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Abstract 

Background:  Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to 
account for when planning an effective control system. Routinely collected data at health facilities can be used as a 
cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospi-
tal in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogene-
ity of malaria and effectiveness of an augmented control system.

Methods:  Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, 
from October 2012 to March 2015. Remote sensing data were used to classify the development level of each moni-
tored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire 
data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station 
located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-
malarial fever cases. A space–time Bayesian model was performed to evaluate risk factors and identify locations at 
high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM).

Results:  Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-
malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community 
development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, 
which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with sig-
nificantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and 
early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012.

Conclusions:  The results indicate that the use of passive surveillance was an effective method to detect spatiotem-
poral patterns of malaria risk in coastal Kenya. Furthermore, it was possible to estimate the impact of extensive bed 
net distribution on malaria prevalence among local fever cases over time. Passive surveillance based on georefer-
enced malaria testing is an important tool that control agencies can use to improve the effectiveness of interventions 
targeting malaria (and other causes of fever) in such high-risk locations.
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Background
The World Health Organization (WHO) estimates that 
almost 90  % of malaria-associated mortality occurs in 
endemic countries of sub-Saharan Africa [1]. Malaria is 
endemic in Kenya but, as is also the case in the rest of 
sub-Saharan Africa, transmission intensity has been 
drastically reduced since early 2000s [2, 3]. This decline is 
associated with an intensive anti-malaria campaign [4–7] 
based on massive distribution of long-lasting insecticide-
treated bed nets (LLINs), indoor residual spraying (IRS) 
and the introduction of artemisinin-based combination 
therapy (ACT) as the first-line treatment for malaria [8, 
9].

Malaria transmission patterns are modulated by the 
interactions between environmental, meteorological and 
socio-economic factors [10–13]. Spatial heterogeneity of 
malaria manifests in hot spots of transmission at differ-
ent ranges of geographical scale [10, 14, 15]. Temporally, 
these hot spots show a seasonal pattern as well as inter-
annual variability [11, 15]. Early detection and prediction 
of hot spots through an effective surveillance system can 
help target interventions aimed at reducing the impact of 
malaria in these areas.

Malaria hot spots have been identified by both passive 
and active surveillance systems in Kenya. Both systems 
can capture the space–time pattern of malaria and the 
impact of control systems on the disease’s morbidity [3, 
16, 17]. However, in comparison to active surveillance, 
prevalence and incidence obtained by passive surveil-
lance are more susceptible to population characteristics 
(e.g., education, wealth status) as well as distance from 
health care facilities [18, 19]. However, passive sur-
veillance can cover a much larger area at a lower cost 
compared to active surveillance [15, 20], making it an 
important monitoring and evaluation tool for policymak-
ers who chose to further enhance their control programs 
after an initial, but limited, reduction in malaria within 
endemic areas [3, 9, 21, 22]. In order to use data from 
health care facilities to estimate effectiveness of control 
programs, the passive surveillance system has to be based 
on an adequate testing system [23]. Following WHO 
guidelines [24], Kenya’s public health system has imple-
mented a diagnosis-based malaria treatment policy for all 
age groups [9]. This policy has streamlined the collection 
of countrywide data that can be used to target areas with 
high resource needs for intervention.

Improved malaria testing practices at health care facili-
ties in Kenya have indicated that a high proportion of 
febrile cases are not linked to Plasmodium infection [25]. 
Many diseases present in sub-Saharan Africa can mani-
fest malaria-like symptoms, and only testing can lead 
health care practitioners to make correct diagnoses and 
subsequently prescribe the correct treatment [26]. While 

some of these diseases are well known and endemic in 
Kenya (e.g., influenza, pneumonia, enteric fevers), others 
are considered to be emerging (e.g., Rift Valley fever, chi-
kungunya, dengue) [27–29].

