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RTS,S vaccine against malaria infections 
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Abstract 

Background:  Recent publications have reported follow-up of the RTS,S/AS01 malaria vaccine candidate Phase III 
trials at 11 African sites for 32 months (or longer). This includes site- and time-specific estimates of incidence and effi‑
cacy against clinical disease with four different vaccination schedules. These data allow estimation of the time-course 
of protection against infection associated with two different ages of vaccination, both with and without a booster 
dose.

Methods:  Using an ensemble of individual-based stochastic models, each trial cohort in the Phase III trial was 
simulated assuming many different hypothetical profiles for the vaccine efficacy against infection in time, for both 
the primary course and boosting dose and including the potential for either exponential or non-exponential decay. 
The underlying profile of protection was determined by Bayesian fitting of these model predictions to the site- and 
time-specific incidence of clinical malaria over 32 months (or longer) of follow-up. Using the same stochastic models, 
projections of clinical efficacy in each of the sites were modelled and compared to available observed trial data.

Results:  The initial protection of RTS,S immediately following three doses is estimated as providing an efficacy 
against infection of 65 % (when immunizing infants aged 6–12 weeks old) and 91 % (immunizing children aged 
5–17 months old at first vaccination). This protection decays relatively rapidly, with an approximately exponential 
decay for the 6–12 weeks old cohort (with a half-life of 7.2 months); for the 5–17 months old cohort a biphasic decay 
with a similar half-life is predicted, with an initial rapid decay followed by a slower decay. The boosting dose was esti‑
mated to return protection to an efficacy against infection of 50–55 % for both cohorts. Estimates of clinical efficacy 
by trial site are consistent with those reported in the trial for all cohorts.

Conclusions:  The site- and time-specific clinical observations from the RTS,S/AS01 trial data allowed a reasonably 
precise estimation of the underlying vaccine protection against infection which is consistent with common underly‑
ing efficacy and decay rates across the trial sites. This calibration suggests that the decay in efficacy against clinical dis‑
ease is more rapid than that against infection because of age-shifts in the incidence of disease. The dynamical models 
predict that clinical effectiveness will continue to decay and that likely effects beyond the time-scale of the trial will 
be small.
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Background
Malaria continues to cause significant burden and mor-
tality worldwide with an estimated 580,000 deaths each 

year [1]. This represents large reductions in malaria 
mortality from 2000 levels due to large-scale roll-out of 
insecticide-treated nets and improved access to malaria 
treatment. However, new tools, such as malaria vaccines, 
may play a role in further reducing burden and prevent-
ing infection. The final results of Phase III clinical trials 
of malaria vaccine RTS,S were recently published [2], 
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demonstrating efficacy against clinical disease in the two 
age groups that were vaccinated in 11 trial sites across 
malaria-endemic Africa (in the presence of high insecti-
cide-treated net (ITN) usage and high quality access to 
care). The observed proportionate reduction in incidence 
of clinical malaria comparing the vaccinated and the con-
trol group, called here the efficacy against clinical disease, 
declined over time from 60 % during the first 6 months to 
16 % during months 21–32 of follow-up in children aged 
5–17 months old; in infants aged 6–12 weeks, the efficacy 
declined from 44 to 8 % during the same periods. For the 
entire follow-up period of 32 months, observed efficacy 
against clinical malaria was 35  % (95  % CI 31–40  %) in 
children and 20  % (95  % CI 14–27  %) in infants [2]. A 
boosting dose, given 18 months after the primary course 
of three doses, extended protection but not to the level 
seen in the 6 months following the primary course. Effi-
cacy against clinical malaria in the booster cohorts was 
44 % (95 % CI 40–48 %) in children and 28 % (95 % CI 
22–33  %) in infants over the entire follow-up period of 
32 months, but in months 21–32 of the trial (immediately 
after boosting) vaccine efficacy of 38 % for children and 
27 % for infants was observed.

This trial provides estimates of efficacy against clini-
cal malaria, but does not provide direct estimates of the 
underlying protection against infection or of the dynam-
ics of protection over time. Mathematical models of 
malaria dynamics are needed to infer the underlying level 
of protection against infection, allowing for the dynam-
ics of pathogenesis and of the acquisition of immunity. 
When calibrated with trial data, such models can be used 
to elucidate how setting specific factors (such as the level 
of exposure to malaria infection) modify these dynamics 
to give rise to the observed clinical efficacy.

