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Pre‑infection administration 
of asiatic acid retards parasitaemia induction 
in Plasmodium berghei murine malaria infected 
Sprague‑Dawley rats
Greanious Alfred Mavondo*, Blessing Nkazimulo Mkhwananzi and Musa Vuyisile Mabandla

Abstract 

Background:  Malaria prevention has remained a critical area in the absence of efficacious vaccines against malaria. 
Drugs currently used as chemotherapeutics are also used in chemoprophylaxis increasing possible drug resistance. 
Asiatic acid is a natural phytochemical with oxidant, antioxidant and anti-inflammatory properties with emerging 
anti-malarial potential. The influence of asiatic acid administration prior to Plasmodium berghei infection of Sprague-
Dawley rats on parasitaemia induction is here reported.

Methods:  Sprague-Dawley rats (90–120 g) were administered with asiatic acid (10 mg/kg) 48 h before intraperito-
neal infection with P. berghei. Parasitaemia induction and progression, food and water intake as well as weight were 
compared to 30 mg/kg chloroquine-treated and infected control rats during sub-chronic studies (21 days).

Results:  Asiatic acid pre-infection administration preserved food and water intake as well as increase in percentage 
weight gain of infected animals. In pre-infection treated animals, the pre-patent period was extended to day 6 from 
72 h. Asiatic acid suppressed parasitaemia while oral chloroquine (30 mg/kg) did not influence malaria induction.

Conclusions:  Per-oral, pre-infection, asiatic acid administration influenced parasitaemia patency and parasitaemia 
progression, food, water, and weight gain percentage. This may suggest possible chemoprophylaxis effects of asiatic 
acid in malaria.
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Background
Chemoprophylaxis can either be causal prophylaxis 
(absolutely prevents patent malaria development by 
eradicating liver stage parasites) or parasitaemia and 
malaria symptom suppression, referred to as suppressive 
or clinical prophylaxis, where blood stage parasites are 
destroyed from circulation [1]. Drugs used as prophylaxis 
need to be long acting or have longer half-lives as fre-
quent dosing may lead to non-compliance [2, 3]. The drug 
also needs to be palatable and tolerable, facets absent in 

most prophylaxis drugs with phytochemical origins [4, 
5]. In Uganda, an infusion of Artemisia annua consumed 
once weekly reduced risk of Plasmodium falciparum 
infection episodes due to as yet an unidentified constitu-
ent [6] with a longer half-life than artemisinin. However, 
its only drawback is the bitterness [7]. Fascinating results 
have also started to emerge where triterpenes oleanolic 
acid (OA) [8] and maslinic acid (MA) [9] have shown 
amelioration of metabolic dysfunction in malaria. These 
triterpenes have been reported to have anti-inflamma-
tory activities as well [10, 11]. These findings suggest that 
other triterpenes may also have anti-malarial activity giv-
ing rise to this current investigation of asiatic acid (AA) 
as a potential anti-malarial. Asiatic acid is an intrigu-
ing molecule with antioxidant and pro-oxidant [12], 
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anti-inflammatory [13] and immunomodulatory [14] 
activities. Chemically known as (4α)-2α, 3β, 23-trihy-
droxy-urs-12-en-28-oic acid, having redox reaction capa-
bility, amphiphilic with a hydrogen bond donor/acceptor 
ratio of 7.1/4.172 [15], AA has potential for anti-disease 
properties in malaria. Indeed, ongoing (unpublished) 
anti-malarial work with the triterpene AA has shown 
that the phytochemical has an abrupt or sudden parasite 
killing effect during the post-dosing period in infected 
Sprague-Dawley (SD) male rats. In those experiments 
high percentage parasitaemia seemed to just ‘disappear’ 
from subsequent peripheral slides without a predict-
able gradual decline seen with other anti-malarial drugs. 
With this in mind, the aim of the study was to establish 
whether the amphiphilic triterpenoid could have cumu-
lative long-acting pharmacodynamics potentially useful 
for malaria chemoprevention. Findings on the influence 
of pre-infection administration of AA on the retardation 
of malaria development in Plasmodium berghei-infected 
SD male rats by monitoring malaria infection, percentage 
parasitaemia, as well as food and water intake are here 
reported.

Methods
Drugs and chemicals
The initial AA (500 mg) of 97 % purity used in the prelim-
inary studies was a kind donation from Prof Van Heerden 
(University of KwaZulu Natal). Further quantities of AA 
(97 % purity) were purchased together with Giemsa stain, 
dimethyl sulfoxide (DMSO), chloroquine diphosphate 
(CHQ) from Sigma-Aldrich (St. Louis, MI, USA). All 
other chemicals and reagents were of analytical grade.

Animals
Male SD rats weighing 90–120 g were obtained from the 
Biomedical Research Animal Unit (BRU) of the Univer-
sity of KwaZulu where they were bred and housed for the 
entire experiment period. The animals were kept under 
maintained laboratory conditions of constant tempera-
ture (22 ± 1 °C); Co2 (<5000 ppm), humidity of 55 ± 5 % 
and illumination (12  h light/dark cycles). Food, stand-
ard rat chow (Meadows Feeds, Pietermaritzburg, South 
Africa) and water were supplied ad  libitum. All animals 
were sacrificed by day 21 through exposure to halothane 
for 3 min via an anaesthetic gas chamber (100 mg/kg). All 
experiments and protocols were reviewed and approved 
by the animal ethics committee of the University of 
KwaZulu Natal (UKZN) with ethical clearance numbers 
079/14/Animal and 013/15/Animal issued.

Murine malaria model
Chloroquine-susceptible strain of P. berghei ANKA, was a 
kind donation from Prof Peter Smith (University of Cape 

Town, Division of Clinical Pharmacology, South Africa). 
The parasite was sub-cultured in SD rats and harvested 
into Na2EDTA whole blood. The blood was washed and 
stored in freeze media containing 30 % glycerol at −80 °C 
until used.