In this study, data collected from one hospital located 
in coastal Kenya were used to: (1) calculate the fraction 
of fevers due to malaria; (2) describe the space–time 
pattern of malaria occurrence; (3) identify areas where 
non-malarial fever illnesses were more frequent; and, (4) 
assess the ability of passive surveillance to capture the 
short- and long-term effects of enhanced LLIN distribu-
tion for local populations at risk for malaria.

Methods
Ethical approval
Ethical approval and oversight for this study was pro-
vided jointly by the Institutional Review Board of the 
University Hospital Case Medical Center of Cleveland 
(Protocol 11-07-45) and by the Ethical Review Commit-
tee of the Kenya Medical Research Institute (KEMRI) 
(Non-SSC Protocol 087). The present analysis used 
aggregated, anonymized data reported to the investiga-
tors by the study health facilities as part of ongoing pub-
lic health surveillance for malaria.

Setting and data collection of incident febrile illnesses
The study was conducted in Msambweni sub-County 
Referral Hospital, Kwale County, Kenya (4.48°S, 39.48°E). 
The area is rural, and malaria is endemic, as are various 
other parasitic diseases [5–7, 10, 30]. The climate is char-
acterized by monsoonal ‘long rains’ (April–June, LRS) 
and ‘short rains’ (October–December, SRS) rainy sea-
sons, and by hot (January–March, HDS) and cool (July–
September, CDS) dry seasons. Although rains are more 
frequent during the rainy seasons, rains also fall during 
the dry seasons. An extended bed net distribution pro-
gram for all area households was implemented in the 
study area during August 2012 as part of the national 
malaria control program.

From October 2012 to March 2015, clinic-based sur-
veillance of febrile cases was conducted at Msambweni 
Hospital. The hospital has 155 in-patient beds and serves 
as one of the main of health care providers in Kwale 
County. All patients presenting with fever (axillary tem-
perature of 37.5  °C or above) or having history of fever 
were tested for malaria (Plasmodium spp. infection) 
using a standard, quality-controlled, Giemsa-stained, 
blood smear technique performed by trained parasitol-
ogy technicians. For this study, only febrile illness cases 
positive by microscopy were counted as malaria diag-
noses. Limited, fully anonymized data were provided by 
the hospital about patient age, gender and community of 
origin. Because patient identity was masked, the analyses 



Page 3 of 12Bisanzio et al. Malar J  (2015) 14:482 

could not be adjusted for repeated episodes of fever in 
the same person.

Community characterization
Population and environmental characteristics were 
obtained for each community. Population size was based 
on the 2009 national Census [31]. Each community was 
characterized as ‘less-developed’ or ‘more-developed’, 
based on proportion of houses with thatched roof, spatial 
arrangement of households, and typology of road (road 
class and surface material), using high resolution satellite 
images from Google and Bing mapping systems acquired 
during 2006 and 2007, applying Quantum GIS (QGIS) 
[32] dedicated plug-ins. Information on the road network 
of the study area was gathered using data downloaded 
from the Global Roads Open Access Data Set web-
site [33]. Google and Bing mapping systems were used 
to identify presence of rice fields adjacent to or within 
(≤1 km) of each community.

Rainfall data
Historical weather data were obtained from October 2012 
to March 2015 from the archive of Weather Underground 
website [34], recorded at the weather station located at the 
Moi International Airport of Mombasa (HKMO, 4.04°S, 
39.59°E). The Moi International Airport of Mombasa 
is the closest weather station to the study area, located 
56.6 km to the north of Msambweni Hospital.

Entomological survey
Seasonal patterns of mosquito abundance were estimated 
using data obtained during a four-year (April 2009–
April 2013), multi-village, entomological study in Kwale 
County [10, 35]. The entomological surveillance targeted 
four villages that were representative of communities of 
the south coast of Kenya, and the group of surveyed vil-
lages included two communities, Milalani and Nganja, 
that were part of the current study.