RTS,S acts by inducing an immune response against 
the circumsporozoite protein (CSP) of the sporozoites of 
the Plasmodium parasite. When high immune responses 
are achieved, this reduces the chances of liver infection 
and subsequent blood-stage infection, and hence clini-
cal malaria. Partial immunity to the different life stages 
of the malaria parasite within-host is induced naturally 
by repeated malaria infection, and thus non-vaccinated 
individuals more rapidly acquire immunity to the blood-
stage parasites causing clinical illness. RTS,S, or indeed 
any other partially protective malaria infection blocking 
intervention aimed at infants and young children, will 
thus give rise to age shifts of burden and increased sus-
ceptibility to infection in older children [3, 4].

Previous analysis from the 18-month follow-up of 
RTS,S Phase III results [5] predicted that RTS,S has a 
high initial efficacy against infection (greater than 80  % 
in children vaccinated between five and 17  months and 
65  % in infants vaccinated between 6 and 12  weeks), 

with an exponential half-life of decay of efficacy against 
infection of around 1  year [6]. However, the length of 
follow-up from the trial results was too short to deter-
mine if exponential decay was the most likely profile of 
decay of protection. Analysis of RTS,S Phase II antibody 
data indicated that biphasic exponential dynamics, with 
a quick decay followed by a long decay, fit the data bet-
ter than a single exponential [7]. More recently, observa-
tions of incidence and efficacy in the boosting cohorts 
have become available and can be used to determine the 
underlying protection against infection offered by boost-
ing doses [2].

This paper extends previous analysis [6] using the final 
published results of RTS,S in Phase III studies [2] to 
determine the time course of protection of RTS,S follow-
ing a primary course of three doses in infants and chil-
dren and following a boosting dose at 18  months post 
third dose. The temporal profile of RTS,S efficacy against 
infection is estimated using the malaria epidemiology 
microsimulation platform OpenMalaria [8], the observed 
incidence in the vaccinated and control cohorts and 
Bayesian Markov Chain Monte Carlo (MCMC) methods. 
This further allows use of OpenMalaria simulations to 
project the efficacy against clinical and severe disease in 
each of the trial sites for follow-up longer than that so far 
published.

Methods
RTS,S trial cohorts and data
The number of infants or children in the intention-to-
treat analysis of the Phase III RTS,S trial, along with the 
recorded number of cases of clinical malaria, primary 
case definition, at 3  monthly time points per trial site, 
were used in this study. All data were previously pub-
lished in [2].

Vaccine trial simulations of RTS,S Phase III clinical trials 
with OpenMalaria
OpenMalaria is an individual-based, stochastic model 
of malaria epidemiology and control [8, 9] that includes 
model components of malaria in mosquitoes [10], 
dynamics of infection to humans [11], blood-stage par-
asite densities [12], infectiousness to mosquitoes [13], 
incidence of morbidity including severe, and hospitaliza-
tion and mortality [14, 15]. Pre-erythrocytic and blood-
stage immunity comprise separate sub-models, with 
blood-stage immunity predominating as infection-block-
ing immunity occurs only in those with very high cumu-
lative exposure [12]. The ensemble of six model variants, 
described in Table  1, include different assumptions for 
decay of natural immunity, greater within-host variability 
between infection and entomological exposure and het-
erogeneity [8].
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Each arm of the vaccine trial was explicitly simu-
lated with an OpenMalaria ensemble of six models [8] 
(Table  1). Similar to previous analysis, predictions of 
clinical trial outcomes were calculated via weighted aver-
ages of a large number of simulations [6]. The simulations 
covered a wide range of vaccine profile characteristics, 
deployed across a range of health system and transmis-
sion settings of the trial sites. The weights applied to each 
simulation are dependent on the trial-specific data and 
on vaccine properties for fitting.