Experimental design
Animal groups (n  =  6) were divided according to 
whether they were infected or received treatment. Ani-
mals treated with CHQ (30 mg/kg) served as the positive 
control. The groups were as follows:

Non-infected treated control (NIC)
Infected non-treated control (IC)
Infection groups treated with CHQ 30 mg/kg (30CHQ)
Infected groups treated with AA 10 mg/kg (10AA).

Monitoring of physicochemical properties
Six animals per group were housed individually in Mak-
rolon polycarbonate metabolic cages (Techniplast, Labo-
tec, South Africa) with food and water availed to them 
ad  libitum. Food, water intake and weight gain were 
determined gravimetrically every other day at 09.00 h.

Pre‑infection oral administration
AA (10 mg/kg) and CHQ (30 mg/kg) were administered on 
successive days (days 0–5). AA was administered once daily 
(09.00) according to the posology developed for triterpenes 
[11, 16–18] and what doses others have advocated for treat-
ment of other conditions [12, 19, 20]. CHQ was adminis-
tered twice daily (09.00 and 16.00) for the same duration as 
AA. CHQ dose is a standard regimen for malaria prophy-
laxis in combination with doxycycline or proguanil [1]. A 
ball-tipped, 18-gauge gavage needle (Kyron Laboratories 
(Pty) Ltd, Benrose, South Africa) attached to a 1-ml syringe 
was used intragastric (ig) to deliver AA and CHQ.

Induction of parasitaemia
Plasmodium berghei (105 parasitized red blood cells 
(pRBCs) suspension in saline) was inoculated intraperi-
toneal (ip) [21]. Control animals received equivalent 
amounts of saline. Animals were inoculated 48  h after 
AA or CHQ administration. Administration of AA and 
CHQ was continued up to day 5 giving a total of 5 days 
administration inclusive of the pre-infection period.

Evaluation of parasitaemia
Appearance of parasites in blood after ip inoculation takes 
2 to 3 days [22]. Pre-patent period was expected at 72 h 
post-infection and a stable parasitaemia at 15–20  % on 
day 7 [23]. After inoculation, parasitaemia was monitored 
at 72  h (pre-patent period) and every third day during 
the patent period [24] thereafter, until day 21. A 15–20 % 
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parasitaemia was considered as stable state severe malaria 
(SM) capable of inducing severe malaria anaemia (SMA). 
Stable state malaria was expected at day 7.

Influence of AA on percentage parasitaemia
Giemsa staining: peripheral blood obtained through a tail 
prick was made into thin blood smears and stained with 
Giemsa stain for monitoring of percentage parasitae-
mia by examination under a light microscope (Olympus 
Cooperation, Tokyo, Japan). The actual number of pRBCs 
relative to 2 × 104 RBCs was used to calculate parasitae-
mia [22].

Full blood count: To further explore the influence of 
AA on malaria and its co-morbidities of inflammation 
and SMA, white cell count (WBC) and haemoglobin esti-
mations were made from blood obtained through cardiac 
puncture at days 0, 3, 9, 12, and 21 after administra-
tion of lethal anaesthesia with halothane. All IC animals 
were sacrificed by day 12 on ethical grounds to reduce 
pain and suffering using a humane method of halothane 
anaesthetic inhalation in gas chamber (100  mg/kg) and 
blood collected by cardiac puncture.

Statistical analysis
Unless otherwise stated, data were presented as mean 
plus standard error of the mean (M  ±  SEM). Statisti-
cal comparisons was performed by one-way analysis of 
variance (ANOVA), followed by Tukey–Kramer mul-
tiple comparison post hoc test using Graph-pad Prism 
Software (version 5, GraphPad Software, San Diego, CA 
USA). P < 0.05 was considered statistically significant.

Results
Influence of AA on physicochemical properties
Table  1 shows the influence of AA administration on 
food and water as well as percentage weight gain. IC ani-
mals had significantly decreased water and food intake 
as well as body weight at day 12 compared to animals 
administered with AA (10 mg/kg) (*p < 0.05). CHQ treat-
ment decreased food and water intake together with 
percentage weight gain when compared to AA (10  mg/
kg) administration at relevant time points (**p  <  0.05). 
Animals treated with 30CHQ had lower food and water 
intake as well as percentage weight gain when compared 
to NIC (γp < 0.05).

Validation of parasitaemia
Table  2 shows the influence of AA (10  mg/kg) on pre-
patent period, percentage parasitaemia. AA (10  mg/
kg) administration significantly influenced prolonga-
tion of the pre-patent period, parasitaemia inhibition by 
day 3 while reducing percentage parasitaemia at day 7 
in comparison to the IC (*p  <  0.05). AA (10  mg/kg), in 

comparison to 30CHQ (**p  <  0.05) influenced prolon-
gation of pre-patent period, parasitaemia inhibition at 
day 3 and reduction of percentage parasitaemia by day 
7. In comparison to the IC, the positive control 30CHQ 
reduced percentage parasitaemia at day 3 (*p  <  0.05). 
Animals administered AA (10  mg/kg) did not reach 
stable state malaria by day 7 in comparison to IC and 
30CHQ (*, **p  <  0.05, respectively). AA (10  mg/kg) had 
lower peak percentage parasitaemia compared to both 
the IC and 30CHQ controls (*, **p < 0.05, respectively). 
AA (10 mg/kg) peak period (day) was statistical different 
compared to that of 30CHQ (**p < 0.05).