Spatial analysis
Getis’ Gi*(d) local statistic [34] was applied to identify 
spatial clusters of high and low proportion of febrile 
cases associated with Plasmodium infection. Given the 
distribution of communities in the study area (Fig. 1), an 
automatic procedure (e.g., K nearest neighbors, distance 
threshold) could not be used to determine the distance 
weight for the Gi*(d) test. Instead, a neighboring network 
was created ad hoc, in which the links were based on 
Euclidian distance and road connections between villages 
(Additional file 1). Significance (p < 0.05) was evaluated 
by comparing expected values under the null hypothesis 
of complete spatial randomness (based on 999 Monte 
Carlo permutation) with observed data.

Statistical modelling
Structured additive regression (STAR) models [33] were 
used to quantify the contribution of demographic attrib-
utes of patients, environmental characteristics of villages 
and seasonality to the probability of a febrile case being 
positive for Plasmodium infection. A STAR model was 
performed in order to account for spatial autocorrelation 
and seasonality of proportion of Plasmodium infection 
among febrile cases. The full model formula was:

The model included four linear predictors: patient 
gender (Gender), distance from shoreline in km (Dist 
Shore), presence of rice fields nearby or within (≤1 km) 
the community (Rice), and community development level 
(Development). The model had a factor to represent the 
interaction between month and presence of rice fields 
(Month* Rice). Patient age and enrolment month were 
included as non-linear predictors (f1(Age), f2(Month)) 
modeled as natural cubic B-splines with a second-order 
random walk penalty. The effect of the mass distribution 

Malaria case (1, 0) = f1
(

Age
)

+ f2(Month)

+ f3(LLINs distr.) + β1 ∗ Gender

+ β2 ∗ Dist Shore + β4 ∗ Rice + β5 ∗ (Month ∗ Rice)

+ B6 ∗ (Development) + fspat(Communities)

+ rand (Communities).

a b

c

Fig. 1  Characteristics and proportion of recorded febrile cases by 
community. a Village population (circles, where circle size indicates 
relative population size and color indicates level of development); b 
proportion of community population enrolled in the study as febrile 
cases at Msambweni Hospital (hospital indicated by red triangle, 
village circle size indicates relative proportion value); c proportion of 
admitted febrile cases from each community. Villages are categorized 
as less developed (green) or more developed (yellow). Road networks 
(major and minor roads) are also shown
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of LLINs performed in August 2012 was represented 
using a non-linear function (cubic B-spline) of the loga-
rithm of number of months since the time between bed 
net deployment and each patient’s subsequent febrile epi-
sode (f3(LLINs distr.)).

The model contains a spatial correlated random effect, 
fspat (Communities) modeled as a Markov random field. To 
describe the spatial relationship between villages, the neigh-
boring network created ad hoc to perform the Getis’Gi*(d) 
was used (Additional file  1). The distance between each 
connected community was used as the weight of each 
network link. The model also had an unstructured ran-
dom effect, rand(Communities), to consider heterogeneity 
among communities, that was not accounted by the model 
covariates, and adjusted the model for the distance (km) of 
community centre from the hospital.

Multivariate logistic regressions were used to estimate 
the associations of rice fields, seasonality and collection 
year with presence of female anopheline mosquitoes dur-
ing each house collection session using a generalized addi-
tive mixed model (GAMM) [36] that took into account 
differences in sampling schedules between years (Addi-
tional file  2). Given the differences in sensitivity of sam-
pling method applied during collection [35], each model 
was adjusted for the sampling techniques applied during 
each mosquito collection. The full model formula was:

Collection month was included in the model as a non-
linear predictor (f1(Month)). Presence of rice fields near 
or within the community (Rice) and collection year 
(Year) were included as linear predictors. The variable 
rand(Village) represents the random effect of the four vil-
lages where the collection was performed.

