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Abstract 

Malaria, a parasite vector-borne disease, is one of the greatest health threats in tropical regions, despite the availability 
of malaria chemoprophylaxis. The emergence and rapid extension of Plasmodium falciparum resistance to various 
anti-malarial drugs has gradually limited the number of potential malaria therapeutics available to clinicians. In this 
context, doxycycline, a synthetically derived tetracycline, constitutes an interesting alternative for malaria treatment 
and prophylaxis. Doxycycline is a slow-acting blood schizontocidal agent that is highly effective at preventing malaria. 
In areas with chloroquine and multidrug-resistant P. falciparum parasites, doxycycline has already been successfully 
used in combination with quinine to treat malaria, and it has been proven to be effective and well-tolerated. Although 
not recommended for pregnant women and children younger than 8 years of age, severe adverse effects are rarely 
reported. In addition, resistance to doxycycline is rarely described. Prophylactic and clinical failures of doxycycline 
have been associated with both inadequate doses and poor patient compliance. The effects of tetracyclines on para-
sites are not completely understood. A better comprehension of the mechanisms underlying drug resistance would 
facilitate the identification of molecular markers of resistance to predict and survey the emergence of resistance.
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Background
Malaria, a parasite vector-borne disease, is one of the 
greatest health threats in tropical regions, despite the 
availability of malaria chemoprophylaxis and the use of 
repellents and insecticide-treated nets. Malaria prophy-
laxis and chemotherapy remain a major focus of research, 
and new molecules are constantly being developed prior 
to the emergence of drug-resistant strains of the malaria 
parasite. The use of anti-malarial drugs is conditioned 
on the resistance level of Plasmodium falciparum in 
endemic areas, as well as the contraindications, clinical 
tolerance and financial costs of these drugs. Among the 
compounds potentially used against Plasmodium, antibi-
otics have been examined in vitro or in vivo.

Tetracyclines, a family of broad-spectrum antibiot-
ics discovered in the early 1940s, are active in proto-
zoa, including Plasmodium. In a small series of patients 
in 1950, tetracyclines were used to treat P. falciparum 
and Plasmodium vivax uncomplicated malaria. The 

emergence of chloroquine resistance in the 1960s led to 
studies conducted by the Centers for Disease Control 
and Prevention (CDC) and the development of the World 
Health Organization (WHO) recommendations that were 
based on the use of doxycycline for chemoprophylaxis 
of falciparum malaria in 1985. Currently, doxycycline is 
used in combination with quinine in treatment therapies 
and for chemoprophylaxis in multidrug resistance areas, 
particularly Southeast Asia. Finally, many armies use it 
as first-line chemoprophylaxis in areas with chloroquine 
resistance, including French military forces deployed in 
malaria-endemic areas. Since 2002, the French Army has, 
regrettably, had 3000 malaria cases. Recent deployments 
in Mali and Central African Republic showed high inci-
dence rates, with a significant risk of contracting malaria 
for the 2000 soldiers. The attack rates were estimated at 
7.5 % in 2013 and 12.5 % in 2014. These failures of proph-
ylaxis with doxycycline are mainly associated with inad-
equate dosing or poor compliance. The pharmacokinetics 
of doxycycline, including a reduced half-life, may partly 
explain these failures; however, resistance phenomena 
may also be a factor.
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Classification
Tetracyclines are synthetic antibiotics derived from a 
cycline that is naturally produced by bacteria from the 
genus Streptomyces [1]. Tetracycline consists of three 
groups, based on pharmacological differences: the long-
acting group, which includes doxycycline and minocy-
cline, are the most active against Plasmodium in  vitro. 
The antibiotic action, common to all tetracycline, is bac-
teriostatic and inhibits bacterial protein synthesis; their 
spectrum of activity is large [2].

Pharmacological properties
The pharmacokinetics properties of doxycycline have 
been investigated in numerous studies with healthy vol-
unteers. One important property of doxycycline is its 
ability to be rapidly absorbed orally; it is detectable in 
the blood 15–30 min after its administration [3, 4]. After 
an oral dose of 200 mg, peak plasma levels are obtained 
in approximately 2 h; its half-life ranges from 15 to 25 h 
[5]. There are great individual variations, depending on 
the age of the patient and any coadministered substances 
[6]. Only one study of the pharmacokinetics of doxycy-
cline was conducted during infections. It involved a case 
of uncomplicated malaria in combination with quinine 
or artesunate [7]. The authors concluded that there was a 
need for an initial dose of 400 mg twice daily to maintain 
plasma concentrations at therapeutic levels during the 
treatment for malaria infection.

