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Abstract 

Background:  Over the past 15 years, mortality and morbidity due to malaria have been reduced substantially in 
sub-Saharan Africa and local elimination has been achieved in some settings. This study addresses the bio-ecology 
of larval and adult stages of malaria vectors, Plasmodium infection in Anopheles gambiae s.l. in the city of Conakry, 
Guinea, and discusses the prospect for malaria elimination.

Methods:  Water bodies were prospected to identify potential mosquito breeding sites for 6 days each in the dry 
season (January 2013) and in the rainy season (August 2013), using the dipping method. Adult mosquitoes were 
collected in 15 communities in the five districts of Conakry using exit traps and indoor spraying catches over a 1-year 
period (November 2012 to October 2013). Molecular approaches were employed for identification of Anopheles 
species, including An. coluzzii and An. gambiae s.s. Individual An. gambiae mosquitoes were tested for Plasmodium fal-
ciparum and P. vivax sporozoites using the VecTest™ malaria panel assay and an enzyme-linked immunosorbent assay. 
A systematic research of Ministry of Health statistical yearbooks was performed to determine malaria prevalence in 
children below the age of 5 years.

Results:  Culex larval breeding sites were observed in large numbers throughout Conakry in both seasons. While 
Anopheles larval breeding sites were less frequent than Culex breeding sites, there was a high odds of finding An. gam-
biae mosquito larvae in agricultural sites during the rainy season. Over the 1-year study period, a total of 14,334 adult 
mosquitoes were collected; 14,135 Culex (98.6 %) and 161 (1.1 %) from the An. gambiae complex. One-hundred and 
twelve Anopheles mosquitoes, mainly collected from rice fields and gardens, were subjected to molecular analysis. 
Most of the mosquitoes were An. gambiae s.s. (n = 102; 91.1 %) while the remaining 10 (8.9 %) were An. melas. The 
molecular M form of An. gambiae s.s. was predominant (n = 89; 79.5 %). The proportions of kdr genotype in the An. 
gambiae s.s. M and S form were 65.2 and 81.8 % (n = 9), respectively. No sporozoite infection were detected in any of 
the mosquitoes tested. The prevalence of Plasmodium recorded in children aged below 5 years was relatively low and 
varied between 2.2 and 7.6 % from 2009 to 2012.

Conclusions:  The low density of larval and adult stages of Anopheles mosquitoes, the absence of infected An. gam-
biae species and the low prevalence of Plasmodium in under 5-year-old children are important features that might 
facilitate malaria elimination in Conakry. The heterogeneity in species composition and resistance profiles call for vec-
tor control interventions that are tailored to the local bio-ecological setting.
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Background
Malaria is one of the most important diseases of pov-
erty and its public health relevance, particularly in sub-
Saharan Africa, cannot be overemphasized [1]. Yet, over 
the past 15 years, significant progress has been made, as 
malaria prevalence has been reduced by 50 %, as shown 
by Blatt and colleagues [2]. Prevention, particularly 
through insecticide-treated net (ITN) distribution and 
other vector control measures, was key in cutting down 
malaria transmission, clinical episodes and mortality. 
However, the effectiveness of vector control interventions 
depends on accurate information regarding distribution 
and abundance of the main vector species and current 
levels of insecticide resistance [3]. There is a critical need 
for a better understanding of the ecology of malaria vec-
tors for control programmes to succeed. Study of spatial 
and temporal changes in anopheline mosquito abun-
dance, quantification of transmission potential of vec-
tor populations, and description of distributions of host 
populations [4] are necessary prerequisites for predict-
ing high-risk areas and implementing an effective disease 
control programme [5].

In Guinea, malaria is the leading cause of morbidity, 
hospitalization, clinical consultations in regional paedi-
atric services [6, 7]. Moroever, according to the Global 
Burden of Disease (GBD) report in 2010, malaria is the 
leading cause of death in the population accounting 
for 22.5 % of all causes of death [8]. Malaria is endemic 
throughout the country, with holo-endemicity in Lower 
Maritime Guinea where the capital, Conakry, is situated 
[9]. From the first reports of Laveran in 1904 to recent 
observations in the new Millennium [10–12], entomo-
logical surveys performed in Guinea have shown the 
presence of the main malaria vectors, Anopheles gambiae 
s.l. and An. funestus, with an intense transmission poten-
tial [9]. As in many other sub-Saharan countries, sev-
eral studies has been carried out in Guinea to assess the 
impact of malaria and explore possible strategies to inter-
upt malaria transmission. Vezenegho et al. [12] evaluated 
malaria vector composition and insecticide susceptibil-
ity status in three localities in Guinea. Their aim was to 
provide data on malaria vector species composition and 
insecticide susceptibility status in Guinea. A similar study 
was conducted by Carnevale et al. [9] in order to estimate 
the diversity, infectivity rates and insecticide resistance 
levels in Anopheles species in Guinea. However, there is 
no recent study that reports the distribution of mosquito 
vectors in Conakry. Moreover, there is an increasing need 
for a thorough understanding of the ecological processes 
of malaria transmission in this urban area. Characteriz-
ing and mapping vector habitats will help to spatially rank 
malaria risk and focus control activities on a smaller scale 
[13]. To date no molecular identification of members of 