Validation of asiatic acid influence on cellular morphology
As seen on Fig.  1, patent parasitaemia showed differen-
tial staining with Giemsa stain (×100 objective) where 
pRBCs showed as purple cells with or without parasites 
in them. By day 12 npRBCs in IC and CHQ groups were 
pail pick and reduced in number showing anaemia. There 
was minimum anisocytosis with slight polychromasia. 
Slides [C] and [D] from IC and CHQ-treated groups at 
days 12 and 9, respectively showed increased parasitae-
mia. Most cells were parasitized with visible parasite ring 
forms chromatin evident. Slides [E] was from AA (10 mg/
kg)-administered group showing parasitaemia suppres-
sion at day 21. No pRBCs could be demonstrated in all 
AA-administered animals by day 21. Micrograph [E] 
from 30CHQ-treated animals showed that parasitaemia 
was still evident although significantly reduced compared 
to day 9.

Asiatic acid influence on percentage parasitaemia
AA administration and percentage parasitaemia
Figure  2 shows changes in percentage parasitaemia 
over time. AA (10  mg/kg) administration displayed sig-
nificantly lower percentage parasitaemia compared to 
the IC (*p  <  0.05) on days 3–12. Compared to 30CHQ, 
AA (10  mg/kg) had lower percentage parasitaemia 
(***p  <  0.05) throughout the 21  days of the sub-chronic 
study. 30CHQ treatment lowered percentage parasi-
taemia significantly at day 12 in comparison to the IC 
(***p < 0.05).

AA administration and percentage parasitaemia‑time area 
under the curve
Figure  3 shows the influence of AA (10  mg/kg) on 
percentage parasitaemia-time area under the curve 
(AUC0–21days). AA (10  mg/kg) decreased the percent-
age parasitaemia-time curve significantly compared 
to the IC AUC0–12days (*p < 0.05). Compared to 30CHQ 
treatment, AA (10  mg/kg) administration reduced the 
AUC0–21days significantly (**p  <  0.05) at the same time 
points. Compared to IC AUC0–12days, 30CHQ treatment 
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reduced AUC0–21days significantly (***p  <  0.05). Overall, 
the percentage parasitaemia-time IC AUC0–12 days was 
significantly higher than either AA (10 mg/kg) or 30CHQ 
AUC0–21 days (*, ***p < 0.05, respectively), regardless of the 
shorter time period.

AA influence on inflammation
Figure  4 shows the effect of AA (10  mg/kg) on WBC 
count over time. AA (10 mg/kg) administration lowered 
WBC count significantly compared to IC (*p  <  0.05). 
Compared to 30CHQ, AA (10  mg/kg) decreased WBC 
significantly (**p < 0.05). At peak percentage parasitaemia 
AA (10  mg/kg) administered animal had a significantly 
higher WBC count compared to the NIC (α p  <  0.05). 
Treatment with 30CHQ had higher WBC counts com-
pared to the NIC (***p  <  0.05) throughout the 21-day 
period.

Influence of AA on severe malaria anaemia
Figure 5 shows changes in haemoglobin (Hb) with admin-
istration of AA (10 mg/kg) over time. Administration of 
AA (10  mg/kg) had significantly higher Hb levels com-
pared to the IC (**p  <  0.05). Compared to 30CHQ, AA 
(10 mg/kg) had significantly higher Hb levels (***p < 0.05) 
throughout the 21-day study.

Discussion
Anecdotal information ascribes anti-malarial activity to 
Centella asiatica (CA) [25, 26] but there are no reports of 
chemoprophylaxis or chemotherapeutic effects of AA on 
malaria. There is a close resemblance in malaria patho-
physiology between P. berghei and P. falciparum, the 
virulent species of human malaria parasites, warranting 
the former to be used as a safer analogue in experimen-
tal malaria. Studies have indicated, also proven by earlier 

Table 1  Influence of asiatic acid (10 mg/kg) on biophysical properties compared to controls

Changes on percentage body weight gain, food and water intake of P. berghei- infected treated and non-treated animals were monitored. Values are presented as 
mean ± SEM, (n = 6 per group)

NIC non infected treated control, IC infected non-treated control, 30CHQ chloroquine 30 mg/kg.

*,   ** p < 0.05 by comparison to the IC, CHQ, respectively

Parameter Protocol name Pre-patent (D 3) Patent/ Treatment 
(D7–12)

Post-treatment 
(D 21)

Animal Groups

Food intake (g/100 g) Pre-infection per oral AA 
administration

NIC 10 ± 3 11 ± 2 12 ± 1

IC 9 ± 1 6 ± 2 N/A

30 CHQ 10 ± 1 6 ± 1 8 ± 4

AA (10 mg/kg) 10 ± 3 9 ± 2*, ** 12 ± 1**

Water intake (mL/100 g/day) Pre-infection per oral AA 
administration

NIC 15 ± 3 13 ± 1 16 ± 2

IC 15 ± 2 7 ± 2 N/A

CHQ 14 ± 1 10 ± 1 12 ± 2γ

AA (10 mg/kg) 15 ± 3 14 ± 1*, ** 15 ± 2**

% body weight change Pre-infection per oral AA 
administration

NIC 8 ± 3 10 ± 2 15 ± 1

IC 8 ± 2 −4 ± 2 N/A

CHQ 8 ± 1 5 ± 1γ 6 ± 1γ

AA (10 mg/kg) 8 ± 4 11 ± 2*, ** 14 ± 1**

Table 2  Percentage parasitaemia during different time points per different groups

Values are presented as mean ± SEM, (n = 6 per group)

IC infected non-treated control, 30CHQ chloroquine 30 mg/kg

*,   ** p < 0.05 compared to IC, 30CHQ, respectively

Protocol Groups Pre-patent  
parasitaemia (days)

Parasitaemia  
on day 3 (%)

Parasitaemia  
on day 7 (%)

Parasitaemia 
at peak (%)

Peak  
period (day)

Pre-infection AA  
administration

IC 2–3 5.27 ± 1.17 15.72 ± 2.98 56.52 ± 3.20 12

30CHQ 2–3 1.167 ± 0.31 16.08 ± 1.33 22.37 ± 4.36 9

AA10 mg/kg 6*, ** 0.00 ± 0.0*, ** 0.13 ± 2.03*, ** 7.51 ± , ** 12**
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research, that P. berghei causes SM proceeding to cerebral 
malaria (CM) in younger animals [23, 27–30]. Here, dem-
onstrated is the novel influence of pre-infection po admin-
istration of AA on malaria in young, six weeks old SD rats 
(90–120 g) displaying hyperparasitaemia, SM and SMA.