Side effects and warnings against doxycycline
Tetracyclines are well known for their use in treating 
bacterial infections, and their adverse effects have been 
well documented [8, 9]. At the usual doses prescribed for 
malaria chemoprophylaxis, the published data are lim-
ited, and the reported adverse events vary widely. Com-
parative studies of the tolerance of doxycycline have been 
contradictory. Several retrospective studies of military 
teams have reported increased digestive and skin disor-
ders and headaches with chemoprophylaxis [10–14]. A 
detailed analysis of studies reporting high numbers of 
side effects makes it possible to objectify pitfalls in the 
data interpretation: the dosage form is rarely specified 
and doxycycline is often co-administered with other sub-
stances, such as quinine. Thus, it is difficult to attribute 
an adverse event to cyclines only. In 1996 in sub-Saharan 
Africa, the French Army Health Service conducted an 
efficacy study of doxycycline hyclate salt versus chloro-
quine-proguanil [15].

Doxycycline hyclate was more efficacious than chlo-
roquine-proguanil. However, with a 6 % withdrawal rate 
due to gastrointestinal side effects, it was considered to 
be unacceptable as chemoprophylaxis. The gastroin-
testinal side effects (e.g., diarrhoea and epigastralgia) 

were attributed to the hyclate salt acidity (pH 3) and the 
galenic form (capsule). According to the French Drug 
Agency recommendations, doxycycline hyclate has been 
replaced by doxycycline monohydrate, a less acidic salt 
(pH 6) with the same bioavailability [16]. Gastrointestinal 
side effects, mouth ulcers, and sun sensitization occurred 
less frequently in the doxycycline monohydrate group 
than in the chloroquine-proguanil group [17]. Fifty-seven 
per cent of deployed Australian soldiers using mefloquine 
prophylaxis in East Timor reported at least one adverse 
effect, compared to 56 % using doxycycline [18]. In Turk-
ish troops deployed in Afghanistan, the total number of 
side effects in the doxycycline group was significantly 
higher than that in the mefloquine group [19]. However, 
among non-immune travellers to Sub-Saharan Africa, the 
total number of side effects in the doxycycline group was 
significantly lower compared with the chloroquine-pro-
guanil or mefloquine groups [20].

The use of an antibiotic for several months for prophy-
laxis always triggers opposition from a number of bacte-
riologists, who note the risk of selecting resistant bacteria 
cyclines [21]. In 1988, a publication reported tetracy-
cline-resistant cases of Campylobacter jejuni gastroen-
teritis among American soldiers based in Thailand [22]. 
A subsequent study by the same team showed that taking 
doxycycline for malaria prophylaxis resulted in less expo-
sure to resistant bacteria than the acquisition of already 
resistant bacteria cyclines, which has long been wide-
spread in this country [23]. The increase in multidrug-
resistant gram-negative bacteria colonization among US 
military personnel in Afghanistan is likely due to envi-
ronmental exposures rather than doxycycline exposure 
[24]. Methicillin-susceptible Staphylococcus aureus and 
methicillin-resistant Staphylococcus aureus colonization 
of military personnel under deployment was not associ-
ated with doxycycline exposure [25]. However, outbreaks 
of Panton-Valentine leukocidin-positive, doxycycline 
resistant, methicillin-susceptible Staphylococcus aureus 
infections associated with doxycycline prophylaxis have 
been reported in the French Army at the Ivory Coast 
[26]. Except for these military clinical cases, no study has 
been published about the risk of bacterial resistance to 
tetracyclines associated with their prophylaxis use. Doxy-
cycline is contraindicated in patients with allergies to tet-
racyclines, pregnant women (from the second trimester 
of pregnancy due to the risk of abnormal tooth bud) and 
children under 8 years of age because of the risk of dis-
colouration and enamel hypoplasia.