the An. gambiae complex had been undertaken in Cona-
kry. Against this background, the current study aimed at 
establishing the relationship between breeding habitats, 
larval population size, species abundance, and seasonal 
variations in Conakry. It might also shed new light on the 
molecular forms and resistance status of the members 
of the An. gambiae s.l. complex and the infection rate of 
vectors. Insight gained will be useful in providing base-
line data to support the national programme for malaria 
control in Conakry.

Methods
Ethical considerations
The study protocol was approved by the Ethics Com-
mittee of the Liverpool School of Tropical Medicine 
(1189RS). The study received ethics approval from the 
Ethics Committee of the Ministry of Health of Guinea 
(20/CNERS/12). Information about the study was deliv-
ered in the most spoken local languages: Susu, Foula and 
Malinké. Written informed consent was obtained from 
community leaders and heads of households before start-
ing the study. Potential mosquito collectors were required 
to sign a consent form before working as collectors.

Study sites
The current study was carried out in Conakry, a pen-
insula of 308 km2 (Fig. 1), 34 km in length and 1–6 km 
wide. An estimated 2.5 million people live in Conakry, 
accounting for approximately one quarter of the total 
population of Guinea and 60 % of the urban population. 
Conakry is administratively divided into five districts: 
Dixinn, Kaloum, Matam, Matoto, and Ratoma. The dis-
trict of Dixinn expands over 40.5  km2 with a popula-
tion of 240,838, thus a density of 5946 inhabitants per 
km2. The district of Kaloum is 25 km2 with a population 
of 121,361 and a density of 4854 inhabitants per km2. 
The district of Matam has a surface of only 8  km2 with 
a population of 256,638 inhabitants, and hence, a very 
high density of 32,079 inhabitants per km2. The district 
of Matoto is 36 km2 with a population of 636,289 and a 
density of 17,674 inhabitants per km2. Ratoma is the larg-
est district (62 km2) with a population of 531,279, hence 
a population density of 8569 inhabitants per km2. The 
average population density of Conakry is about 13,824 
inhabitants per km2. The city, emerging from the conti-
nent, is surrounded at the end by the ocean and at the 
continental level by vast mangrove swamps. The city is 
crossed at both sides (west and east coasts) with stretches 
of the ocean that remain more or less humid throughout 
the year. Conakry is characterized by a hot and humid 
tropical climate, with a rainy season that lasts from 
May to November and a dry season from December to 
April [14]. ITNs constitute the main malaria preventive 
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measure in Conakry, although the estimated coverage 
rate is only moderate (36 %) [6].

Breeding site mapping
With the help of a detailed city map, a survey of larval 
breeding sites was undertaken. Larval breeding site pros-
pecting was carried out for 6 days each in the dry season 
(January 2013) and in the rainy season (August 2013). 
The study area was inspected for open water bodies that 
were examined for mosquito larvae and pupae. A dipping 
technique for sampling larvae and pupae [15, 16], and 
visual observations of containers, were used for identifi-
cation of breeding sites. The dipping technique was used 
for breeding sites that were densely populated by larvae 

and/or pupae, in order to identify the genera of mosquito 
larvae (e.g. Culex, Anopheles, and Aedes). In breeding 
sites that were large enough for the dipping technique 
to be employed, when larvae or pupae were not imme-
diately found, 10 dips were performed, using a stand-
ard 200-ml dipper. The presence of larvae or pupae was 
defined by at least one larvae or pupae obtained in the 
10 dips. In breeding sites where the dipping technique 
could not be used (e.g. containers), the water was trans-
ferred in a white clear tray for observation. All mosquito 
breeding sites were characterized according to their type, 
movement of water, turbidity, and exposure to sunlight, 
as described by Machault et al. [17]. Geographical coor-
dinates of breeding sites were obtained by a hand-held 

Fig. 1  Distribution of mosquito breeding sites during the seasons in Conakry
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global positioning system (GPS) receiver (Garmin GPS 
Map  60csx, Garmin International Inc., Olathe, USA) 
(Fig. 1).

Adult mosquito collection
Based on the information gathered from the identifi-
cation of larval breeding sites, 15 sectors were chosen 
according to potential exposure of the population to 
mosquito bites, and information provided by district 
leaders. From this information, mosquito collection sites 
were selected to represent different sectors of Conakry. 
This was to allow the collection of as many samples as 
possible.