Multi-model selection approach based on Akaike Infor-
mation Criteria (AIC) was performed to find the best 
models for the febrile illness data and the entomological 
data [37]. The ΔAIC was calculated among all proposed 
models as the difference between their AIC and the 
one with the lowest AIC value. All those models show-
ing a ΔAIC <2 were included in the set of best models 
[37]. Presence of spatial and temporal autocorrelation in 
model residuals was tested using Moran’s I and Durbin-
Watson test, respectively. Residuals of the entomological 
model were only tested for temporal autocorrelation due 
to the low number of sampled villages.

Other statistical analysis
Association between distance from the Msambweni Hos-
pital and the number of in-patients admitted from each 

Presence of Anopheles sp./Anopheles funestus/

Anopheles gambiae (1, 0) = f1(Month) + β1 ∗ Rice

+ β2 ∗ Year + rand
(

Village
)

.

community was tested using Spearman’s correlation. 
Fisher’s exact test was applied to evaluate differences of 
proportion of malaria febrile cases between females and 
males, and between less-developed and more-developed 
communities. The Fisher’s exact test was also applied to 
compare the proportion of houses positive to the pres-
ence of vectors between seasons. Proportions of febrile 
cases diagnosed with malaria were compared between 
age groups and seasons using Fisher’s least significant 
difference (HSD) test [38]. Wilcoxon rank-sum test was 
used to compare number of enrolled cases between 
seasons.

Geographic information system and statistical tools
Data were stored in a geographic information system 
(GIS) created with QGIS software [39]. All geographic 
data were georeferenced using Universal Transverse 
Mercator (UTM) Zone 37 South, datum WGS84. 
Getis’Gi*(d) test was performed using Easyspat (Bisanzio 
et  al. in prep.). Modelling was performed using the sta-
tistical software BayesX through the R software interface 
R2BayesX [33]. All other analyses and data cleaning were 
performed using basic functions embedded in R software 
[40].

Results
Village characteristics
Of the 34 villages included in the study, 24 (70.6 %) were 
classified as less developed (Fig. 1). Presence of rice fields 
was recorded in 21 communities (61.7  %), and most of 
these (18/21, 85.7 %) were classified as less developed.

The average distance from the shoreline and the aver-
age village elevation were 3.3 km (SD = 2.9) and 29.8 m 
(SD  =  23.5) above sea level (masl), respectively. The 
median population size was 1698 [interquartile range 
(IQR) = 1052–2726] (Fig. 1a). The average distance of vil-
lages from Msambweni Hospital was 8.4 km (SD = 6.6) 
(Fig.  1); for each community, the proportion of all 
patients treated at Msambweni Hospital was negatively 
correlated to its distance from the hospital (Spearman’s 
ρ = −0.86, p < 0.01, Fig. 1c).

Febrile cases
Demographic characteristics and malaria prevalence of 
tested individuals are shown in Table 1. Over the study 
period, 25,779 febrile cases who sought health care at 
Msambweni County Referral Hospital were enrolled 
in the study. The median age of patients was 5  years 
(IQR = 2–21), with more females than males (Table 1). 
Overall, the blood smears of 7424/25,779 patients 
(28.7  %) were positive for Plasmodium species. Of all 
patients, 16,980 (65.8  %) were under 16  years of age, 
and the prevalence of malaria in this age group (34.7 %) 
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was significantly higher than in adults (17.3  %, Fisher’s 
exact test, p < 0.01) (Fig. 2). Prevalence in male patients 
(32.4  %) was higher than in female patients (26.2  %, 
Fisher’s exact test, p < 0.01). Febrile cases from the less 
developed communities showed significantly higher 
prevalence of malaria (34.7 %) than those from the more 
developed villages (25.7 %, Fisher’s test, p < 0.01) (Fig. 2). 
However, among all less developed communities, those 
villages with rice fields within their borders or nearby 
had significantly higher malaria proportion (35.8  %) 
among enrolled febrile cases than less developed com-
munities without rice fields (29.7  %, Fisher’s exact test, 
p < 0.01).