Six databases of simulations from OpenMalaria were 
created, two for baseline (control cohorts 6–12 weeks and 
5–17  months) and four for vaccine impact predictions 
(boost and non-boosting schedules for 6–12  weeks and 
5–17 months) over a range of assumptions on transmis-
sion exposures [entomological inoculation rates (EIR)], 
timing of vaccination due to seasonality profile, range 
of access to effective treatment for uncomplicated cases, 
and for many hypothetical vaccine efficacy profiles (ini-
tial efficacy against infection, decay shape and boosting 
efficacy against infection, with boosting efficacy defined 
as the overall efficacy reached by an additional fourth 
vaccine dose, not incremental efficacy addition to the 
primary course). Each database was a complete factorial 
combination of all levels of each variable listed in Table 1, 
with a database constructed for each of the 6–12 weeks 
cohorts with and without booster, 5–17 months cohorts 

with and without booster, and the no-vaccine cohorts. 
This resulted in over 500,000 simulations when rep-
licates with different stochastic initializations were 
counted. Outputs from the simulations were recorded at 
3-monthly intervals, for 3-monthly age groups, with vac-
cination occurring at the ages specified in Table  1. For 
each simulation the numbers of uncomplicated cases, 
severe cases, direct malaria deaths, indirect malaria 
deaths, sequelae events, first-line, second-line and third-
line treatments given, hospitalized cases resulting in 
recovery, hospitalized cases that resulted in sequelae and 
hospitalized cases that resulted in death were recorded, 
to allow incidence calculations to compare to trial data.

Predictions of incidence for each cohort and clinical 
efficacy in time per vaccination schedule in each trial 
site were obtained via weighted averages over all simula-
tions in the appropriate database (see [6] for full meth-
ods). Predictions comprise mean weighted averages with 
an accompanying range constructed from the 95 % pre-
diction interval over the weighted averages for all mod-
els and stochastic runs, with each model variant equally 
weighted. The prediction intervals thus capture both 
structural and stochastic uncertainty.

Trial-specific parameter weights for transmission and 
access to care were pre-determined or estimated by fit-
ting to the trial data. Separate estimates were made for 
each trial site of the levels of access to treatment and of 

Table 1  Summary of simulations: variables and levels

a  EIR of 0.1 was not simulated, predictions for this level are taken as 10 % of EIR 1
b  Probability of access to treatment for uncomplicated disease during a 5-day period (for mapping onto rates of access estimated from survey data see [6, 31]
c  Probability of access to hospital care (or equivalent) for severe disease during any 5-day period
d  For each of the four delivery schedules
e  This represents the absolute efficacy against infection achieved by the addition of a booster doses and not a percentage of the third dose

Variable Details and levels simulated

Vaccination: infant cohort (EPI cohort) 6, 10, 14 weeks; booster at 21 months

Vaccination: children cohort (5–17 months cohort) Ages between 5–17 months first dose, and for 3rd dose 8–20 months; booster at 26–38 months

Model variants [8] 1. R0000 Base model
2. R0068 Heterogeneity in transmission: within-host variability
3. R0131 Immunity decay in effective cumulative exposure
4. R0132 Immunity decay in immune proxies
5. R0133 Immunity decay in both immune proxies and effective cumulative exposure
6. R0670 Heterogeneity in susceptibility to co-morbidity

EIR 0.1a, 1, 2, 4, 8, 16, 64, 256

Access to uncomplicated case management (%)b 0, 5, 40

Access inpatient care for severe cases (%)c 0, 100

Vaccination coveraged 0, 100

Initial efficacy against infection of third dose (%) 30, 60, 80, 100

Half-life (years) 0.5, 1, 3, 5

Initial efficacy against infection of boosting dose (%)e Third dose efficacy, 30, 100

Weibull decay shape parameter (k) k = 1 (exponential)
k = 0.5 (bi-phasic, quick decay followed by slow decay)
k = 3 (slow decay, followed by quick decay)
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the exposure (EIR). This entailed fitting to the control 
incidence disaggregated into 3-monthly time intervals 
and the control cohort at baseline in the trial site.

The posterior densities of the prevalence in 2–10 years 
olds (PfPR2–10), estimated from a geostatistical model at 
5 ×  5  km resolution by the Malaria Atlas Project 2010 
(MAP) [16], were used to capture effects of within-site 
heterogeneity in transmission. A previously published 
algorithm using OpenMalaria [17] was used to derive 
distributions of EIR for each trial site, as functions of 
the PfPR2–10 data, access to treatment data for the same 
geographic area estimated from demographic and health 
surveys (DHS), and the population of each pixel derived 
from the demographic population surfaces [18] (Table 2). 
For simulation of the trial, these EIR distributions were 
scaled so that the average prevalence predicted by Open-
Malaria matched the baseline prevalence measured in 
each trial site and each site was then treated as having a 
mixture of transmission intensities corresponding to this 
scaled EIR distribution. In the trial simulations, access 
to care for each site was assigned the value required 
to recover the incidence of diagnosed clinical malaria 
reported in the control (non-vaccine) arms.