Adult mosquitoes were collected monthly over a 1-year 
period from December 2012 to November 2013, using 
exit traps (ETC) and pyrethrum knock-down spray col-
lections (PSC) [18]. Mosquitoes were collected monthly 
within 15 sites, selected in the five districts of Cona-
kry. At each site, five traps were fixed on the windows 
of sleeping rooms, in five different households, for two 
consecutive days per district. Mosquitoes in the traps 
were collected every morning between 6 a.m. and 9 a.m. 
PSC were performed early each morning from 6 a.m. 
and 9. a.m. before opening the windows, in three rooms 
selected in different households during 2  days per dis-
trict. ETCs were undertaken in different households than 
PSC,and the same households were used throughout the 
1-year collections. However, in instances where individu-
als were absent or refused to participate, mosquitoes 
were collected in neighbouring households. The collected 
mosquitoes were identified at species level using readily 
available identification keys [19, 20]. After determining 
their feeding status, mosquitoes were dissected for parity.

Species identification and determination of kdr status
Genomic DNA was extracted from the legs of the mos-
quitoes, morphologically identified as An. gambiae, using 
the boiling preparation method [21]. Briefly, the legs were 
crushed in 100 ml of distilled water and boiled at 95  °C 
for 10 min. The supernatant was used as template for the 
polymerase chain reaction-restriction fragment length 
polymorphism (PCR–RFLP) method. The extracted DNA 
was used for species identification using the PCR–RFLP 
method [22]. The determination of the knock-down 
mutation conferring resistance to pyrethroids was under-
taken using the method of Martinez-Torres et al. [23].

Determination of sporozoite rates
Individual An. gambiae mosquitoes were tested for Plas-
modium falciparum and P. vivax sporozoites, using the 
VecTest™ dipstick assay (Medical Analysis Systems™, 
Camarillo, CA, USA), according to the manufacturer’s 
protocol. The Malaria Panel Assay is based on the dual 

monoclonal antibody sandwich principle [24]. For the 
confirmation of results, mosquito samples were further 
submitted to Plasmodium circumsporozoite enzyme-
linked immunosorbent assay (ELISA), using the protocol 
described by Wirtz and colleagues [25].

Malaria infection prevalence in Conakry
A systematic research of Ministry of Health Statistical 
Yearbooks was performed to determine malaria preva-
lence in children below the age of 5  years. The number 
of total consultations of children under the age of 5 years 
was compared to children examined with malaria over a 
4-year period from 2009 to 2012 [26]. Furthermore, the 
malaria prevalence was compared to Anopheles densities 
at district level to appreciate the correlation between the 
two parameters.

Statistical analysis
Data were entered into an Excel file and analysed using 
STATA version 13 (Stata Corp, College Station, TX, 
USA). A bivariate logistic regression model was used to 
identify parameters that determine the presence of Culex 
and Anopheles larvae and mosquito pupae. The Kruskal–
Wallis equality of population rank test was used to com-
pare adult mosquito densities between study sites and 
months. The Wilcoxon rank test was used to compare 
densities between seasons and the χ2 test for comparing 
parity rates in the dry and rainy season and the propor-
tion of Culex and Anopheles breeding sites. ESRI ArcMap 
version 10.2.1 (Redlands, CA, USA) was employed for 
generating maps.

Results
Distribution of potential mosquito breeding sites 
in Conakry
Figure  1 shows the distribution of potential mosquito 
breeding sites in Conakry. Table 1 summarizes the num-
bers and percentage of sites where Anopheles and Culex 
larvae were found, stratified by habitat types and season. 
Overall, 94 potential breeding sites were examined; 53 
(56.4 %) in the rainy season of which 3 (3.2 %) were only 
inhabited by Aedes and 41 (43.6 %) in the dry season. In 
the dry season, investigated sites were mainly composed 
of gutters (48.8 %), stretches of the ocean (19.5 %), pools 
of water (9.8 %), irrigated rice fields (7.3 %), water tanks 
(7.3 %), and septic tanks (7.3 %). In the rainy season, mos-
quito larvae and pupae were mainly found in blocked 
gutters (35.8  %), isolated pools of water (13.2  %), water 
tanks (13.2  %), irrigated rice fields (9.4  %), septic tanks 
(9.4 %), containers (7.6 %), and discarded tyres (5.7 %). In 
both seasons, there were significantly more breeding sites 
inhabited by Culex compared to Anopheles larvae (dry 
season: p < 0.001; rainy season: p = 0.001) (Table 1).
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Habitat characteristics of larval breeding sites
Table 2 shows the results of the bivariate logistic regres-
sion models used to identify factors that govern the 
presence of mosquito instars and the presence of pupae 
of Anopheles and Culex. It was found that Culex larvae 
develop in turbid waters [odds ratio (OR) 16.0; 95 % con-
fidence interval (CI) 5.0–51.4], gutters (OR 6.8, 95 % CI 
2.7–17.4) and in the dry season (OR 13.0; 95 % CI 1.6–
104.1) as in the rainy season (OR 3.1; 95 % CI 1.7–5.8). 
These larvae were likely to develop in shady breeding 
sites (OR 4.8; 95 % CI 1.6–14.0). Anopheles larvae devel-
opment is associated with irrigated rice fields (OR 30.8; 
95  % CI 4.1–232.0) and pools of water (OR 15.4; 95  % 
CI 2.4–98.3). The development of Anopheles and Culex 
pupae is accelerated in turbid (OR 4.7; 95 % CI 2.3–9.6) 
and stagnant water (OR 13.5; 95  % CI 3.5–52.3) mainly 
during the dry season (OR 25.4; 95  % CI 5.6–116.4) 
(Table 2).