The number and proportion of enrolled febrile cases 
was associated with seasonality and showed two annual 
peaks during the LRS and during the SRS in 2013, and 
at the beginning of HDS and during SRS in 2014 (Fig. 2). 
This seasonal pattern was consistent for all febrile cases, 
both non-malarial and malaria-associated (Fig. 2). A sig-
nificantly lower number of febrile cases was recorded 
during the HDS (Wilcoxon rank-sum test, p < 0.05). The 
seasonal trends of enrolled cases were similar in less 
developed and more developed communities (Fig. 2). The 
respective proportions of febrile cases with malaria were 
not significantly different between less and more devel-
oped communities during the HDS and the LRS (Fisher’s 
exact test, p > 0.05, Fig. 3). However, during the CDS and 
the SRS, a significantly higher (Fisher’s test, p < 0.05) pro-
portion of febrile cases positive to malaria were from less 
developed communities (Fig. 3).

Spatial analysis
The proportion of febrile cases who tested positive for 
malaria was spatially autocorrelated during the study 
period (Gi*(d) test, Fig.  4). Clusters of communities 
with high (hot spots) and low (cold spots) proportion of 
malaria-associated febrile illness were detected in every 
season except for the HDS. Most of the hot spots were 
around less developed communities and situated farther 
from the coast (Gi*(d) test, p  <  0.05, Fig.  4). Low levels 
of malaria infections (cold spots) were clustered (Gi*(d), 
p < 0.05, Fig. 4) around developed communities. No clus-
ters were detected during HDS, when fewer Plasmodium 
infections were detected among patients coming from 
most of these communities (Fig. 4).

Model results
The best model included variables of the full model for-
mula (Additional file 3). Detailed results from the logistic 
STAR model are presented in Table 2 and Figs. 5 and 6. 
Males (Table 2), and children in the three to 18 years age 
range (Fig. 5) were significantly more likely to test posi-
tive for malaria. During the last 2 months of the HDS and 
first part of the LRS, patients were less likely to test posi-
tive for Plasmodium infection than in the CDS and SRS. 
Seasonal effects showed an interaction with presence of 
rice fields (Table 2).

The mass distribution of LLINs in August 2012 was 
significantly associated with a reduced probability that 
febrile illness would test positive for malaria (Fig.  5c). 
However, the positive effect of the distribution of LLINs 
rapidly decreased and apparently disappeared by the 14th 
month post intervention (Fig. 5c).

Febrile patients from communities further from shore-
line were more likely to test positive for Plasmodium 
infection (Table 2). The probability of a febrile case from 
less developed communities to have malaria was 50  % 
higher, but this result was not significant (Table  2). The 
spatial structure effect included in the model identified 
a hot spot of higher risk for malaria in the central part 
of the study area (Fig.  6), with patients from that area 
three times more likely to test positive for malaria. By 
contrast, patients from communities in the southern part 
of study area were significantly less likely to test positive 
for malaria (Fig. 6). No spatial (Moran’s I, p = 0.23) and 
temporal autocorrelation (Durbin-Watson test, p = 0.64) 
were found in model residuals. These findings showed 
that the model was able to capture the spatial–temporal 
component of the data.

Mosquito infestation
During the study period, 2009–2013, 2463 households 
were surveyed for a total of 4125 house collections. Pres-
ence of female Anopheles mosquitoes was recorded in 

Table 1  Demographic characteristics of tested individuals 
having febrile illness, and  their sub-group malaria preva-
lence by gender, age group and community type

Sub-group  
proportion among  
the 25,779 patients 
tested (%)

Fraction of  
tested sub-group 
subjects found 
to have malaria (%)

Sex

 Female 58.4 26.2

 Male 41.6 32.4

Age group

 0–5 46.9 28.7

 6–10 12.5 49.8

 11–15 6.1 44.3

 16–20 6.2 24.3

 21–25 7.4 18.8

 26–30 6.3 16.1

 >30 14.6 10.7

Type of community

 More developed 33.5 34.7

 Less developed 66.5 25.7
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461 households (18.7 %). The proportion of houses posi-
tive for presence of An. funestus and for An. gambiae 
were 11.4  % (282/2463) and 10.4  % (255/2463), respec-
tively. Co-infestation by both species was recorded in 
76 houses (3.1  %). The proportion of positive houses 
was higher during the rainy seasons (Fisher’s exact test, 
p > 0.05, Table 3).