Mechanism of action
Cyclines are a family of antibiotics that act by inhibiting 
bacterial protein synthesis. Their mechanisms of action 
have been described at the molecular level [27]. Cyclines 
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act by binding to several proteins in the 30S ribosomal 
small subunit and to different ribonucleic acids in the 16S 
ribosomal RNA. Their mechanisms of action on Plasmo-
dium have not been as well described, although a num-
ber of studies have addressed this issue. There are three 
categories of ribosomes in Plasmodium: mitochondrial, 
plastid and nuclear [28]. As suggested by three studies 
[29–31], tetracycline may directly inhibit mitochondrial 
protein synthesis and also decrease the activity of a mito-
chondrial enzyme (i.e., dihydroorotate dehydrogenase) 
involved in de novo pyrimidine synthesis [32]. Doxycy-
cline inhibits the synthesis of nucleotides and deoxynu-
cleotides in P. falciparum [33], but the concentration used 
(200 µM) is much higher than that used clinically. In vitro 
exposure of P. falciparum to minocycline also decreases 
the transcription of mitochondrial genes (subunit I of 
cytochrome c oxidase and apocytochrome b) and apico-
plast genes (subunit rpoB/C of RNA polymerase), sug-
gesting some activity with these two organelles [34]. A 
more recent study [35] has shown that doxycycline would 
specifically act on the apicoplast of P. falciparum and, to 
a lesser extent, on the mitochondrial whose division is 
inhibited at the end of the cycle; according to the authors, 
this finding could be attributed to the apicoplastic target 
(the two organelles present common metabolic path-
ways). The most recently published study confirms the 
action of doxycycline on the apicoplast in two stages, with 
an immediate toxic effect and a toxic effect (measurable 
after cell division): the first effect is considered to be non-
specific, acting on collateral targets that are not located 
in the apicoplast; the second effect is characteristic of cell 
death, as observed after an offset effect on the apicoplast 
[36]. A proteomic approach confirmed the specific dereg-
ulation of the proteins involved in apicoplast metabolism 
after doxycycline treatment [37].

Antiplasmodial activities
Activity on sporogony
All studies of the antiplasmodial activity of doxycycline 
have shown that this molecule, at a dose of 100 mg daily, 
was a schizonticide agent, with a slow-acting duration 
[1]. The lack of an in  vivo effect of tetracyclines on the 
development of gametocytes, suggested by Ruiz Sanchez 
[38, 39], was confirmed by a study performed in 1971 
with healthy volunteers infected with P. falciparum or P. 
vivax and treated using tetracycline or doxycycline [40]. 
Tetracyclines have no effect on the sporogony in Anoph-
eles: they do not reduce the infectivity of mosquitoes 
infected with gametocyte carriers under treatment [41].

Activity on hepatic forms
Several in  vivo studies performed with simian mod-
els (rhesus monkeys and chimpanzees) infected by 

Plasmodium cynomolgi bastianellii, P. vivax or P. cyn-
omolgi ceylonensis have shown that terramycin, minocy-
cline or demeclocycline also affected their hepatic forms 
[42–44]. In a murine model, doxycycline also proved to 
be effective in the hepatic stages of Plasmodium berghei 
and Plasmodium yoelii yoelii [45], as the administration 
of 1.4 mg of doxycycline simultaneously or 3 h after the 
injection of sporozoites prevented the appearance of a 
parasitaemia in 100 % of the rodents (n = 10), while the 
untreated controls became infected.

However, the activity of doxycycline on the liver forms 
of P. falciparum was demonstrated to be partially effec-
tive in several studies of the hepatic forms of P. falcipa-
rum [46, 47]. Of the twelve subjects who received 100 mg 
of doxycycline per day for 3  days prior to exposure to 
infected mosquitoes and for the six following days, four 
developed malaria [46]. Moreover, the regular uptake of 
doxycycline did not alter the level of antibodies against 
the pre-erythrocytic stages of P. falciparum [48]. The 
findings of these studies have justified the recommenda-
tion of the currently approved doxycycline regimen (i.e., 
once daily for 4 weeks after returning from an endemic 
area).

Activity on erythrocytic forms
According to Geary et al. [49], cyclines are active during 
the three developmental asexual erythrocytic stages of P. 
falciparum, equivalently. According to Dahl et al. [35], the 
aged trophozoites and young schizonts were more sus-
ceptible to doxycycline than the young trophozoites and 
older schizonts, with a dose and time-dependent rela-
tionship observed for the effectiveness of the doxycycline 
on erythrocytic stages. The effectiveness of doxycycline 
on the erythrocytic stages is evaluated by identifying the 
concentration necessary to inhibit the growth of 50  % 
of the parasites, or the IC50 [50, 51]. When comparing 
the IC50 value of doxycycline to the values of other anti-
malarial drugs, which are sub-micromolar, doxycycline 
appears to be much less active. Considering its delayed 
onset of action [52, 53], this finding justifies its therapeu-
tic use in combination with a fast schizonticide.