Adult mosquito fauna in Conakry
During the 1-year study, a total of 14,334 mosquitoes 
were collected by ETC (1524 nights) and 495 pyre-
thrum spray catches. ETC allowed the collection of 
7594 (53.0  %) mosquitoes and PSC the remaining 6740 
(47.0 %) mosquitoes. Ten species of mosquitoes belong-
ing to four genera were identified: Culex (98.6 %), Anoph-
eles (1.1 %), Aedes (0.19 %), and Mansonia (0.08 %). Culex 
decens (74.1 %) and Culex quinquefasciatus (24.3 %) were 
the two most common Culex species identified. An. gam-
biae s.l. was the only anopheline collected in the study 
area.

Distribution of mosquitoes in Conakry
Mosquito densities varied from one site to another 
(Kruskal–Wallis (KW) test  =  49.6, degree of freedom 
(df ) = 14, p < 0.001) (Table 3). The highest density was 
obtained at Tombo [42.3 females/house/day (f/h/d)] in 

the district of Kaloum. The average density of mosqui-
toes collected in the districts of Dixinn, Kaloum, Matam, 
Ratoma and Matoto were 24.9, 24.3, 18.5, 17.4 and 16.2 
f/h/d, respectively (p = 0.067).

Culex densities ranged from 7.7 to 53.99 f/h/d in the 
collection sites. Anopheles mosquitoes were mainly 
obtained in Sonfonia I (1.8 f/h/d), Sonfonia II (0.4 f/h/d) 
and at Lassanayah barrage (0.1 f/h/d). In Tombolia, 
Gbessia, Bonagui, Bonfi, Mafanko, and Camayenne, no 
Anopheles mosquitoes were obtained.

Variation of mosquito density
Mosquito density showed significant variation accord-
ing to the month of collection (KW test = 43.85, df = 11, 
p < 0.001). The highest densities were obtained in the dry 
season months of December (30.4 f/h/d), January (45.1 
f/h/d), February (32.8 f/h/d), March (24.3 f/h/d), and 
April (25.1 f/h/d). The average density in the dry season 
was statistically higher than the average density of mos-
quitoes collected in the rainy season (29.4 vs 12.0 f/h/d; 
Wilcoxon rank test = 2.84; p = 0.005). The lowest density 
(7.9 f/h/d) was collected in July, coinciding with the peak 
precipitation.

Culex mosquito density dominated that of Anopheles 
throughout the year. For Culex mosquitoes, the high-
est densities (ranging between 25.1 and 44.9 f/h/d) were 
obtained in the dry season. During the rainy season, 
the density decreased significantly to values ranging 
between 7.5 and 16.2 f/h/d. On the contrary, An. gam-
biae density was insignificant (0–0.2 f/h/d) in the dry 
season and increased slightly to 0.4 f/h/d in the rainy 
season. The densities of Culex and Anopheles were 
log transformed, which showed variability in abun-
dance over both seasons (Fig.  2). Overall, there is a 
negative correlation between Culex density and rainfall 
(r = −0.67), while a positive correlation was observed 
for Anopheles (r = 0.76).

Table 1  Habitat characteristics and proportions of Culex and Anopheles larvae breeding sites in the dry and rainy seasons

Habitat characteristic Dry season Rainy season

Breeding site Culex Anopheles Breeding site Culex Anopheles

Gutter 20 (48.8) 20 (100) 0 (0) 19 (38) 17 (89.5) 2 (10.5)

Stretch of ocean 8 (19.5) 8 (100) 0 (0) 3 (6) 3 (100) 0 (0)

Irrigated rice fields 3 (7.3) 3 (100) 0 (0) 5 (10) 4 (80) 5 (100)

Pools of water 4 (9.8) 4 (100) 3 (80) 7 (14) 4 (57.1) 3 (42.9)

Water tanks 3 (7.3) 3 (100) 0 (0) 7 (14) 7 (100) 2 (28.6)

Septic tanks 3 (7.3) 3 (100) 0 (0) 5 (9.4) 4 (80) 0 (0)

Tyres 0 (0) 0 (0) 0 (0) 3 (5.7) 2 (66.7) 0 (0)

Containers 0 (0) 0 (0) 0 (0) 4 (7.5) 2 (50) 1 (25)