Model results for entomological collection
Model selection results showed that all variable of the 
full formula were included in the best model (Additional 
file 4). Presence of female Anopheles mosquitoes showed 
significant seasonality, with the risk of mosquito infesta-
tion higher during rainy seasons (Fig. 6). The probability 
for detection of both An. gambiae and of An. funestus 

infestations was significantly higher in the LRS and lower 
in the CDS (Fig.  7). The probability for houses to be 
infested with Anopheles mosquitoes was significantly 
lower in 2009, the first year of collection (Table 4). Model 
results also indicated an association of presence of rice 
fields near a village with higher probability of infested 
houses, but this effect was not significant (Table  4). 
Model residuals did not show temporal autocorrelation 
(Durbin-Watson test, p = 0.37).

Discussion
Fever is the most common symptom exhibited by peo-
ple seeking health care in Kenya [41–43]. The study 
results demonstrated that georeferenced information 
obtained through testing febrile cases for malaria can be 

a b

c d

fe

Fig. 2  Monthly number of malaria-positive and -negative febrile cases, proportion of Plasmodium infections among febrile cases, and monthly 
cumulative rainfall. Figure panels show proportion of Plasmodium among febrile cases in children and in adults from less developed and more 
developed communities: adults (a) and children under 15 years (b) living in more developed areas; adults (c) and children (under 15 years); (d) living 
in less developed areas; data for all subjects enrolled in the study are shown in e. f Shows monthly rainfall recorded during the study period
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used to evaluate the spatial and temporal heterogeneity 
in patterns of Plasmodium infection in a district-level 
or sub-county sized study area. Additionally, these data 
allowed associating a significant effect on the prevalence 
of malaria among febrile cases with mass deployment 
of LLINs, (which occurred during the summer of 2012). 
Finally, the study findings highlighted the presence of 
clusters of low prevalence of malaria in febrile cases in 
communities closer to the Indian Ocean shoreline.

The prevalence of malaria among febrile cases 
increased following the start of the two rainy seasons, 
when the frequent rains likely increased the abundance 
of breeding sites for Anopheles mosquitoes. This effect 
was more marked in the less developed communities, 
and could also be statistically linked to the presence of 
nearby rice paddies. In coastal Kenya, past research has 
indicated that rice fields become flooded during the rainy 
seasons and become optimal breeding sites for Anopheles 
mosquitoes for several months thereafter [44, 45]. The 
flooding period of paddies typically results in an increase 
of vector abundance in adjacent communities, likely fol-
lowed by higher levels of transmission levels of Plasmo-
dium spp. [46].

The seasonal trend of malaria prevalence among febrile 
cases was significantly associated with mosquito infesta-
tion levels recorded in sampled households. A significant 
reduction was observed in the proportion of infested 
houses from 2009 to 2013. This can probably be linked 
to the mass LLIN distribution campaign performed in 
the study area [47], as similar control efforts have dem-
onstrated a decrease in infestation levels elsewhere [48, 
49]. The proportion of fever cases who tested positive for 

malaria decreased significantly in the months following 
the mass deployment of LLINs. However, the observed 
reduction lasted less than 18  months after the distribu-
tion of LLINs. These findings are consistent with the pre-
viously recorded mean time of effectiveness of LLINs in 
coastal Kenya [50]. Moreover, studies have shown that 
bed net use declines after approximately 1 year of utiliza-
tion as the bed nets are perceived as less effective due to 
accumulated damage [51–53].