Clinical effectiveness
Among tetracyclines, doxycycline is the only one recom-
mended as an anti-malarial prophylaxis [41]. In 1994, 
34 years after its development, doxycycline was approved 
as prophylaxis against malaria by the Food and Drug 
Administration. In multidrug resistance zones, doxycy-
cline is used as malaria chemoprophylaxis against P. fal-
ciparum at a dose of 100  mg/day starting at the day of 
arrival in endemic areas and continuing for up to 4 weeks 
after returning. This scheme was originally recommended 
by the WHO in 1985, based on the previously mentioned 
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studies [40, 41]. The primary studies (Table 1) of the effi-
cacy and safety of doxycycline prophylaxis were performed 
with different populations living in endemic areas [54–58] 
and non-immune travellers, primarily soldiers from dif-
ferent armies [15, 47, 59]. Most of the failures observed in 
the prophylaxis of falciparum malaria were related either 
to inadequate dosages (confirmed by low plasma concen-
trations of doxycycline) [60], the use of half-doses [55] 
or poor adherence [59, 61–63]. True prophylactic fail-
ures (verified by plasma dosage of doxycycline) are rarely 
reported. Two Australian soldiers presented with falci-
parum malaria 2  weeks after returning from Papua New 
Guinea, despite good adherence [59]. In vitro chemosen-
sitivity tests to doxycycline were not performed in these 
cases. However, the prophylaxis was stopped 3 days after 
returning from the endemic area; the recommendation is 
that prophylaxis should be continued 4 weeks after return-
ing. There has been one recent report of the death of a 
French soldier due to a prophylaxis failure caused by doxy-
cycline resistance [64]. Cyclines are inactive on hypnozo-
ites. Indeed, the occurrence of malaria caused by P. vivax 
or P. ovale returning from an endemic area requires a radi-
cal cure with primaquine [65].

Doxycycline at a dose of 100  mg/day starting at the 
day of arrival in endemic areas and continuing for up 
to 4  weeks after returning, still remains highly effective 

as P. falciparum prophylaxis. Concerning the treatment 
of malaria, studies conducted in the 1950s [28, 39] and 
in 1970 [40, 41, 66, 67] have shown the effectiveness of 
cycline monotherapy in treating simple access to P. falci-
parum. Later, the need for a minimum 7-day treatment 
was demonstrated; the disappearance of parasites was 
effective only after 5 days at a dose of 200 mg daily [68].

With the risk of rapid progression from uncompli-
cated Plasmodium falciparum malaria to severe disease 
and the slow schizonticide action of the cyclines, they 
should not be used as monotherapy (Table 2). Their com-
bination with other anti-malarial drugs has been studied 
many times, particularly in areas of multidrug resist-
ance, such as Southeast Asia (Table 3) [69–73]. The most 
described associations are doxycycline (200  mg) with 
quinine (10 mg/kg/day) for 7 days, which operates with a 
therapeutic efficacy of 91–100 % in multi-resistant areas, 
even if the in vitro susceptibility of isolates to quinine is 
decreasing [74]. All other tested associations are lower or 
equal in terms of their efficacy, parasite clearance or reso-
lution of fever, and they are often more expensive.

Due to its slow schizonticide action and short half-
life, doxycycline should not be use in monotherapy in 
the treatment of uncomplicated malaria. Doxycycline 
remains still effective in combination with quinine or 
artesunate at a dose of 200 mg for 7 days.

Table 1  Efficacy of doxycycline for prophylaxis against P. falciparum malaria

Pop population, A adults, C children, D doxycycline, CQ chloroquine, PR primaquine
a  According to weight (< or >40 kg)

Year Place References Pop Number Drug Route Dose/d Other drug Duration/d Efficacity