Total 41 41 (100) 3 (7.3) 53 44 (83) 13 (24.5)
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Composition of feeding status and variation of Culex 
and Anopheles mosquitoes parity rate
Out of the 14,135 Culex collected, 39.2  % were unfed, 
28.6  % were fed, 12.6  % were semi-gravid, and the 
remaining 19.6  % were gravid. For An. gambiae, out of 
161 specimens, 33.5 % were unfed, 52.2 % were fed, 6.8 % 
were semi-gravid, and 7.5 % were gravid. The feeding rate 
of An. gambiae (59.3  %) was higher than that of Culex 
(56.0  %) (χ2 =  7.92; p =  0.005). For Anopheles, similar 
feeding rates were obtained by ETC and PSC (54.6 % vs 
72.1  %; χ2 =  0.97; p =  0.324). For Culex, on the other 
hand, different feeding rates were observed using ETC 
and PSC (17.3 % vs 67.7 %; χ2 = 1600; p < 0.001).

The results showed seasonal variation in the parity 
rate. For both species, the parity rate was higher during 
the dry season with 70.0 % of An. gambiae and 54.9 % of 
Culex spp. being parous. In the rainy season, significantly 
lower parity rates were observed for Anopheles (30.3  %; 
χ2  =  6.18; p  <  0.013) and Culex mosquitoes (35.9  %; 
χ2 = 174.39; p < 0.001) (Fig. 3).

Characterization of Anopheles
Those 112 mosquitoes identified as An. gambiae s.l. were 
analysed for species identification. The overall frequency 
of the molecular M form (An. coluzzii; 79.5 %) was higher 
than that of the molecular S form (An. gambiae s.s.; 
11.6  %) but the relative prevalence of these species var-
ied throughout the collecting sites. Ten (8.9 %) were An. 
melas collected only at Sonfonia in the district of Ratoma 
(Fig. 4).

Distribution of the kdr mutation
There were 102 mosquitoes identified as An. coluzzii and 
An. gambiae s.s., and those were analysed for the Leu-Phe 
kdr mutation. The kdr mutation occurred in both species 
with respective frequencies of 65.2 and 81.8 %. The over-
all kdr mutation was 65.7 % (Table 4).

Determination of sporozoite rates
Prevalence of P. falciparum and P. vivax were assessed 
in all 112 Anopheles mosquitoes, using the VecTest™ kit 

Table 2  Results of bivariate logistic regression models

Outcome presence vs absence of Anopheles larvae, Culex larvae and pupae (Anopheles and Culex); explanatory variable habitat characteristics
a   Crude odds ratio (OR)
b   P value based on likelihood ratio test (LRT)

Habitat characteristics Culex Anopheles Pupae

ORa 95 % CI P value ORa 95 % CI P value ORa 95 % CI P value

Season

 Dry 13 (1.6–104.1) 0.016 0.27 (0.07–1.03) 0.05 25.4 (5.6–116.4) <0.001

 Rainy 3.1 (1.7–5.8) <0.001 0.29 (0.15–0.56) <0.001 0.77 (0.44–0.32) 0.338

Turbidity

 Clear 0.18 (0.05–0.70) 0.014 1 0.19 (0.07–0.47) <0.001

 Turbid 16 (5–51.4) <0.001 0.53 (0.29–1.00) 0.05 4.7 (2.3–9.6) <0.001

Water movement

 Stagnant 12 (3.32–43.42) <0.001 3.28 (0.39–26.93) 0.27 13.5 (3.5–52.3) <0.001

 Flowing 1 (0.37–2.66) 0.796 0.07 (0.01–0.50) 0.009 0.23 (0.06–0.81) 0.022

Sunlight

 Sunlight 1.28 (0.36–4.57) 0.699 1 1.04 (0.39–2.81) 0.931

 Shaded 4.8 (1.6–14) 0.005 0.27 (0.15–0.47) <0.001 1.87 (0.79–4.42) 0.151

Habitat

 Stretch of sea 0.39 (0.08–1.99) 0.259 1 0.92 (0.20–4.16) 0.913

 Irrigated rice field 1.03 (0.10–10.23) 0.980 30.8 (4.1–232) 0.001 0.57 (0.12–2.85) 0.498

 Pool of water 0.39 (0.08–1.99) 0.071 15.4 (2.4–98.3) 0.004 0.41 (0.10–1.66) 0.030

 Water tank 1 4.62 (0.56–37.91) 0.154 0.52 (0.12–2.22) 0.375

 Sceptic tank 1.03 (0.10–10.23) 0.980 1 1.03 (0.18–5.8) 0.970

 Tyre 1 1 0.17 (0.01–2.11) 0.169

 Container 0.44 (0.04–5.11) 0.513 6.17 (0.43–89.34) 0.182 1

 Gutter 6.8 (2.7–17.4) <0.001 0.05 (0.01–0.22) <0.001 2.9 (1.41–5.95) 0.004



Page 7 of 13Kouassi et al. Malar J  (2016) 15:175 

Table 3  Distribution of Culex spp. and Anopheles density collected in the city of Conakry from December 2012 to Novem-
ber 2013