Vaccine efficacy against infection and decay
The action of RTS,S (or other pre-erythrocytic vaccines) 
in OpenMalaria is to prevent new infections, with the 
proportion of blood-stage infections averted referred to 
as vaccine efficacy against infection. This is different from 
the efficacy in averting clinical episodes as reported in 
the Phase III clinical trials. The time course of efficacy 
against infection can be described by several possible 
decay functions in OpenMalaria [19]. Different Weibull 
decay function curves are investigated for describing 
the waning protection of RTS,S by an initial value of the 

efficacy against infection ε0, a half-life L, and a shape 
parameter, k. The Weibull decay function for efficacy 
against infection, ɛ(t), at time t, takes the.

When k is 1, an exponential decay of efficacy against 
infection is obtained. For k < 1, the initial decay is faster 
than exponential and then slower than exponential after 
the time equivalent to half-life is reached, this is simi-
lar to a bi-phasic like decay, with a sharp decline (quick 
decay) in efficacy followed by a slower decay. For k > 1, 
the curves is a slow decay of efficacy against infection 
until the time equivalent to half-life L, and then a much 
faster decay.

Determining vaccine properties from Phase III clinical trial 
data
Using Bayesian MCMC methods, comparing simulated 
incidence and Phase III trial incidences, the efficacy pro-
file for each cohort was determined in terms of initial 
efficacy against infection following the primary sched-
ule of three doses. This profile comprises the half-life of 
decay of efficacy against infection, the shape parameter 
describing the waning profile, and the efficacy against 
infection following a boosting dose. Models were simul-
taneously fit to the control and vaccinated incidence from 
each trial site for the primary case definition, 3-monthly 
or 6-monthly aggregated intention-to-treat (ITT). Data 
from the Kilifi and Manhica were not used for fitting of 
vaccine properties because of challenges related to miss-
ing data: instead, the predictions for these sites provided 
an out-of-sample check on the performance of the fitting 
algorithm.

ε(t) = ε0exp

(

−
(

log2
)1/k

t

Lk

)

.

Table 2  Estimated characteristics of the sites

Site Country Median EIR derived 
from MAP PfPR2–10

Median EIR adjusted for  
trial prevalence and  
incidence in the control

DHS estimate of access 
to effective treatment

Estimated access 
to effective  
treatment in trial

Kilifi Kenya 1.1 0.15 45.0 53.9

Korogwe Tanzania 2.0 0.12 49.2 35.3

Manhica Mozambique 2.4 0.15 35.8 46.7

Lambarene Gabon 4.3 0.18 16.1 60.8

Bagamoyo Tanzania 2.9 0.23 55.4 54.1

Lilongwe Malawi 6.3 0.44 43.3 52.6

Agogo Ghana 6.3 2.1 42.5 63.5

Kombewa Kenya 5.2 8.7 48.8 59.3

Kintampo Ghana 19.5 13.5 40.5 53.9

Nanoro Burkina Faso 89.2 75.6 37.4 39.4

Siaya Kenya 34.5 86.6 48.8 50.9
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As previously described in [6], a Bayesian MCMC 
approach was used to estimate vaccine properties, site-
specific access to care, and the extent of within-site 
variation in clinical disease (number of episodes per indi-
vidual for a defined time period). The observed clinical 
data (disease rates in the control and vaccinated groups 
at each time point) are assumed to be normally distrib-
uted about the logarithm of their predicted values for a 
given set of parameters. i.e.:

where Yt,i is the observed disease rate (for control or 
vaccinated) at time t and trial site i, µ̂t,i is the weighted 
model prediction for the equivalent outcome at time t 
and site i, θ represents the parameters being fitted (vac-
cine properties and access to care), σi is the standard-
deviation for trial site i, µ̂t,i, is the model prediction, 
obtained as the weighted average of simulated disease 
rates from the databases of vaccine cohort predictions 
from OpenMalaria (Table 1). The weights for site i were 
assigned to give the pre-determined distribution of EIR 
values representing malaria exposure in that site while 
an MCMC algorithm was used to sample parameters and 
estimate the weights for efficacy, half-life, decay shape 
and the access to care parameter.