1987 Thailand Pang [54] C 95 D PO 50 or 100 mga / 35 94.7

1988 Thailand Pang [55] C 67 D PO 50 or 100 mga / 97 97.0

1988 Thailand Pang [55] C 77 D PO 25 or 50 mga / 107 97.4

1989 Thailand Watanasook [56] A 243 D PO 50 mg / 119 92.6

1989 Thailand Watanasook [56] A 243 D PO 100 mg / 119 84.4

1992 Thailand Shanks [57] A 77 D PO 100 mg / 80 96.1

1993 New Guinea Rieckmann [47] A 60 D PO 100 mg / 42 100

1993 New Guinea Rieckmann [47] A 69 D PO 100 mg PR 21 100

1993 New Guinea Rieckmann [47] A 125 D PO 50 mg CQ 91 100

1995 Kenya Weiss [60] C 32 D PO 50 mg / 77 84

1995 Somalia Shanks [63] A 900 D PO 100 mg / 135 99.9

1995 Cambodia Shanks [63] A 600 D PO 100 mg CQ 195 99.7

1995 New Guinea Shanks [59] A 53 D PO 100 mg PR 42 96.2

1997 Irian Jaya Ohrt [103] A 67 D PO 100 mg / 87 99

1998 Kenya Andersen [104] A 70 D PO 100 mg / 70 92.6

1999 Irian Jaya Taylor [58] A 75 D PO 100 mg / 140 96.3

1999 Gabon +CAR Baudon [15] A 171 D PO 100 mg / 150 97.1

1999 Ethiopia Schwartz [105] A 19 D PO 100 mg / / 94.7

2002 Eastern Timor Peragallo [106] A 280 D PO 100 mg PR 168 98.4

2005 Afghanistan Sonmez [19] A 986 D PO 100 mg / 84 100



Page 5 of 10Gaillard et al. Malar J  (2015) 14:445 

Mechanism of resistance to doxycycline
The notion of P. falciparum resistance to doxycycline is a 
tricky concept to grasp. Treatment failures reported with 
quinine plus doxycycline are rare events. The only drug 
pressure with cycline on Plasmodium was performed in 
a murine model of Plasmodium berghei [75]. The admin-
istration of increasing doses of minocycline to mice 
infected with 1 × 107 parasites for 86 successive passages 
over 600  days made it possible to obtain a resistant P. 
berghei strain, with a median drug inhibitory concentra-
tion (IC50) of 600 mg/kg/day, which is sixfold higher than 
that of the susceptible starting strain (100 mg/kg/day).

In addition, few studies have evaluated the P. falci-
parum in  vitro susceptibility to doxycycline. However, 
several studies of isolates from different continents 
have established different groups of in  vitro susceptibil-
ity based on IC50 doxycycline assessments. But, in the 
absence of standardized ex  vivo and in  vitro tests, it is 
difficult to compare data from different laboratories. 
Indeed, IC50 values and cut-off for in vitro resistance are 
specific to the methodology. For example, the in  vitro 
effects and the IC50 values for doxycycline are dependent 
upon the time incubation conditions [52, 53], gas con-
ditions (i.e., O2 and CO2 [76, 77] and methodology (i.e., 
an isotopic test versus an immunoenzymatic test) [78]. 
These differences in methodology must be taken account 
for comparing and analysing resistance data from differ-
ent works.

A 2010 publication, with reported values of doxy-
cycline IC50 on 747 isolates of P. falciparum in Africa 
over a period of 9  years (1996–2005), found a trimodal 
distribution of IC50 with three susceptibility levels iden-
tified [79]. Nine isolates (1.2  %) exceeded the threshold 
of 35  µM identifying isolates, with reduced susceptibil-
ity to doxycycline. Another evaluation on 484 isolates 
of imported P. falciparum parasites between 2006 and 
2010, based on the same methodology, showed that 2.7 % 
had reduced susceptibility to doxycycline [80]. In a study 
published in 2013, on 113 isolates from Senegal, 9 (8.0 %) 
isolates exhibited IC50 over the limit of 35  µM [81]. In 