Site of collection Anopheles gambiae s.l. Culex spp. Total of mosquitoes

ETC PSC Total (CI) ETC PSC Total (CI) ETC PSC Total (CI)

Matoto

 Tombolia 0 0 0 (0) 8.43 13.85 22.28 (13.18–31.39) 8.43 13.85 22.28 (13.18–31.39)

 Gbessia 0 0 0 (0) 9.27 11.44 20.71 (7.99–32.43) 9.28 11.44 20.72 (8.01–32.44)

 Bonagui 0 0 0 (0) 2.91 10.90 13.81 (7.53–20.1) 2.93 10.90 13.83 (7.56–20.11)

 Lassanaya 0.07 0.03 0.10 (0–0.25) 3.19 5.49 8.68 (3.01–15.24) 3.27 5.51 8.78 (2.19–15.37)

Matam

 Boussoura 0.05 0 0.05 (0–0.13) 5.68 23.05 28.73 (10.35–47.13) 5.75 23.05 28.8 (10.37–47.24)

 Bonfi 0 0 0 (0) 3.55 13.04 16.59 (2.18–31.55) 3.55 13.04 16.59 (2.18–28.80)

 Mafanko 0 0 0 (0) 4.37 5.69 10.06 (3.5–16.62) 4.42 5.75 10.17 (3.62–16.72)

Ratoma

 Taouya 0.04 0 0.04 (0–0.09) 5.72 17.92 23.64 (12.43–34.82) 5.78 17.94 23.72 (12.53–34.91)

 Dar es Alaam 0 0.04 0.04 (0–0.13) 4.87 12.68 17.55 (5.36–29.73) 4.87 12.72 17.59 (5.41–29.76)

 Sonfonia I 0.79 1 1.79 (0.53–3.02) 2.67 10.875 13.55 (6.66–20.44) 3.59 11.90 15.49 (8.25–22.73)

 Sonfonia II 0.21 0.21 0.42 (0.08–0.76) 3.69 8.71 12.40 (4.62–20.19) 3.91 8.92 12.83 (4.92–20.75)

Dixinn

 Belle vue 0.03 0 0.03 (0–0.06) 11.10 23.71 34.81 (11.38–58.25) 11.16 23.74 34.9 (11.5–58.28)

 Camayenne 0 0 0 (0) 3.26 11.64 14.9 (9.98–19.83) 3.26 11.64 14.9 (9.98–19.83)

Kaloum

 Tombo 0.01 0.03 0.04 (0–0.12) 2.75 39.54 42.29 (16.73–67.85) 2.76 39.57 42.33 (16.79–67.86)

 Coronthie 0.04 0 0.04 (0–0.09) 1.72 4.44 6.16 (2.77–9.54) 1.76 4.44 6.20 (2.82–9.58)

Fig. 2  Variation of mosquito density according to the season
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and circumsporozoite ELISA. Both VecTest™ and ELISA 
analyses revealed that none of the An. gambiae speci-
mens were infected, neither with P. falciparum nor with 
P. vivax.

Malaria infection prevalence in Conakry
The malaria prevalence observed in children below the 
age of five years was relatively low: 2.2 % in 2009, 7.6 % 
in 2010, 5.9  % in 2011 and 6.7  % in 2012. The average 
prevalence over the 4-year observation period was 5.6 % 
(Fig. 5). The mean prevalence from 2009 to 2011 is 0 % 
in Kaloum, 3.8 % in Dixinn, 1.7 % in Matam and 7.8 % in 
Ratoma. There was a weak, negative correlation between 
district prevalence and Anopheles densities (r = −0.081).

Discussion
Bio‑ecology of Culex and Anopheles mosquitoes
In the current study in Conakry, ETC and PSC revealed 
an abundance of mosquitoes, dominated by Culex, par-
ticularly Cx. decens and Cx. quinquefasciatus. On the 
other hand, An. gambiae, the main malaria vector, was 
caught only rarely.

The distribution pattern of adult mosquitoes is related 
to habitat preferences of immature stages. Habitats may 
be natural or man-made, temporary or permanent. 
Moreover, each species has specific habitat preferences 
[27]. Depending on the availability of breeding sites, 
Culex and Anopheles show distinct spatial heterogeities. 
Culex were found in most of the collection sites, which 
might be explained by the extent of polluted breeding 
sources that is common for large cities in Africa. Adult 
An. gambiae were collected mainly in Sonfonia and Las-
sanaya, both located in the periphery of Conakry. Urban 
growth in developing countries often results in devel-
opment and sprawl of poor quality housing, inadequate 
water supplies and sanitation, and overcrowding [28]. In 
such areas, human activities are quite similar to those 
observed in traditional villages, characterized by the 
presence of small garden plots, irrigation trenches, and 
excavations [29], and continue to provide breeding sites 
for malaria vectors [30]. Both collection sites are located 
near irrigated agricultural spaces, where Anopheles 
breeding sites were observed. With regard to breeding 
requirements, there is evidence of adaptation of Anoph-
eles species to urban settings [31]. Malaria vector den-
sity is typically higher in these peri-urban areas where 
malaria transmission remains a significant problem [32]. 
The importance of urban agricultural activity on malaria 
transmission has been reported before in cities of Bur-
kina Faso, Côte d’Ivoire and Ghana [33–35].