Vaccine parameters for each age of vaccination cohort 
were fitted separately, so that independent parameters 
for the time course of vaccine efficacy against infection 
for the primary schedule were obtained. Vaccine param-
eters were assumed to take the same value for each site. 
To test robustness of the models, models were first fit-
ted to aggregated 6-monthly observed incidence data per 
site and subsequently to the 3-monthly aggregated data. 
Parameterizating was also done assuming both expo-
nential decay (Weibull decay function shape parameter 
k =  1) and also allowing the decay shape parameter to 
vary.

Two MCMC chains with very different initial condi-
tions for efficacy, access to care, decay shape and half-life 
were used for each fitted model. Uniform [0, 1] priors 
were used for all parameters except the half-life of vac-
cine efficacy decay, which was assigned a Uniform [0, 5] 
years prior, with non-informative (uniform) priors for 
all parameters. Posterior distributions were sampled for 
each of the fitted parameters (6–12 weeks initial efficacy 
against infection, 5–17  months initial efficacy against 
infection, vaccine half-life of decay, decay shape param-
eter, within site variation against clinical disease and site-
specific access to care).

Following determination of the vaccine efficacy profile 
of the primary course, the boost efficacy was obtained 
via Bayesian MCMC in a similar manner. Only the initial 
efficacy against infection as a result of a boosting dose 

log
(

Yt,i

)

|θ , σi ∼ Normal
(

log
(

µ̂t,i(θ)
)

, σi
)

,

was fitted, assuming the same decay shape as for the pri-
mary course (exponential or best fit when fitting Weibull 
decay parameter k).

Predictions of clinical disease efficacy beyond the trial 
follow‑up
Clinical efficacy beyond the trial follow-up of 32 months 
was projected using the same model weighting (and 
hence final vaccine profile) as estimated from the trial 
data.

Results
Characteristics of trial sites
There was considerable variation between the sites in 
average transmission levels as estimated from the MAP 
surfaces, with substantial local heterogeneity within each 
site (Table 2). However, the baseline EIR in each site was 
generally lower than the prediction from MAP, as well 
as spanning a smaller range across the sites than when 
estimated from MAP. Similarly, the estimated access 
to care derived from the DHS was lower than the esti-
mates derived by comparing model predictions of inci-
dence with recorded events in the control arm of the trial 
(Table 2) [6].

We conjecture that this difference arises from bet-
ter health care service provision in the study sites, than 
neighbouring areas. Both MAP PfPR2-10 and DHS-based 
estimates borrow information from adjacent geographi-
cal areas, and the sites were necessarily centred around 
high-quality health facilities with linked research infra-
structure, and thus have unusually good access to both 
preventive and curative interventions.

RTS,S vaccine efficacy against infection, time course 
for primary schedule of three doses
Regardless of assumptions concerning the functional 
form of decay of efficacy, the initial protection of the 
RTS,S vaccine in children 5–17  months is estimated 
to be high (similar to previous analysis). Fitting to 
3-monthly incidence data and allowing decay to be 
either exponential or non-exponential the estimated 
efficacy against infection immediately following third 
dose was 91.1 (95  % CI 74.5–99.7  %) for children vac-
cinated between 5 and 17 months at first dose (Table 3; 
Fig. 1a). In infants vaccinated 6–12 weeks the initial effi-
cacy against infection was 64.9 % (95 % CI 44.0–83.2 %) 
(Table  3; Fig.  1a). Results were similar when fitting to 
6-monthly decay (Additional file  1: Table S1). Models 
were fit to the clinical incidence in both control and vac-
cinated cohorts (results shown in Additional file 1: Fig-
ures S1, S2, S3, S4), with calculated vaccine efficacy for 
the best fitted models assuming exponential and Weibull 
decay are shown in Fig. 2.
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Assuming exponential decay, the half-life of protec-
tion was approximately 7–8  months for both cohorts 
(Table  3; Fig.  1b and Additional file  1: Table S1). When 
allowing decay to be non-exponential, half-life of decay 
against infection was also around 7  months (95  % CI 
6–10 months for both cohorts), with decay shapes for the 
5–17 months cohorts k = 0.69 (95 % CI 0.54–0.9) indi-
cating a quick decay followed by a longer decay. For the 
6–12 weeks cohort the prediction is closer to exponential 
k = 0.84 (95 % CI 0.64–0.99).