Both murine malaria parasite (P. berghei) and SD rat 
malaria animal models conformed to a high predictive 

validity at days 3 and 7 in the IC and 30CHQ controls 
but not in the AA-administered group. Infection induc-
tion by an ip inoculation of 105 of pRBCs saline suspen-
sion invariably results in SM within 2  weeks, however 
this did not seem to happen in animals administered with 
AA (10  mg/kg) during the pre-infection period of 48  h. 
The pre-patent duration (the time it takes for parasites to 

Fig. 1  Giemsa staining showing asiatic acid (10 mg/kg) influence on cellular morphology. Micrographs were before (day 0), during (day 7) and after 
malarial infection (day 21) and were compared to IC (day 12) and CHQ (days 9 and 21) controls. Slide are from: a AA 10 adminisitered animals on 
day 7; b day 0; c IC day 12; d CHQ day 9; e AA 10 day 21; f CHQ day 21. Parasitized red blood cells (pRBCs) are indicated by black arrows in slide a, red 
arrows in slides c, d and f. Non-parasitized red blood cells (npRBCs) are shown in slides b and e. ×500 magnification used in all slides
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be detected in peripheral blood from the day of inocula-
tion) is usually 72 h. This period was, however, prolonged 
by a further 3  days to a period beyond day 6 when AA 
(10  mg/kg) was administered 48  h before the animals 
were infected. The prevention of malaria could only be 
ascribed to the influence of AA as animal groups treated 
with CHQ (30 mg/kg) showed a malaria progression pat-
tern as predicted [22]. Furthermore, subdued patent per-
centage parasitaemia, which failed to reach stable state 
malaria in AA (10 mg/kg) (Table 2)-administered groups, 
shows a possible cumulative concentration or effect of 

AA which continued to interact with the parasite well 
after administration of AA had ceased. This phenom-
enon was supported by observations of the percent-
age parasitaemia-time curve in this study (Fig. 2) which 
clearly showed AA10 administration causing a diminu-
tive infection-time course compared to that of the IC and 
the CHQ controls. Notably, the IC percentage parasitae-
mia-time area under the curve covered only a maximum 
of 12  days, yet it was several times higher than that of 
AA10. Although others factors may be at play, the most 
probable cause of this difference may be attributable to 
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the influence of AA10 on parasitaemia development. The 
CHQ-positive control also showed a similar, albeit higher 
AUC0–21 days than AA10, trend which effect may also be 
attributable to the influence of the drug on the percent-
age parasitaemia. The elongation of the bioavailability of 
AA in plasma, after oral administration, depends on a 
number of factors of which the amphiphilic nature of the 
triterpenoid is a major one [31, 32]. Indeed, AA percent-
age human intestinal absorption (% HIA) was predicted 
as 91.23  %, Caco-2 cell permeability as 20.97  nm  sec−1 
and plasma protein distribution as 96.45  %, suggesting 
well absorptivity, middle permeability and strong bind-
ing, respectively [33], which could account for possible 
AA accumulation in plasma relative to the albumin con-
centration [34–36]. Indeed, AA bioavailability and accu-
mulation in circulation and tissues has been reported to 
increase with the duration of AA intake and with pos-
sible local and systemic protective effects [37]. This may 
explain how the parasitaemia was suppressed even when 
high erythrocytic-phase parasite inoculum (0.6–0.7  mL 
pRBC suspension), several-fold higher than human infec-
tion dose (50–100 μL), was used to establish malaria. An 
efficient chemoprophylaxis is expected to inhibit estab-
lishment of patent malaria. While this did not happen, 
the later clearance of parasitaemia may indicate that AA 
has suppressive or clinical prophylaxis and will require 
certain levels to be reached for efficacy to be achieved.

In the experiment by Yin et  al. (2012) the recovery of 
intact AA from tissues and plasma after dietary intake 
which reached peak plasma concentrations quickly 
(0.5 h) after oral intake [37], the rapid metabolic rate of 
AA in rat liver microsomes and primary hepatocytes 
(t1/2 =  9.493  min) and accompanying low AA bioavail-
ability (16.25  % or 394.2  ng/mL) [38] further indicate 
that the phytochemical needs time to reach certain lethal 
levels against malaria. In the current study there was no 
indication of low bioavailability as the phytochemical 
managed to retard parasitaemia patency. Oral absorp-
tion of AA occurs throughout the small intestines with 
the highest absorption occurring in the jejunum [38]. 
Absorption is characterized by two peaks from a single 
dose inter-spaced by 8 hours, which could be attributable 
to the enterohepatic circulation [39] and avid binding by 
albumin [40].

Animals administered with AA (10  mg/kg AA) pre-
infection besides suppressing parasitaemia, also pre-
served food and water intake as well as increased weight 
gain (Table 1). This may mean that po administration of 
AA is optimum at 10 mg/kg. Unlike some bitter tasting 
anti-malarials used for prophylaxis, AA is tasteless hav-
ing most likely no effect on the brain-gut axis that senses 
the bitterness, inducing satiety, reduced food and water 
intake in treated animals [41–43]. Indeed, animals that 

received CHQ, which is bitter, posted reduced food and 
water intake as well as weight loss.