In the present study, mosquito densities varied accord-
ing to the month (and season) of collection with a nega-
tive correlation between the amount of precipitation 
and average density of adult mosquitoes. The highest 
densities were observed during the dry season. Dur-
ing the rainy season, the average density of mosquitoes 
was about half that observed in the dry season. A simi-
lar observation has been made in Bangladesh in a study 
addressing the seasonal abundance of mosquitoes and 
their association with meteorological features [36]. The 
lower adult mosquito density may be attributed to rainfall 
washing away mosquito eggs and larvae from breeding 
sites [37], mainly for Culex mosquitoes. Indeed, in all col-
lection sites, Culex density in the rainy season was signif-
icantly lower, while Anopheles density showed a relative 
increase, mainly in areas in close proximity to irrigated 
rice fields. The higher number of Anopheles breeding 
sites in the rainy season compared to the dry season is in 
accordance with previous observations made in western 
Côte d’Ivoire [15] and in southern Sri Lanka [38]. Rains 
are known to have a dual effect on the development of 
mosquito larvae. New mosquito breeding sites are cre-
ated during periods of rain, while previously existing sites 
are washed away [37]. It has been observed that newly 

Fig. 3  Evolution of Culex and Anopheles parity rate around the year
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formed breeding sites were rapidly colonized by Anoph-
eles larvae (as these mosquitoes prefer such habitats). In 
the rainy season, Anopheles larvae were found not only 
in irrigated areas, but also in ditches, blocked gutters and 
stable, clear pools of water (most of them temporary), 
highlighting the importance of temporary water collec-
tions in the breeding of Anopheles mosquitoes [39]. In 
most tropical areas, mosquito populations are expected 
to oscillate cyclically as precipitation fluctuates, because 

the number of available breeding sites is a function of 
rainfall [40].

Characterization of Anopheles in Conakry
The data presented here show that both An. coluzzii (M 
molecular form) and An. gambiae s.s. (S molecular forms) 
are present in Conakry, confirming previous observations 
from studies conducted elsewhere in West Africa [12, 
41, 42]. Interestingly, An. coluzzii was more prevalent in 

Fig. 4  Distribution of the Anopheles gambiae species and molecular form in Conakry
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Conakry compared to An. gambiae s.s., which is consist-
ent with findings of de Souza et al., who reported that An. 
coluzzii dominated An. gambiae s.s. in Monrovia, Liberia 
[21]. The relative dominance of one species over another 
is believed to be associated with breeding site character-
istics [43]. In general, An. gambiae s.s. is not well adapted 
to rice paddies in West Africa, whilst An. coluzzii devel-
ops well [44]. In a study addressing Anopheles breeding 
pattern, Gimonneau et  al. [45] demonstrated that the 
rice field appeared to be the core habitat of An. coluzzii 

from which it successfully emerged and spread in the 
surrounding area where An. gambiae s.s. was mostly 
thriving. The current findings confirm this observation, 
since the majority of An. coluzzii collected in Conakry 
were from rice-growing areas nearby Sonfonia. Diabate 
et al. also reported that An. coluzzii mosquitoes tend to 
be associated with flooded or irrigated sites that provide 
permanent breeding conditions, whereas An. gambiae s.s. 
mosquitoes are associated with rain-dependent tempo-
rary sites [42]. Additionally, An. melas mosquitoes were 

Table 4  Summary of the kdr genotypes for Anopheles gambiae molecular forms in Conakry

District An. gambiae molecular form Total Kdr genotype

RR RS SS (%) of resistant (R and RS)

Matoto An. gambiae s.s. 4 4 0 0 4 (100)

Matam An. coluzzii 1 0 0 1 1 (50)

An. gambiae s.s. 1 0 0 1 0 (0)

Kaloum An. coluzzii 1 0 0 1 1 (100)

An. gambiae s.s. 4 2 0 0 2 (50)

Ratoma An. coluzzii 84 28 28 25 56 (60.2)

An. gambiae s.s. 7 2 2 1 4 (57.1)

Conakry An. coluzzii 89 30 28 27 58 (65.2)

An. gambiae s.s. 13 7 2 2 9 (81.8)

Total 102 37 30 29 67 (65.7)

Fig. 5  Malaria infection prevalence in children <5 years old, in Conakry
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observed, which confirms previous observations that An. 
melas primarily occurs in coastal areas bordering the 
ocean that are subject to flooding [46].