Boosting dose efficacy against infection
The efficacy against infection of the single boosting dose 
given 18  months following third dose was estimated to 
be lower than that immediately following the final dose 
of the primary course, with estimates of 49  % (95  % CI 
32–68.6  %) for children 5–17  months and 55.2  % (95  % 
CI 34.5–73.1 %) for infants 6–12 weeks (Table 3; Fig. 1d). 
These estimates assume that the half-life and decay of 
the boosting dose were the same as fitted for the primary 
course.

Predictions of efficacy against clinical disease
Figures  3, 4, 5 and 6 show projections of the efficacy 
against clinical disease over the time periods of the trial 
follow-up and beyond the course of the trial (longer fol-
low-up than shown in Fig.  2), based on the best-fitting 
vaccine profile (assuming Weibull decay function). Effi-
cacy against clinical disease decays more rapidly than 
efficacy against infection. This is because the reduced 
build-up of natural blood-stage immunity resulting from 
protection against infection has the effect of delaying, 
rather than averting some of the clinical incidence in 
the vaccine arm. There is no such age shifting of infec-
tion events because these models assume natural pre-
erythrocytic immunity to be negligible. By 3  years after 
the start of the trial, the efficacy against infection in the 
5–17  months cohort is predicted to be close to zero, 

irrespective of whether a booster dose is included in the 
schedule (Fig. 4).

Overall protection against clinical disease at any time 
point following the primary course is predicted to be 
positive over all trial sites (Fig. 7) and potentially close to 
zero at very long follow-up for the two sites with high-
est transmission, Siaya and Nanoro (Fig.  7; Additional 
file 1: Figures S5, S6) This indicates, despite the potential 
for age shifting, a sustained benefit over the vaccinated 
population up to 4 years following the primary course.

Discussion
Clinical efficacy measured in field trials is a key source 
of information about the likely benefit of deploying pre-
ventive interventions against malaria. Assessment of the 
impact of intervention programmes also needs to con-
sider other factors, including the disease burden in target 
groups, the coverage achievable, the extent of protection 
extended to the rest of the population, and, importantly, 
both the magnitude and duration of effect. Mathemati-
cal models of malaria dynamics can be used to integrate 
information about all of these factors to determine dura-
tion of effects and subsequently the prediction of public 
health impact.

The RTS,S vaccine is currently the focus of decision-
making by WHO, and depending on their recommen-
dation, other stakeholders such as Gavi, the vaccine 
alliance, and national malaria control programmes will 
also need to make decisions concerning possible imple-
mentation. Such evidence-based policy decisions about 
partially protective vaccines need to take into account 
both trial data and what is known about malaria epi-
demiology and health systems (including vaccination 
programmes) from other sources. The recently com-
pleted Phase III trial of RTS,S has provided a substan-
tial amount of data on its effects on clinical incidence 
in vaccinated children over a 32  months or longer fol-
low-up period. Several different simulation models have 

Table 3  Best-fitted vaccine efficacy profiles for the 6–12 weeks and 5–17 months cohorts when fitting to 3-month inci-
dence data from the RTS,S Phase III trial

Posterior distributions described by mean and 95 % credible interval

Cohort Initial efficacy against  
infection at completion  
of 3rd dose (%)

Half-life of efficacy 
against infection  
(months)

Decay (Weibull decay  
shape parameter)

Boosting efficacy 
against infection 
at 4th dose (%)

Exponential decay

 6–12 weeks 57.5 (95 % CI 40.1–71.2) 7.4 (95 % CI 6.1–10.4) Exponential 48.5 (95 % CI 32.8–64.3)

 5–17 months 72.5 (95 % CI 57.7–83.7) 7.9 (95 % CI 6.1–11.0) Exponential 39.2 (95 % CI 30.6–53.4)

Weibull decay

 6–12 weeks 64.9 (95 % CI 44.0–83.2) 7.2 (95 % CI 6.0–9.8) 0.84 (95 % CI 0.64–0.99) 55.2 (95 % CI 34.5–73.1)

 5–17 months 91.1 (95 % CI 74.5–99.7) 7.32 (95 % CI 6.0–10.0) 0.69 (95 % CI 0.54–0.9) 49 (95 % CI 32–68.6)
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been parameterized to fit the diverse outcomes of many 
previous field studies of Plasmodium falciparum to 
capture the collective knowledge of malaria epidemiol-
ogists about malaria dynamics [8, 9, 20–23]. Other pub-
lications describe how these models have been linked 
with data from other sources on vaccination coverage 

in endemic countries, and malaria disease burden, to 
project public health impact of RTS,S vaccination pro-
grammes, including its impact on outcomes, notably 
severe disease and death, for which the trial data taken 
in isolation were not sufficiently powered to provide 
robust estimates [6, 24, 25].