Spatial analysis identified geographical hot spots of 
malaria risk in the central portion of the study area. The 
same areas were also indicated as being at high risk by 
the STAR model, which simultaneously accounted for 
the presence of rice fields, seasonality and each commu-
nity’s level of development. Model results suggested the 
presence of additional factors not included as predictors 

Fig. 3  Boxplot of seasonal proportion of malaria infections among 
febrile cases by community typology. Asterisk indicates a significant 
difference between village categories (p < 0.05, Fisher’s exact test) by 
season

e

dc

a b

Fig. 4  Getis Gi*(d) cluster analysis of study communities based on 
their higher or lower proportion of malaria-associated febrile cases. 
The Gi*(d) test was used to identify significant community hot-
spot clustering (red circles) and/or cold-spot clustering (blue circles, 
p < 0.05, based on 9999 permutations) during: a the hot dry season 
(HDS, Jan–Mar); b the long rainy season (LRS, Apr–Jun); c the cool dry 
season (CDS, Jul–Sept); d the short rainy season (SRS, Oct–Dec); and, 
e, over all periods
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in the performed model that may also play an important 
role in the spatial heterogeneity of malaria prevalence in 
surveyed populations. For instance, the model did not 
include information regarding the socio-economic status 
of enrolled individuals or other information concerning 
potentially important larval sites, such as the presence of 
permanent or seasonal ponds. These factors could have 
further affected the spatial heterogeneity of malaria prev-
alence. Such breeding sites (flooded, wet areas) increase 
the risk of infection in the surrounding communities and, 
accordingly, malaria hot spots are often identified near 
these areas [10, 54]. High malaria levels in poor commu-
nities can be attributed to the natural materials used to 
build houses (mud walls and grass-thatched roof ), which 
provide optimal resting places for mosquitoes [55, 56]. 
However, the aforementioned environmental risk factors 
can also be found in some more developed communities, 
and these can increase the risk of malaria for people liv-
ing in these areas as well [57]. This could explain why the 
STAR model identified some more developed communi-
ties as being at high risk of infection as well.

With regard to age, individuals aged three to 18 years 
showed a high probability of testing positive for malaria, 
and individuals 9 years of age had the highest estimated 
probability of malaria-positive fever. These results are 
consistent with previous findings based on active surveys 

Table 2  Predictors, based on  logistic regression model-
ling, of the relative odds that a febrile case was associated 
with Plasmodium infection

* p < 0.05; ** p < 0.01
a  As counted from 1 to 12 months
b  Only the significance of factors for age, month and time passed since mass 
distribution of LLINs is indicated; the smooth functions of these predictors are 
shown in Fig. 5
c  Only the significance of structured spatial effect is indicated; the predictors are 
shown in Fig. 6

Predictor Value
Odds ratio (95 % CI)

Linear fixed effect

 Sex: male 1.28 (1.12; 1.37)*

 Distance to the shoreline (km) 1.10 (1.01; 1.24)*

 Rice field presence 1.48 (0.71; 1.74)

 No. months with rice field presencea 1.16 (1.08; 1.29)*

 Less developed 1.15 (0.66; 1.99)

Smooth effectb

 Age *

 Month *

 Time since LLIN distribution *

Random effect

 Village Variance = 0.6

 Structured spatial effectc *

a

b

c

Fig. 5  Age, month and time since last mass distribution of LLINs as 
non-linear predictors for the association of a febrile case with malaria 
infection obtained by the STAR model. a OR function of the age 
variable with 95 % CI; b OR function of the month variable with 95 % 
CI; c OR function of the time passed since mass distribution of LLINs 
with 95 % CI
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performed in communities of the study area [10]. Addi-
tional studies in Uganda and Western Kenya [15, 20] have 
also shown the effectiveness of passive surveillance in 
identifying age groups that should be targeted by control 
systems.