In this study, kdr mutations were found in both An. 
coluzzii and An. gambiae s.s. The kdr mutation was ini-
tially thought to be present only in the An. gambiae 
molecular S form. However, studies have shown its 
occurrence in the M molecular form [47]. It is assumed 
that the presence of the mutation in the M form may 
be a result of introgression from the S form [48]. How-
ever, observations from the Island of Bioko, Equatorial 
Guinea, where the mutation was observed only in the M 
form [49] and the absence of the kdr gene in the nearest 
mainland population in Tiko, Cameroon, suggests that 
the emergence of kdr resistance in the M population of 
An. gambiae occurred as an independent evolutionary 
event. It must be noted that rice fields around Sonfonia, 
where most of the Anopheles mosquitoes were collected, 
is flooded mangrove swamp where neither chemical fer-
tilizers, pesticides, nor herbicides were used [50]. These 
levels of kdr resistance to pyrethroids and DDT might 
be due to the usage of ITNs that has been progressively 
scaled up in the study area [51]. Further investigations 
need to address this issue in greater depth. Other stud-
ies have shown a strong increase in the frequency of the 
kdr gene immediately following the implementation of 
an ITN campaign [52]. Although these results may rep-
resent initial information, it was recently demonstrated 
that there is no significant association between the pres-
ence of the 1014F kdr allele and ability to survive expo-
sure to pyrethroid [47]. Insecticide susceptibility testing 
and bio-assay data are necessary to validate these find-
ings. Of note, insecticide susceptibility testing requires 
a collection of a sufficiently large number of Anopheles 
larvae and additional laboratory equipment, which were 
not available when the current study was conducted. 
Emerging individuals from resting, fed-female mosqui-
toes could also help in addressing this issue.

In characterizing the malaria vector species in Conakry, 
An. gambiae mosquitoes were tested for P. falciparum 
and P. vivax sporozoite infection. None of the mosqui-
toes tested was found positive. The absence of infection 
may be associated with the very low numbers of Anophe-
les collected. In the present study, An. gambiae and Culex 
spp. showed significant variation in their parity rate, 
which was higher during the dry season compared to the 
rainy season. The parity rate of An. gambiae and Culex 
spp. thus suggests higher longevity during the dry season, 
likely to maintain mosquito-borne disease transmission 
during this season [53]. However, most of the Anopheles 
mosquitoes were collected in the rainy season, while the 
population average longevity was significantly low, thus 
reducing the odds of finding mosquitoes with sporozoite 

infection. Mosquito collection employing other meth-
ods, such as human landing catches, could help deter-
mine the vector infection and infectivity rates. Malaria is 
nonetheless present in Conakry, with an average preva-
lence of 5.6  % in children aged  <5  years as reported by 
the national malaria control programme over a 4-year 
period (2009–2012) [54], holding the lowest prevalence 
of malaria in Guinea. A similar prevalence rate has been 
reported by Carnevale et  al. [9]. This low prevalence of 
malaria might support the results of this study, indicat-
ing relatively low density of Anopheles vector mosquitoes 
in Conakry. It is, however, difficult to confirm with the 
results presented here whether there is local transmission 
or whether malaria cases in Conakry are imported from 
rural areas. For example, while there is high prevalence 
of malaria in Dixinn, it must be noted that this district 
is central in Conakry, where the main hospital and the 
department of infectious diseases of the city are concen-
trated. New research is required to address the feasibil-
ity of malaria elimination in Conakry. Through sustained 
control measures, many islands are kept malaria-free, 
despite the presence of competent vector species [55]. 
The low malaria prevalences associated with low Anoph-
eles vector density present prospects for malaria elimina-
tion in Conakry.

Conclusions
Conakry is marked by an abundance of Culex mosqui-
toes. The distribution pattern of adult mosquitoes is 
related to habitat preferences of the immature stages. The 
dry season would be critical for mosquito-borne diseases 
regarding the longevity and abundance of these mosqui-
toes. The findings of the present study underscore the 
importance of irrigation schemes in urban areas. The dis-
tribution of An. gambiae s.s., An. melas prevalence and 
the kdr gene are reported for the first time in Conakry. 
A high prevalence of kdr mutation has been observed 
in the study site, but there is a limitation to these results 
because the determination of the kdr frequencies was not 
undertaken on surviving or dead mosquitoes exposed 
to pyrethroids through insecticide susceptibility test-
ing. Anopheles density was very low over the year and 
relatively higher in the rainy season where mosquitoes 
parity rate was low. None of the tested mosquitoes were 
infected with sporozoïtes. These findings, in concert with 
the national malaria report, indicate low malaria preva-
lence over the years and offer new prospects for malaria 
elimination in Conakry.
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