumed
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Figure 3  FSAT IBM algorithm.
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infections as result of the campaign [7]. This impact is a 
function of the change in onward transmission resulting 
from fewer imported infections entering Mpumalanga 
(due to FSAT). All results are compared to the base case 
of no FSAT, depicted in black in all figures. Each scenario 
was run 450 times so that results presented are the mean 
local infections per week with a 95% confidence interval 
shaded around the mean. In many cases, the shading is 
not visible due to either narrow confidence intervals or a 
low resolution y-axis.

Diagnostic tools
Diagnosing malaria at a border point ideally requires a 
diagnostic tool that is both sensitive, specific and has a 
short processing time. Several tools have been consid-
ered for this simulation (Table  3). The Rapid Diagnos-
tic Test (RDT) currently in use at South African public 
health facilities has a theoretical detection threshold of 
200 parasites/µL and a maximum processing time of 20 
min. Microscopy in experienced hands may exhibit a sen-
sitivity of 50 parasites/µL but is more likely to have a 
sensitivity in the region of 100 parasites/µL. Real-time 
quantitative polymerase chain reaction (qPCR) and 
loop-mediated isothermal DNA amplification (LAMP) 
are very sensitive tools with qPCR needing sophisti-
cated equipment for a processing time of 3 h. LAMP 
on the other hand is a less complex technique with a 1 
h processing time [49]. These diagnostic tools are also 
compared to a highly sensitive hypothetical RDT with a 
standard process time of 20 min and a detection thresh-
old of 5 parasites/µL.

Results
The estimation of parameters through data fitting is pre-
sented first followed by the results of a simulated FSAT 
campaign at varied coverage levels, target levels and 
thresholds of detection.

Estimation of parameters through data‑fitting
Weekly case data for the five Mpumalanga patches and 
Maputo (black) along with the model output from the 
data-fitting process (red) and predicted model output 
for 2009 to 2012 (blue) is shown in Figure 4. Figure 4 is 

a summation of the data fitting results in each patch, as 
data was fitted to each sub-patch simultaneously. Both 
the peak and timing of the malaria season in Ehlanzeni 
District and Maputo Province are captured well by the 
model prediction and the uncertainty range. Additional 
file  1 contains more detailed output from the data-
fitting procedure. The parameters estimated through 
data-fitting and other parameters driving the transmis-
sion model are presented in Table 1. There are two rates 
each for the foreign treatment proportion and the rate 
of foreign movement. This is due to the waiver of short 
stay visa requirements between Mozambique and South 
Africa in April 2005, resulting in increased cross-border 
movement [50].

Diagnostic tools
The model predicts that at a baseline FSAT coverage of 
70%, microscopy and qPCR do not substantially decrease 
local infections due to their long processing time (Fig-
ure 5). LAMP and the RDT with a detection threshold of 
200 parasites/µL are predicted to lead to larger decreases 
in local infections. LAMP is more likely to detect asymp-
tomatic and sub-patent infections than the RDT, but the 
three times longer turnaround time results in only a third 
of the tests being performed compared to the RDT. The 
hypothetical RDT that is as sensitive as LAMP is pre-
dicted to perform the best as it combines a high sensitiv-
ity with a short processing time.

Coverage, detection thresholds, take‑up proportions 
and target levels
Coverage levels refer to the proportion of cross-border 
movements reached by the FSAT campaign. This pro-
portion is generally less than 100% to account for other 
forms of entry into the province e.g. illegal entry. FSAT at 
various coverage levels is simulated using the characteris-
tics of the RDT currently in use in South Africa (theoreti-
cal detection threshold of 200 parasites/µL and a process 
time of 20 min. Figure 6(1) shows that even at 25% cover-
age, a substantial decrease in local infections is predicted. 
The marginal impact on local infections decreases to the 
point where local infections at 75 and 100% FSAT cover-
age are non-distinguishable with overlapping confidence 