Infected animals that were not treated (IC) showed 
critically low food and water intake as well as negative 
weight gain. Prolonged reduced food intake results in 
increased breakdown of stored fat and proteins, produc-
tion of keto acids with concurrent acidosis and increased 
oxidative stress (OS). These conditions weaken the ani-
mal, promoting parasitaemia, aspects which may have 
led to the spectacular percentage parasitaemia differ-
ences between the AA (10  mg/kg) and the IC. These 
same effects of hyperparasitaemia were also evident in 
the animals treated with 30CHQ showing lack of prophy-
laxis of the drug at this concentration. Furthermore, AA 
has been reported to have an anti-hyperglycaemic effect 
through attenuation of glycolytic enzymes and inhibition 
of glycogen phosphorylase [20]. Asiatic acid was admin-
istered in normoglycaemic animals. Consequently, AA 
inhibition of gluconeogenesis whilst increasing glucose 
oxidation (upregulation of glycolysis), resulted in energy 
deficits that could only be satisfied by exogenous sources. 
Animals administered with AA 10 mg/kg necessarily had 
to increase food and water intake, which resulted in an 
increase percentage weight gain, to avert hypoglycaemia. 
In other words, while the innate immune system combats 
the infection [44], continued food intake is paramount 
to alleviate parasitic effects [45] making AA’s ability to 
increase feeding crucial in malaria [46]. Micronutrient 
malnutrition has been linked to malaria anaemia patho-
genesis [47] and the three (malaria, malnutrition, anae-
mia) are the common face of childhood disease in many 
parts of the developing world [48].

To corroborate the reduced food intake was the retar-
dation in RBC mass reduction, as shown by the SMA 
in thin blood smears (Fig.  1) as well as Hb measure-
ments (Fig. 5), in animals administered with AA 10 mg/
kg in comparison to the IC on day 12. There is a contrast 
between the RBC morphology on day 7 when compared 
to day 21 for the AA 10 mg/kg administered animals that 
reflects the slight slump in Hb observed on the earlier 
time period. Compared to the NIC this change in Hb 
in AA 10 mg/kg shows that no chemoprophylaxis agent 
may be 100 % effective all the time [1]. However, the low 
Hb observed in the IC demonstrates SMA caused by 
npRBC destruction [49], dyserythropoesis and/or inef-
fective erythropoiesis [50] and the general cachexia of 
the inflammatory disease [51] in the absence of effective 
chemoprophylaxis (Fig.  1c). Driving the hypochromic 
morphology observed with both IC and CHQ-treated 
animals (Fig.  1c, d) is a synchronous release of parasite 
pyrogens such as tumour necrosis factor-α (TNF-α) 
and interleukin-1β (IL-1β) that are also associated with 
anaemia, various pathologies and death from malaria 
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[52, 53]. While haemolysis results in reduced RBC mass, 
the more devastating effect is the release of merozoites 
which will infect more RBCs, inflammatory chemokines 
that upregulate leucocytosis, free Hb that rapidly inacti-
vates nitric oxide with concomitant endothelium insults 
that follow which leads to vasoconstriction and damage 
to critical organs [54, 55]. Compared to the CHQ-treated 
and the IC groups, AA administration did avert anaemia 
showing also that npRBC haemolysis was inhibited and 
with it, deleterious inflammatory mediators were also 
suppressed. With malaria-induced anaemia being one of 
the major contributors to the 43  % anaemia prevalence 
in children between the age of six and 59  months [56], 
its inhibition by AA administration from developing in 
young rats, provides possible leads into preventive malar-
ial disease management.

Elevated leucocytosis, a surrogate marker of inflamma-
tion, was observed in the IC and the CHQ-treated ani-
mals but not in the NIC or AA (10 mg/kg) administered 
animals (Fig. 4). In malaria, inflammation is initiated by 
the release of glycosylphosphatidylinositol (GPI) during 
or at the end of merogony or RBC death when the pRBCs 
rapture [51]. The parasite pleiotropic influence-exert-
ing GPI induces high levels of cytokines (TNF-α, IL-1β, 
IL-6) release from macrophages, causing the pyrexia and 
cachexia of malaria when it substitutes for the host GPI-
based signal transduction in regulating protein kinase C, 
calcium levels, cell adhesion and nitric oxide (NO) syn-
thesis [57, 58]. Macrophages and polyclonal lymphocyte 
activation, which was observed as leucocytosis in the IC 
and CHQ treated animals (Fig. 4) but not in AA-admin-
istered animals, may be a reflection of the aberrant GPI 
hyperactivity and excitation of both pro-inflammatory 
and anti-inflammatory responses [59] involving the 
nuclear factor-Kβ (NF-Kβ) [60] in the malaria syndrome. 
With all this in perspective, it will be safe to infer that 
the prophylaxis administration of AA (10  mg/kg) did 
inhibit WBC count increase resulting from reduction in 
parasite infectivity, merogony abatement and subsequent 
insufficient GPI release as compared to the IC and CHQ-
treated animals.

The founding principles of malaria lie in the success-
ful activation of the immune system, incitement of the 
inflammatory cascade, abrogation of the haematopoi-
etic function, systemic and endothelial changes with 
end organ failure, invariably initiated and orchestrated 
by an obligate intracellular protozoa [61, 62]. Therefore, 
it stands to reason that chemoprophylaxis approaches 
of malaria may of necessity focus on the prevention of 
these abnormalities from developing. While it might be 
impossible to have 100  % chemoprevention in malaria, 
infringement on the development of post-infection 
pathophysiology is crucial in keeping in check overt 

malaria disease occurrence [63]. Administered before 
infection or at the onset of the infection, AA10 may be 
able to avert the development of SM and the accompany-
ing pathophysiology.

Conclusions
Presented here is data that demonstrate positive AA 
influence on food and water intake as well as percentage 
weight gain. Animals administered with AA (10  mg/kg) 
averted inflammation and severe malaria anaemia devel-
opment. The anti-parasitic and anti-disease activities of 
AA in suppressing the parasite while inhibiting infection-
induced pathology was evident. Administration of AA 
(10  mg/kg) showed a suppressive or clinical chemopro-
phylaxis better than chloroquine at 30 mg/kg, suggesting 
that AA may be used successfully in the prevention of 
malaria infection.