2009–2010 and 2010–2011, 12 and 10.3  % of P. falcipa-
rum isolates collected in Dakar showed reduced suscepti-
bility to doxycycline in comparable methodology (cut off 
of 37 µM) [78, 82]. A study in Kenya showed that 15 % 
of the isolates had an IC50 >35 µM [83]. A recent study 
on 620 Thai isolates found a bimodal distribution [84]. 
The two groups identified presented with a mean value 
of 13.15 µM for the group of 591 isolates with low IC50 
and a mean value of 31.60 µM for the group of high IC50, 
including 29 isolates. Only seven isolates of 620 (1.1  %) 
had doxycycline IC50 values that were superior to 35 µM. 
In 2008, a study performed in French Guiana investigated 
the prevalence of isolates with reduced susceptibility to 
doxycycline and found from 15 to 25  % of the isolates 
from 1996 to 2001, 51 % in 2002, to 61.5 % in 2003 and 
to more than 67 % in 2005 [50]. The low threshold of sus-
ceptibility of 9.6  µM chosen can explain this high level 
of in vitro resistance. As the methodology is the same as 
that subsequently used, the prevalence of reduced sus-
ceptibility can be recalculated with a cut off at 35 µM: the 
prevalences ranged from 0 to 4.8  % (0  % in 1997, 1999, 
2000, 2003 and 2004, 1.8 % in 1998, 4.8 % in 2001, 2.2 % in 
2002 and 1.9 % in 2005). A Ghanaian study performed in 
2012 recorded a surprisingly high level of resistance (i.e., 
23.7 %) for doxycycline [85], with a threshold IC50 value 
of 35 µM. This finding could be explained by the use of 
SYBR Green 1-based in  vitro test applied to assess the 
susceptibility of clinical isolates. Indeed, Wein et al. dem-
onstrated that doxycycline IC50 values were significantly 
higher in fluorescence-based SYBR green assays than in 
isotopic or HRP2-based tests [86]. However, despite the 
lack of standardization for the evaluation of doxycycline 
IC50, the existence of a high IC50 group is indisputable.

The search on the potential mechanisms of the resist-
ance of P. falciparum to doxycycline focuses on two 
ways: the exploration of plasmodial genes homologue 
to bacterial genes that are involved in bacterial resist-
ance to doxycycline and the exploration of genes cod-
ing apicoplastic proteins which could be targets for 
doxycycline. Different hypotheses have been published 

Table 2  Clinical trials of doxycycline monotherapy against P. falciparum malaria

A adults, C children, NR not reported

Study demographic details Regimen

Year Place References Population Nb Dosage/d Nb doses/d Route Nb days Efficacy (%)

1971 USA Clyde [107] A 4 200 mg 2 PO 4 NR

1971 USA Clyde [107] A 9 200 mg 2 PO 7 NR

1981 West Malaysia Ponnampalam [68] C 9 4 mg/kg NR PO 4 44.4

1981 West Malaysia Ponnampalam [68] C 26 4 mg/kg NR PO 7 84.6

2001 Indonesia Taylor [108] A 20 200 mg 2 PO 7 64.7
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regarding the potential mechanisms of the resistance 
of P. falciparum to doxycycline correlated to the bacte-
rial world. Several mechanisms of bacterial resistance 
to the cyclines have been identified [21]: (1) tet efflux 
protein genes encode for membrane-associated pro-
teins that export tetracycline from the cell, reducing 
the intracellular drug concentration and thus protecting 
the ribosomes [87]; (2) TetX protein, a flavin-depend-
ent monooxygenase, degrades tetracycline in  vitro and 
in vivo [88]; and (3) ribosomal protection proteins in the 
cytoplasm protect ribosomes from the action of tetracy-
cline in a GTP-dependent manner [89, 90]. Analogues of 
these proteins have been identified in P. falciparum [91]. 
Sequence analysis of 11 genes (pftufA, pfEF-TS, pfmdt, 
pftetQ, pfrps3, pfrps7, pfrps8, pfrps9, pfrps11, pfrps14, 
and pfrps17) and evaluation of pfmdt and pftetQ copy 
numbers were conducted using 90 isolates from 14 Afri-
can countries [51]. It has been demonstrated that no pol-
ymorphism was found in a small subunit of apicoplastic 
ribosomal genes (pfrps7, pfrps9, and pfrps17, although 
S7, S9, and S17) and that the copy number increases of 
two genes, P. falciparum metabolite drug transporter 
gene (pfmdt, PFE0825w), a membrane transporter with 
similarities to the bacterial efflux pumps, and P. falci-
parum GTPase TetQ gene (pfTetQ, PFL1710c), simi-
lar to the bacterial ribosomal protein TetA involved in 
tetracycline resistance, were associated with reduced 
susceptibility to doxycycline in P. falciparum [51]. The 
number of parasites that is classed as in  vitro resistant 
is very small, and unfortunately, that means that small 
random changes may be associated without being causal. 
However, this association was later confirmed using 
89 African imported isolates [80]. In addition, PfTetQ 
KYNNNN motif repeats of <3 are predictive of in vitro 
resistant P. falciparum parasites with IC50  >35  µM 
(odds ratio 15) [83]. The involvement of the copy num-
bers of pfmdt and the PfTetQ KYNNNN motif repeats 
in reduced susceptibility to doxycycline was confirmed 
by the doxycycline prophylactic failure from the Central 
African Republic (i.e., the doxycycline failure in a com-
pliant patient, as confirmed by a statement of correct 
intake of doxycycline and the presence of an expected 
plasmatic concentration of doxycycline), which was 
associated with two copies of the Pfmdt gene, as well as 
the two KYNNNN motif repeats [64]. However, these 
molecular markers were certainly not the only involved 
in cases of reduced susceptibility to doxycycline. A 
study of Senegalese isolates showed a lack of association 
between the number of copies of pfmdt and pftetQ and 
high IC50 for doxycycline, essentially because of an insuf-
ficient number of isolates with high IC50 [81]. There was 
an absence of association between the number of cop-
ies of pfmdt and pftetQ or the polymorphisms on pftetQ 