Table 3  Descriptions of diagnostic tools used in FSAT model

Tool Detection threshold  
(parasites/µL)

Process time (h) Target per week  
(tests per/h ×  3 reps × 8 h × 7 days)

Source

RDT 200 0.33 504 [49]

Microscopy 100 2.25 75 Expert opinion, [49]

qPCR 1 3 63 [49]

LAMP 5 1 168 [74, 75]

Hypothetical RDT 5 0.33 504
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intervals for the expected decrease in local infections. 
This occurs because though coverage may be very high, 
infections with less than 200 parasites/µL will remain 
undetected by a standard RDT.

In simulating the impact of detection thresholds alone, 
coverage is kept at its baseline value of 70%. Figure 6(2) 
shows that the predicted impact on local infections of 
using an RDT at any threshold is substantial. The great-
est decrease in local infections is predicted with the most 
sensitive RDT. The impact of take-up proportion is such 
that a low proportion of only 25% does not substantially 
decrease local infections compared to the extreme of 
100% take-up i.e. mandatory participation (Figure  6(3)). 
The local infections predicted by mandatory participa-
tion may be further decreased if a more sensitive tool was 
used, or coverage was higher. If mandatory participation 
is a viable option, a government could consider a mass 
drug administration instead of FSAT. Figure  6(4) sug-
gests that at even 50% coverage, the impact of MDA is 
higher than FSAT at 100% coverage as sub-patent infec-
tions are being captured by the intervention. A baseline 
assumption is that three screenings may be performed 

simultaneously. If this capacity is increased, the num-
ber of tests that may be performed per week will also 
increase. Comparing different weekly target levels sug-
gests that any target below 250 people is not predicted to 
substantially decrease local infections (Figure 6(5)).

A sensitivity analysis was conducted to assess the effect 
of varying coverage, detection thresholds, take-up pro-
portions, adherence and target levels simultaneously in 
addition to the one-at-a-time analysis conducted above. 
The decrease in local infections was measured for each 
combination of factors and a linear model regressing 
these five factors on the decrease in local infections was 
fitted to assess sensitivity. The standardised regression 
coefficients in Table 4 suggest that holding the other fac-
tors constant, detection threshold in an FSAT campaign 
has the largest absolute impact on decreasing local infec-
tions, followed by coverage achieved, take-up proportion 
and target level. This is in line with Figures 5 and 6 where 
the largest decreases were achieved for the most sensitive 
diagnostic tool. Adherence was the only factor to have a 
non-significant impact on the decrease in local infections, 
primarily because the probability of treatment failure 
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assumed in this study is only 0.01 [51]. With the rise of 
artemisinin resistance, it is likely that the probability of 
treatment failure will increase, and adherence will be of 
greater importance than this simulation study has shown.

Discussion
This paper presented a hybrid DE-IBM model where 
a metapopulation level, non-linear stochastic ordi-
nary differential equation model was used to simu-
late malaria transmission in Mpumalanga and Maputo 
so that Individual-Based Modelling techniques may 
be used to predict the impact of FSAT at the Mpuma-
langa–Maputo border. The model has predicted that the 
various scenarios of FSAT considered in this paper will 
decrease the number of local infections, but not elimi-
nate malaria. Testing FSAT at various levels of coverage, 
take-up, detection thresholds and targets suggested that 
decreases in local infections are most sensitive to the 
detection threshold, and hence the diagnostic tool used, 
followed by coverage achieved. Von Seidlein [52] lists 
both the inability of FSAT to detect and treat all infec-
tions (using RDTs), and hence the inability to prevent 
reinfection as reasons why screening and treating failed 
in trials conducted at a school level [53]. This study and 
those discussed earlier suggest that as long as the reser-
voir of sub-patent infections endures, FSAT on its own 
will not be able to eliminate malaria. The model has pre-
dicted through various scenarios of FSAT, that it may still 

be successful in reducing local malaria incidence, even if 
it cannot reduce it to zero. In this manner, FSAT may still 
form part of an integrated elimination strategy where a 
variety of interventions are employed together to achieve 
malaria elimination.