00.157.005.052.0

Boost efficacy against infection (proportion)

delivery

9.06.03.0

delivery

EPI

00.157.005.052.0

efficacy against infection (proportion)

delivery

c

2184

delivery

EPI

a

d

b

Fig. 1  Posterior distributions of parameters for vaccine efficacy profiles (assuming Weibull decay function, fitted to trial data at 3-monthly periods). 
Colour green indicates 6–12 weeks cohort, and pink the 5–17 months cohort. a Vaccine initial efficacy against infection; b half-life of decay in effi‑
cacy against infection; c Weibull decay function shape parameters; d boost efficacy against infection
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a b

Fig. 2  Observed and predicted efficacy against clinical disease for 3-monthly periods. Field and predicted estimates of clinical efficacy at each 
3-month follow-up for a the 6–12 weeks without booster; b 5–17 months cohort without booster, by the 9 trial site used in the fitting (excludes 
Kilifi and Manhica). Reported efficacy (mean and 95 % CI) in the trial site is indicated by black circles. Prediction estimates (mean and 95 % prediction 
intervals) are shown in colour for different fitted models, orange assuming exponential decay and blue fitting for decay shape

Fig. 3  Predicted and observed efficacy against clinical disease by 3-monthly periods by trial site for the 5–17 months cohort using best-fitted vac‑
cine profile. Reported efficacy (mean and 95 % CI) in the trial site is indicated by black circles. Prediction estimates in purple (median and 95 % CI)
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All models need to take into account that the primary 
effect of RTS,S is on infection, not on clinical outcomes. 
RTS,S acts by stimulating an immune response against 
the CSP of Plasmodium falciparum and potentially pre-
venting an infection [26], and therefore its effects on 
pathogenesis and clinical incidence are indirect. The 
observed trial results of incidence in the control and 
vaccinated arms depend on the antibody and immunity 
longevity and response, but also on a number of fac-
tors, including the health system capacity to treat clini-
cal cases, exposure of children to infectious mosquitoes, 
as well as the dynamical interplay between immunity 
acquisition, immunity delay, and subsequent effects 
on clinical and severe disease burden by age. In spite of 
these complexities, results of clinical incidence and clini-
cal efficacy from the trial can be used, along with data 
from other field studies and dynamic malaria models, to 
infer the underlying protection of the vaccine and thus 
make extrapolations to population effects if the vaccine is 
recommended.

In this paper, both the characteristics of the vaccine 
and characteristics of each trial site, such as exposure 

and treatment levels, were treated as weighted averages 
of a large number of model realizations [6]. Bayesian fit-
ting (via MCMC algorithms) of model predictions to 
observed clinical incidence in the cohorts estimates the 
weights of the vaccine characteristics. This fitting process 
considers both the stochasticity in the models and the 
imprecision in the data for the fitting process and uncer-
tainty around the predictions. As investigated previously 
[6], the most parsimonious model assumes the extent and 
duration of the induced protection against infection to be 
the same in all sites, fits the data well.

In general, the fit to the temporal profiles of inci-
dence in the different sites was good (Additional file  1: 
Figures S1, S2, S3, S4), with simulated efficacy against 
clinical disease values close to the values measured 
in the trial (Figs. 2, 3, 4, 5 6), but in some sites (in par-
ticular Lambarene, Lilongwe, Korogwe, and Bagamoyo) 
there was considerable variation in efficacy between 
time periods (presumably because of random variation), 
so the relatively smooth trends in incidence predicted 
by the models were not observed. The tendency for the 
observed efficacy against clinical disease to be less in 

Fig. 4  Predicted and observed efficacy against clinical disease by 3-monthly periods by trial site for the 5–17 months cohort with booster using 
best-fitted vaccine profile. Reported efficacy (mean and 95 % CI) in the trial site is indicated by black circles. Prediction estimates in purple (median 
and 95 % CI)
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higher transmission sites is explained by the dynamics of 
immune acquisition against repeated infections, and does 
not require any site-specific assumptions about how the 
vaccine works.