Abbreviations
AA: asciatic acid; ANOVA: analysis of variance; CA: Centella asiatica; CHQ: chloro-
quine; CM: cerebral malaria; DMSO: dimethyl sulfoxide; GPI: glycosylphosphati-
dylinositol; Hb: haemoglobin; HIA: human intestinal absorption; IC: infected 
non-treated control; ig: intragastric; ip: intraperitoneal; MA: maslinic acid; OA: 
oleanolic acid; OS: oxidative stress; po: per-oral; pRBC: parasitized red blood cell; 
SM: severe malaria; SMA: severe malaria anaemia; WBC: white blood cell.

Authors’ contributions
MGA: research concept and design, collection and/or assembly of data, data 
analysis and interpretation, writing and critical revision of the manuscript. 
MBN: critical revision of the manuscript. MMV: critical revision of the manu-
script. All authors read and approved the final manuscript.

Acknowledgements
We would like to honour posthumously Professor Cephas Tagumirwa Musa-
bayane, our dearly beloved, departed supervisor and mentor of this work. We 
are highly indebted to Professor Fanie R Van Heerden for the initial AA (97 % 
purity) that allowed us to embark on this project. Our thanks go to the Disci-
pline of Physiology Endocrinology Group. Mr. M. Luvuno is highly appreciated 
for the tremendous contributions in animal and laboratory experiments.  
Ms Sibiya, H.P. and Mbatha, B. are greatly appreciated for being unwavering 
pillars of the Malaria Group.

Competing interests
The authors declare that they have no competing interests.

Received: 1 December 2015   Accepted: 12 April 2016

References
	1.	 Baker L, Blumberg L, Barnes KI, Hansford F, Duvenage C, Williams HV, et al. 

Guidelines for the prevention of malaria in South Africa. Pretoria: Minisitry 
of Health, South Africa; 2003.

	2.	 Landry PID, Darioli R, Burnier M, Genton B. Do travelers really take their 
mefloquine prophylaxis? Estimation of adherence by an electronic pill 
box. J Travel Med. 2006;13:8–14.

	3.	 Senn N, D’Acremont V, Landry P, Genton G. Malaria chemoprophylaxis: 
what do the travelers choose, and how does pretravel consultation influ-
ence their final decision. Am J Trop Med Hyg. 2007;77:1010–4.

	4.	 Behrens RH, Taylor RB, Pryce DI, Low AS. Chemoprophylaxis compliance 
in travelers with malaria. J Travel Med. 1998;5:92–4.



Page 9 of 10Mavondo et al. Malar J  (2016) 15:226 

	5.	 Schlagenhauf P, Tschopp A, Johnson R, Nothdurft HD, Beck B, Schwartz E, 
et al. Tolerability of malaria chemoprophylaxis in nonimmune travellers 
to sub-Saharan Africa: multicentre, randomised, double blind, four arm 
study. BMJ. 2003;327:1078.

	6.	 Ogwang PE, Ogwa JO, Kasasa S, Olila D, Ejobi F, Kabasa D, et al. Artemisia 
annua L. infusion consumed once a week reduces risk of multiple 
episodes of malaria: a randomised trial in a Ugandan community. Trop J 
Pharm Res. 2012;11:445–53.

	7.	 Rath K, Taxis K, Walz G, Gleiter CH, Li S, Heide L. Pharmacokinetic study of 
artemisinin after oral intake of traditional preparation of Artemisia annua 
L. Am J Trop Med Hyg. 2004;70:128–32.

	8.	 Mbatha B. Treatment of P. berghei infected Sprague Dawley rats with 
oleanolic acid: effects on blood glucose and renal handling. Human 
Physiology. University of KwaZulu Natal, College of Health Sciences. 2014.

	9.	 Thaane T. Evaluation of the efficacy of maslinic acid on malaria parasites 
in Plasmodium berghei-infected male Sprague-Dawley rats: effects on 
blood glucose and renal fluid and electrolyte handling. Human Physiol-
ogy. University of KwaZulu Natal, College of Health Sciences. 2014.

	10.	 Lee W, Yang E, Ku SK, Song KS, Bae JS. Anti-inflammatory effects of 
oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflam-
mation. 2013;36:94–102.

	11.	 Mkhwanazi BN, Serumula MR, Myburg RB, van-Heerden F, Musabayane 
CT. Antioxidant effects of maslinic acid in livers, hearts and kidneys of 
streptozotocin-induced diabetic rats: effects on kidney function. Ren Fail. 
2014;36:419–31.

	12.	 Ramachandran V, Saravanan R. Asiatic acid prevents lipid peroxidation 
and improves antioxidant status in rats with streptozotocin-induced 
diabetes. J Funct Foods. 2013;5:1077–87.

	13.	 Huang SS, Chiu CS, Chen HJ, Hou WC, Sheu MJ, Lin YC, et al. Antinocicep-
tive activities and the mechanisms of anti-inflammation of asiatic acid in 
mice. Evid Based Complement Alternat Med. 2011;2011:895857.

	14.	 Guo W, Liu W, Hong S, Liu H, Qian C, Shen Y, et al. Mitochondria-depend-
ent apoptosis of con A-activated T lymphocytes induced by Asiatic acid 
for preventing murine fulminant hepatitis. PLoS ONE. 2012;7:e46018.

	15.	 Patel H, Dhangar K, Sonawane Y, Surana S, Karpoormath R, Thapliyal N 
et al. In search of selective 11 beta-HSD type 1 inhibitors without nephro-
toxicity: an approach to resolve the metabolic syndrome by virtual based 
screening. Arab J Chem. 2015; in press.

	16.	 Madlala HP, Masola B, Singh M, Musabayane CT. The effects of Syzygium 
aromaticum-derived oleanolic acid on kidney function of male Sprague-
Dawley rats and on kidney and liver cell lines. Ren Fail. 2012;34:767–76.