In the last decade, a policy shift to ACT, source reduc-
tion through vector control in Mozambique in the LSDI 
malaria programme and a strong IRS strategy have con-
tributed to decreasing malaria prevalence in Mpuma-
langa to the low levels experienced today. In shifting 
focus from control to elimination, the goal to interrupt 
transmission and prevent its reestablishment implies 
that a “more of the same” approach will not work [6]. The 
early termination of the LSDI programme and the asso-
ciated subsequent rise in cases in Maputo Province and 
Mpumalanga demonstrate the importance of regional 
collaboration and urgency to collaborate further. Silal 
et al. assessed the impact of source reduction in Maputo 
on malaria incidence in Mpumalanga using a metapopu-
lation model of transmission [9]. That model predicted 
that the largest decrease in local infections was achieved 
when source-reducing interventions were simulated. Of 
the three ideal elements of an elimination strategy high-
lighted in the introduction of this paper, the prevention 
of imported infections is not addressed by a strong IRS 
focus as IRS will limit onward transmission of all infec-
tions but is not targeted at imported infections. The 
implementation of FSAT at the border is one strategy to 
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inhibit the inflow of local and foreign individuals with 
malaria infections sourced elsewhere. Successful imple-
mentation of this strategy requires among other things, 
decisions on when to conduct the campaign, the choice 
of diagnostic tool and drug and the level of resources and 

man-power available. Silal et  al. used a population level 
transmission model for Mpumalanga to show that FSAT 
conducted at the Mpumalanga–Maputo border over the 
peak of the season only is not as effective in decreas-
ing local infections because imported infections resume 
previous high levels as soon as FSAT is stopped [9]. Sus-
tained decreases were predicted when FSAT was con-
ducted at the border throughout the year.

The choice of diagnostic tool is a critical one for sev-
eral reasons. Firstly, the tool should be highly sensitive 
to effectively screen and treat all infections. If a tool with 
a low to medium sensitivity is used, it is likely that sub-
patent infections will be missed by FSAT and enter Mpu-
malanga to contribute to infectious reservoir and thus to 
onward transmission. Okell et  al. estimated that in very 
low prevalence settings, sub-patent infections comprise 

Table 4  Sensitivity analysis of  factors assessed in  FSAT 
model

Factor Standardised  
regression coefficient

95% confidence 
interval

Coverage 0.41795 (0.38181, 0.45409)

Take-up proportion 0.36715 (0.33100, 0.40329)

Adherence 0.00095 (−0.03520, 0.03709)

Detection threshold −0.47861 (−0.51475, −0.44247)

Target level 0.34027 (0.30413, 0.37642)
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70–80% of all malaria infections and are responsible for 
20–50% of all human-to-mosquito infections [54]. With-
out addressing these sub-patent infections, it is likely that 
these low density infections will sustain malaria trans-
mission [55]. Secondly, the diagnostic tool should take 
into account existing man-power and resources. Some 
tools such as qPCR require specialised equipment and 
highly trained operators while other tools like RDTs and 
LAMP have protocols that require minimal instrumen-
tation and expertise [49]. Thirdly, the processing time of 
the tools will directly impact the usefulness of the tool in 
FSAT. Tools with long turnaround times are not feasible 
as it is unlikely that travellers would be willing to wait at a 
border-post for a result that takes a long time to process. 
In simulating the choice of diagnostic tool, the model 
predicted that microscopy and qPCR, though more 
sensitive than RDTs performed worse than LAMP and 
RDTs owing to the long processing times. LAMP may be 
an ideal tool for FSAT when the population of interest 
is able to wait for an hour to receive results, but this is 
most likely not the case for individuals passing through 
a border-post. The best performing tool was predicted to 
be a hypothetical RDT that had the standard processing 
time of 20 min with the sensitivity of LAMP. Modelling 
this hypothetical tool resulting in a capacity of 504 tests 
per week. The same target would be reached if increased 
resources resulted in nine LAMP tests being performed 
simultaneously instead of the baseline three tests.