Collection of data at health care facilities is more cost-
effective than testing for malaria at the community level 
and can be easily maintained year round [15]. How-
ever, these types of data only include those community 
members who have sought medical attention. Informa-
tion on malaria prevalence obtained by screening febrile 
cases cannot be used for accurate estimations of the 
true malaria prevalence in communities [58, 59]. Nev-
ertheless, the analyses demonstrated that data recorded 
at health facilities can be used to determine those areas 
where Plasmodium circulation is very high. Studies per-
formed in Rwanda have shown that active surveillance 
informed by data previously collected by passive surveil-
lance can be used to analyse malaria hot spots and iden-
tify the likelihood of asymptomatic cases at community 
level [54].

Among the tested febrile cases, 28.5  % tested posi-
tive for malaria, which indicates that a wide proportion 
of febrile cases were due to other causes. Similar low 
malaria prevalence among febrile cases has been reported 
in other endemic countries of sub-Saharan Africa [25, 26, 
60, 61]. In the study area, fever symptoms recorded in 
adults and inhabitants of more developed communities 
were more likely to be linked to non-malaria infections. 
Community clusters with high non-malaria febrile illness 
were found close to the coastline where levels of malaria 
prevalence are low [10]. Several prospective studies have 
found that febrile cases are often due to bacterial or viral 
diseases that mimic symptoms of malaria (e.g., dengue, 
chikungunya, leptospirosis, ehrlichiosis, brucellosis, 
enteric fevers) [25, 26]. New, emerging diseases are often 
misdiagnosed as malaria because they have similar symp-
toms, and this may be especially common for individuals 
with dengue fever who are, in practice, often treated with 
anti-malarials but without benefit [28, 62].

Conclusions
The results obtained from data recorded at the 
Msambweni Hospital allowed describing temporal and 
spatial of malaria risk. These findings also suggested that 

a

b

Fig. 6  Estimated effect of spatial structured covariate fspat(Village) 
on the association of fever with malaria infection obtained by STAR 
model. a Mean OR for malaria-related fever in each community; b 
Communities showing a significant (p < 0.05) negative or positive 
effect in their proportion of Plasmodium infections among their 
febrile cases

Table 3  Seasonal mosquito collections and proportion of houses positive for female anopheline mosquitoes, 2009–2013

a  Number of unique houses sampled
b  Number of house collections

Study period (houses sampled) An. funestus An. gambiae Anopheles genus Co-infestation

All periods (2463)a 282 (11.4 %) 255 (10.4 %) 461 (18.7 %) 76 (3.1 %)

Season

HDS (787)b 27 (3.4 %) 59 (7.5 %) 73 (9.7 %) 13 (1.7 %)

 LRS (1132)b 114 (10.1 %) 109 (9.6 %) 198 (17.4 %) 23 (2.2 %)

CDS (1126)b 92 (8.1 %) 39 (3.4 %) 118 (10.4 %) 13 (1.2 %)

 SRS (1080)b 76 (7 %) 69 (6.3 %) 128 (11.8 %) 17 (1.6 %)
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passive surveillance can be an effective and low-cost 
method to monitor the impact of mass LLIN distribu-
tion. This information can be used by surveillance and 
control agencies for more effective targeting of interven-
tions based on LLIN distribution or IRS. Notably, the 
study results highlighted that the majority of fevers in 
coastal Kenya were not linked to smear-positive malaria. 
Improved testing for proper diagnosis of febrile cases 
at health care facilities could further define geographi-
cal hot spots and seasonality of these other competing 
causes of life-threatening and disabling infections, and, 
consequently, allow health systems to apply better, cause-
specific control.
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Village 1.1 3.3 1.5

a

b
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Fig. 7  Month as non-linear predictor for presence of female Anoph-
eles mosquitoes obtained by GAMM. a OR function of An. funestus 
presence; b OR function of An. gambiae presence; c OR function of 
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