	17.	 Mapanga RF, Tufts MA, Shode FO, Musabyane CT. Renal effects of plant-
derived oleanolic acid in streptozotocin-induced diabetic rats. Ren Fail. 
2009;31:481–91.

	18.	 Musabayana CT, Tufts MA, Mapanga RF. Synergistic hypoglycaemic 
effects between Syzigium aromaticum-derived oleanolic acid and insulin 
in streptozotocin-induced diabetic rats. Soc Endocrinol. 2010;21:139.

	19.	 Ramachandran V, Saravanan R. Antidiabetic and antihyperlipidemic activ-
ity of Asiatic acid in diabetic rats, role of HMG CoA: in vivo and in silico 
approaches. Phytomedicine. 2014;21:225–32.

	20.	 Ramachandran V, Saravanan R. Efficacy of asiatic acid, a pentacyclic 
triterpene on attenuating the key enzymes activities of carbohydrate 
metabolism in streptozotocin-induced diabetic rats. Phytomedicine. 
2013;20:230–6.

	21.	 Gumede B, Folbb P, Ryffela B. Oral artesunate prevents Plasmodium 
berghei Anka infection in mice. Parasitol Int. 2003;52:53–9.

	22.	 Matsuoka H, Yoshida S, Hirai MA, Ishii A. A rodent malaria Plasmodium 
berghei, is experimentally transmitted to mice by merely probing of 
infective mosquito, Anopheles stephensi. Parasitol Int. 2001;51:17–23.

	23.	 Brown IN, Philips RS. Immunity to Plasmodium berghei in rats: passive 
serum transfer and role of the spleen. Infect Immun. 1974;10:1213–8.

	24.	 Changa K-H, Stevenson MM. Malarial anaemia: mechanisms and implica-
tions of insufficient erythropoiesis during blood-stage malaria. Int J 
Parasitol. 2004;34:1501–16.

	25.	 Helmi YA, Mohammad NO. Centella asiatica: from folk remedy to the 
medicinal biotechnology-a state revision. Int J Biosci. 2013;3:49–67.

	26.	 Singh S, Gautam A, Sharma A, Batra A. Centella asiatica (L): a plant with 
immense medicinal potential but threatened. Int J Pharm Sci Rev Res. 
2010;4:9–12.

	27.	 Rest JR. Cerebral malaria in inbred mice, a new model and its pathology. 
Trans R Soc Trop Med Hyg. 1982;76:410–5.

	28.	 Garnham PC. The structure of early sporogonic stages of Plasmodium 
berghei. Ann Soc Belges Med Trop Parasitol Mycol. 1965;45:259–64.

	29.	 Vincke LH, Bafort F. Results of 2 years of observation of the cyclical trans-
mission of Plasmodium berghei. Ann Soc Belges Med Trop Parasitol Mycol. 
1968;48:439–54.

	30.	 Weiss ML, Degiusti DL. Modification of a malaria parasite (Plasmo-
dium berghei) following passage through tissue culture. Nature. 
1964;201:731–2.

	31.	 Agorama B, Woltosza WS, Bolgera MB. Predicting the impact of physi-
ological and biochemical processes on oral drug bioavailability. Adv Drug 
Deliv Rev. 2001;50:S41–67.

	32.	 Martinez MN, Amidon GL. A mechanistic approach to understanding 
the factors affecting drug absorption: a review of fundamentals. J Clin 
Pharmacol. 2002;42:620–43.

	33.	 Kartasasmitaa RE, Musofiroh I, Muhtadi A, Ibrahim S. Binding affinity of 
asiatic acid derivatives design against inducible nitric oxide synthase and 
ADMET prediction. J Appl Pharm Sci. 2014;4:75–80.

	34.	 Gokara M, Sudhamalla B, Amooru DG, Subramanyam R. Molecular inter-
action studies of trimethoxy flavone with human serum albumin. PLoS 
ONE. 2010;5:e8834.

	35.	 Subramanyam R, Gollapudi A, Bonigala P, Chinnaboina M, Amooru DG. 
Betulinic acid binding to human serum albumin: a study of protein con-
formation and binding affinity. J Photochemist Photobiol. 2009;94:8–12.

	36.	 Sudhamalla B, Gokara M, Ahalawat N, Amooru DG, Subramanyam R. 
Molecular dynamics simulation and binding studies of β-sitosterol with 
human serum albumin and its biological relevance. J Phys Chem B. 
2010;114:9054–62.

	37.	 Yin M-C, Lin M-C, Mong M-C, Lin C-Y. Bioavailability, distribution, and 
antioxidative effects of selected triterpenes in mice. J Agric Food Chem. 
2012;60:7697–701.

	38.	 Yuan Y, Zhang H, Sun F, Sun S, Zhu Z, Chai Y. Biopharmaceutical and 
pharmacokinetic characterization of asiatic acid in Centella asiatica as 
determined by a sensitive and robust HPLC-MS method. J Ethnopharma-
col. 2015;163:31–8.

	39.	 Zheng X-C, Wang S-H. Determination of asiatic acid in beagle dog plasma 
after oral administration of Centella asiatica extract by precolumn deri-
vatization RP-HPLC. J Chromatogr B. 2009;877:477–81.

	40.	 Gokara M, Malavath T, Kalangi SK, Reddana P, Subramanyam R. 
Unravelling the binding mechanism of asiatic acid with human serum 
albumin and its biological implications. J Biomolecul Struct Dynam. 
2014;32:1290–302.

	41.	 Andreozzi P, Sarnelli G, Pesce M, Zito FP, D’alessandro A, Verlezza V, et al. 
The bitter taste receptor agonist quinine reduces calorie intake and 
increases the post-prandial release of cholecystokinin in health subjects. J 
Neurogastroenterol Motil. 2015;21:511–9.