From a provider perspective, the success of a FSAT 
strategy depends critically on the allocated capital and 
labour resources. Resources will influence the length of 
the FSAT campaign, the choice of tool and the labour 
assigned to the execution of the campaign. The model has 
predicted that processing a small proportion of individu-
als passing through the border results in small decreases 
in local infection. To optimize the impact of a FSAT cam-
paign, the choice of tool and labour assigned to imple-
ment the tool should together seek to maximise the 
number of tests possible. From a participant perspective, 
the success of a FSAT campaign depends on the willing-
ness to participate in the campaign and after a positive 
test result, the adherence of the participant to complete 
the drug regimen. The first line of malaria treatment in 
South Africa is a three day regimen of artemether-lume-
fantrine where only the first dose is supervised [56]. The 
issue of drug adherence may only be addressed adequately 
when a single dose cure of malaria is available. The model 
predicts that a high willingness to participate results in 
substantially larger decreases in local infections. One 
method to guarantee participation is to make the FSAT 
campaign mandatory. This approach would most likely 
require extensive resources to cope with the workload and 
enable efficient passing through the border, but may also 

be against the ethos of the South African and Mozam-
bican governments. Yet even with mandatory FSAT, 
sub-patent infections may be missed depending on the 
screening tool employed. On the other hand, the model 
predicted that MDA at a low coverage in place of FSAT 
leads to large decreases in local infections as low sensitiv-
ity of screening tools is no longer an issue. Given recent 
estimates that 70–80% of all infections in a low transmis-
sion setting are sub-patent, MDA at the border becomes 
a suitable intervention [54]. An alternative way to view 
MDA at border entry points, is mandatory prophylaxis for 
travellers. Many countries require proof of vaccinations 
against yellow fever, typhoid, influenza and other diseases 
and infections. Proof of recent malaria prophylaxis can 
then effectively become a “lower cost” mass drug adminis-
tration campaign for all travellers (local and foreign) trav-
elling from a malaria-endemic country. If this becomes 
policy, the MDA campaign is effectively extended to all 
ports of entry into a country, not just the few selected 
for a traditional MDA/FSAT campaign. A 2003 study on 
Travellers’ Knowledge, Attitudes and Practices at Johan-
nesburg’s O.R. Tambo International Airport revealed that 
74% of respondents to the malaria questionnaire were car-
rying antimalarials in the form of prophylaxis or standby 
emergency treatment [57].

This is the first detailed FSAT study in South Africa 
and Mpumalanga. A lack of data on border crossings 
has resulted in the need to estimate migration rates from 
the transmission data and perform a sensitivity analysis 
on the results (Additional file  1). Future work includes 
migration data as it becomes available, extending the 
model to Southern Africa and adding an economic cost 
component to the FSAT IBM model in an attempt to 
optimize the impact on local infections based on a suite 
of potential diagnostic tools and the resources required 
to implement them.

Conclusion
Malaria incidence and related mortality has declined 
since 2002 to a point where South Africa is in the pre-
elimination phase (<5 cases per 1,000). In this time the 
proportion of annual imported cases has increased from 
39% in 2002 to 87% in 2012. The reduction of imported 
cases will be vital to any future malaria control or elimi-
nation strategy. Mathematical modelling has been used 
in this paper to estimate the impact of FSAT at a border 
control point under a variety of scenarios, as a means to 
reduce the inflow of imported infections in an environ-
ment where imported cases far exceed local cases. In this 
manner, mathematical modelling of FSAT may be used to 
inform a strategy with a strong regional focus aimed at 
interrupting local transmission so that malaria elimina-
tion may one day become a reality.
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