and susceptibility to doxycycline in P. falciparum isolates 
from Thailand and French Guiana [84, 92]. Copy number 
of pfmdt and pftetQ and polymorphisms on pftetQ are 
not sufficient to explain reduced susceptibility to doxy-
cycline, which may be multigenic.

Other hypotheses were explored. Through homol-
ogy with the bacterial world, the exploration of new 
apicoplast genes has been performed, and in particular, 
the association between the polymorphism of the small 
subunit ribosomal RNA gene, pfssrRNA, and in  vitro 
susceptibility to doxycycline was investigated [93]. In 
Helicobacter pylori, tetracycline resistance has not been 
associated with efflux or ribosomal protection proteins; 
instead, it was attributed to mutations in the 16S rRNA-
encoding genes that affect the binding site of tetracycline 
[94, 95]. Tetracycline resistance mediated by mutations 
in the 16S rRNA was first found in Propionibacterium 
acnes, and a mutation from G to C was reported at posi-
tion 1058 (Escherichia coli numbering) in their 16S rRNA 
genes [96]. A triplet mutation in the same 16S rRNA 
domain (965–967; E. coli numbering) was also found [90, 
95, 97, 98]. Because the apicoplast contains an independ-
ent genome, encoding prokaryote-like RNA polymerase 
subunits, 70S ribosomal subunits, tRNAs and a small 
number of proteins [99], it was interesting to investigate 
the mechanism of bacterial resistance of P. falciparum to 
doxycycline. Moreover, comparative analyses of the P. fal-
ciparum genome revealed that the nucleic acid sequence 
of a small subunit of ribosomal RNA gene belonging to 
the apicoplast shares 58 and 62 % of their identities with 
the 16S rRNA gene from Propionibacterium acnes and 
Helicobacter pylori, respectively. However, the sequenc-
ing of the small subunit ribosomal RNA gene (PFC10_
API0057) in P. falciparum African and Thaï isolates did 
not reveal any mutation, regardless of the determined 
IC50 values [93].

Another hypothesis to be explored is the role of plas-
modial apicoplast genes, that bacterial homologues are 
not involved in bacterial resistance to doxycycline, such 
as arps10, could be involved in artemisinin resistance 
[100] by encoding the apicoplast ribosomal protein S10 
precursor, as well as fd, by encoding the ferredoxin pro-
tein, a key component of the apicoplast electron trans-
port chain. These apicoplast genes could also be involved 
in the decreased susceptibility of P. falciparum to doxycy-
cline because of doxycycline mode of action.

However, the better way to identify the potential genes 
involved in reduced susceptibility to doxycycline is to 
create in  vitro resistant parasites in cultivation by drug 
pressure and then to sequence and analyse the whole 
genome of the both original susceptible strain and resist-
ant strain as it was successfully previously done for the 
artemisinin resistance [101, 102].
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Conclusions
The emergence and rapid extension of P. falciparum 
resistance to principal anti-malarial drugs necessitates 
the search for new molecules. In addition, doxycycline 
(in combination with quinine) is an excellent candi-
date for the treatment of uncomplicated malaria and as 
prophylaxis in multi-resistant areas. The adequate toler-
ance and efficacy of cyclines have been demonstrated. A 
better comprehension of the mechanisms of action and 
resistance would facilitate the design of more effective 
structural analogues and the identification of molecular 
markers of resistance to predict and survey the emer-
gence of resistance.
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