	42.	 Rozengurt E, Sternini C. Taste receptor signaling in the mammalian gut. 
Curr Opin Pharmacol. 2007;7:557–62.

	43.	 Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. 
Expression of bitter taste receptors of the T2R family in the gastroin-
testinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA. 
2002;99:2392–7.

	44.	 Schofield L, Grau GE. Immunological processes in malaria pathogenesis. 
Nature Rev Immunol. 2005;5:722–35.

	45.	 Etkin NL, Ross PJ. Malaria, medicine and meals: a behavioral perspective. 
In: Romanucci-Ross L, Moerman DE, Tancredi LR, editors. The anthropol-
ogy of medicine. 3rd ed. New York: Praeger Publishers; 1997. p. 169–209.

	46.	 Green LS. Modification of antimalarial action of oxidants in traditional 
cuisines and medicines by nutrients which influence erythrocyte redox 
status. In: Green L, Danubio M, editors. Adaptation to malaria: the interac-
tion of biology and culture. New York: Gordon and Breach Publishers; 
1997. p. 139–76.

	47.	 Nussenblatt V, Semba RD. Micronutrient malnutrition and the pathogen-
esis of malarial anemia. Acta Trop. 2002;82:321–37.

	48.	 Kateera F, Ingabire CM, Hakizimana E, Kalinda P, Mens PF, Grobusch 
MP, et al. Malaria, anaemia and under-nutrition: three frequently co-
existing conditions among preschool children in rural Rwanda. Malar J. 
2015;14:440.

	49.	 Evans KJ, Hansen DS, Van Rooijen N, Buckingham LA, Schofield L. 
Severe malarial anaemia of low parasite burden in rodent models 
results from accelerated clearance of uninfected erythrocytes. Blood. 
2005;107:1192–9.



Page 10 of 10Mavondo et al. Malar J  (2016) 15:226 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	50.	 Clark IA, Chaudhri G. Tumour necrosis factor may contribute to the anae-
mia of malaria by causing dyserythropoiesis and erythrophagocytosis. Br 
J Haematol. 1988;70:99–103.

	51.	 Schofield L, Hackett F. Signal transduction in host cells by a gly-
cosylphosphatidyllnositol toxin of malaria parasites. J Exp Med. 
1993;177:145–53.

	52.	 Kwiatkowski D, Cannon J, Manogue K, Cerami A, Dinarello C, Greenwood 
B. Tumour necrosis factor production in falciparum malaria and its asso-
ciation with schizont rupture. Clin Exp lmmunol. 1989;77:361.

	53.	 Kwiatkowski D, Hill A, Sambou I, Twumasi P, Castracane J, Manogue K, 
et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncom-
plicated Plasmodium falciparum malaria. Lancet. 1990;336:1201.

	54.	 Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow 
in severe falciparum malaria: pathophysiology and electron-microscopic 
pathology. Acta Trop. 2004;89:309–17.

	55.	 Urban BC, Ing R, Stevenson MM. Early interactions between blood-stage 
plasmodium parasites and the immune system. Curr Top Microbiol 
Immunol. 2005;297:25–70.

	56.	 Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, 
Branca F. Global regional, and national trends in hemoglobin con-
centration and prevalence of total and severe anemia in children 
and pregnant and non-pregnant women for 1995–2011: a system-
atic analysis of population representative data. Lancet Glob Health. 
2013;1:16–25.

	57.	 Schofield L, Novakovic S, Gerold P, Schwarz RT, McConville MJ, Tachado 
SD. Glycosylphosphatidylinositol toxin of Plasmodium up-regulates 
intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and 
E-selectin expression in vascular endothelial cells and increases leukocyte 
and parasite cytoadherence via tyrosine kinase-dependent signal trans-
duction. J Immunol. 1996;156:1886–96.

	58.	 Tachado SD, Gerold P, Mcconville MJ, Baldwin T, Quilici D, Schwarz RT, 
et al. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric 
oxide synthase expression in macrophages and vascular endothelial cells 
by a protein tyrosine kinase-dependent and protein kinase C-dependent 
signalling pathway. J Immunol. 1996;156:1897–907.

	59.	 Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, 
et al. Induction of proinflammatory responses in macrophages by the 
glycosylphosphatidylinositols of Plasmodium falciparum: cell signalling 
receptors, glycosylphosphatidylinositol (GPI) structural requirement, and 
regulation of GPI activity. J Biol Chem. 2005;280:8606–16.

	60.	 Liou H-C. Regulation of the Immune System by NF-kB and IkB. J Biochem 
Molecul Biol. 2002;35:537–46.

	61.	 Langhorne JF, Ndungu M, Sponaas A, Marsh K. Immunity to malaria: more 
questions than answers. Nat Immunol. 2008;9:725–32.

	62.	 Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of 
malaria. Nature. 2002;415:673–9.

	63.	 Miller LH, Ackerman HC, Su X-Z, Wellems TE. Malaria biology and disease 
pathogenesis: insights for new treatments. Nature Med. 2013;19:156–67.


	Pre-infection administration of asiatic acid retards parasitaemia induction in Plasmodium berghei murine malaria infected Sprague-Dawley rats
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Drugs and chemicals
	Animals
	Murine malaria model
	Experimental design
	Monitoring of physicochemical properties
	Pre-infection oral administration
	Induction of parasitaemia
	Evaluation of parasitaemia
	Influence of AA on percentage parasitaemia
	Statistical analysis

	Results
	Influence of AA on physicochemical properties
	Validation of parasitaemia
	Validation of asiatic acid influence on cellular morphology
	Asiatic acid influence on percentage parasitaemia
	AA administration and percentage parasitaemia
	AA administration and percentage parasitaemia-time area under the curve
	AA influence on inflammation
	Influence of AA on severe malaria anaemia


	Discussion
	Conclusions
	Authors’ contributions
	References