The results here indicate that following the third dose 
the initial protection from RTS,S is close to complete in 
the 5–17 months cohort (91.1 % with the maximum pos-
sible value of 100  %), but substantially less than that in 
infants 6–12  weeks with much larger variation (64  %, 
Fig.  1). The most likely explanation for this age differ-
ence would seem to be that maternal immunity contrib-
utes to protection in infants, but that it has no synergistic 
effect with RTS,S, so that by averting some of the infec-
tions that would have been prevented by RTS,S, such as 
those with lower numbers of sporozoites, it leads to a 
lower efficacy against clinical disease that can be unam-
biguously attributed to the vaccine. Immune interfer-
ence due to administration of RTS,S/AS01 at the same 
time as EPI vaccines could hypothetically also have an 
effect [2]. Despite high initial protection against infec-
tion in children, the protection in both groups waned 
quickly, leading to quick waning in efficacy against clini-
cal disease. The decay in efficacy against clinical malaria 
is due to both decay of immunity for protection against 

sporozoites and acquisition of natural immunity against 
clinical disease in the control cohort.

The half-life of decay of efficacy against infection was 
very similar for the two age groups, but while the fitted 
curve was similar to an exponential decay in the infants 
(Fig.  2a), a Weibull decay function with fast decay, fol-
lowed by longer decay, fits better with the 5–17 months 
old cohort (assessed via Deviance Information Criterion 
for nested models, as done previously [6] ). This corre-
sponded to higher efficacy against infection and against 
clinical disease (Fig. 3) over most of the follow-up period 
for the older cohort compared to the infants 6–12 weeks 
(Fig. 5).

The underlying protection gained by a single boosting 
dose 18 months following the primary course was simi-
lar for both cohorts, at around 50 %, but not as high as 
the initial protection from the final dose of the primary 
course. This suggests that immune memory cells have 
shorter duration than normal [27]. The current analysis 
here assumes that the likely decay of the additional dose 
is similar for the boosting dose to that for the primary 
course.

Projections of impact towards the end of the trial 
and beyond indicate that in low transmission sites the 

Fig. 5  Predicted and observed efficacy against clinical disease by three-monthly periods by trial site for the 6–12 weeks cohort using best-fitted 
vaccine profile. Reported efficacy (mean and 95 % CI) in the trial site is indicated by black circles. Prediction estimates in purple (median and 95 % CI)
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protection against clinical disease is continued. For 
higher transmission, low clinical efficacy and some age-
shifting of clinical incidence is predicted, with such 
shifting partially observed in the 4-year follow-up of 
one Phase II trial of RTS,S [28]. Overall, a net positive 
benefit is predicted up to 4  years after the trial starts, 
despite some age shifting of events in higher transmis-
sion sites. Following any positive WHO recommenda-
tion, vaccination of age groups outside those considered 
in the trial and vaccination covering larger proportions 
of the population in low transmission settings, will be 
worth considering to assess indirect effects on trans-
mission and possible local interruption of transmission 
[29].

Conclusion
As previously shown [6, 30] and confirmed here with 
comprehensive analysis of the latest trial results, pro-
tection against infection by RTS,S is initially high, but 
decays quickly and results in a moderately efficacious 
vaccine against malaria clinical disease [2]. Despite being 
moderately efficacious, there is much potential for RTS,S 

to play a role in averting disease and protecting young 
children most at risk [6]. A recommendation on the use 
of RTS,S is pending and will need to consider how the 
underlying protection of the vaccine against infection 
translates into averted disease morbidity and mortality 
in more diverse transmission settings and populations 
than the trial. Models have been carefully calibrated to 
historical data, and recently RTS,S vaccine action within 
these models has been rigorously calibrated given avail-
ability of trial data to modelling groups [2]. The careful 
and rigorous calibration of underlying effect of RTS,S 
sets a high standard for the use of models in future deci-
sion making on interventions against malaria (and other 
infectious diseases), and is essential for sound quantita-
tive prediction of public health burden and cost effec-
tiveness. However, uncertainty in such predictions is 
unavoidable, especially for more downstream events 
such as severe disease and mortality. For these outcomes 
there are only limited calibration data available, if at all, 
and varying incidence and efficacy patterns across the 
trial sites is likely due to variation driven by local factors, 
such as patterns of co-morbidities.

Fig. 6  Predicted and observed efficacy against clinical disease by three-monthly periods by trial site for the 6–12 weeks cohort with booster using 
best-fitted vaccine profile. Reported efficacy (mean and 95 % CI) in the trial site is indicated by black circles. Prediction estimates in purple (median 
and 95 % CI)
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