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Abstract 

Background:  Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of 
malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated 
nonlinear relationships for prediction between malaria incidence and potential variables have not been well con-
structed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria 
scenarios in northern China.

Methods:  Nonlinear relationships between malaria incidence and predictor variables were constructed using a 
genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. 
For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 
to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while 
elevation, water density index, and gross domestic product are held at their present-day values.

Results:  Average malaria incidence was 0.107 ‰ per annum in northern China, with incidence characteristics in 
significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for 
training data (R2 = 0.825) and 17.102 % for test data (R2 = 0.532). The fitness of GP results are significantly improved 
compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate 
and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial 
distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped.

Conclusions:  The GP method increases the precision of predicting the spatial distribution of malaria incidence. 
With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships 
between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using 
the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 
and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria 
elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will 
not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the 
high-risk areas.
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Background
With a massive population at risk and widely threatened 
areas, malaria is a serious parasitic disease worldwide. 
In developing nations of tropical and subtropical area, 
malaria has become one of the largest obstacles to soci-
oeconomic advancement [1]. Approximately 3.2 billion 
people (43.8 % of the world’s population) living in more 
than 100 countries are threatened by malaria to vary-
ing degrees [2]. Great achievements have been made in 
fighting and eliminating malaria over the past few dec-
ades, for instance, insecticide-treated nets are the most 
widespread intervention and are responsible for malaria 
reduction in many endemic countries [3]. Malaria risk 
areas, however, have not varied significantly compared 
with those a half century ago. Research has indicated that 
1.13 and 1.44 billion people globally are at risk for unsta-
ble and stable Plasmodium falciparum malaria, respec-
tively [4], and 2.5 billion people worldwide are at risk for 
Plasmodium vivax malaria [5].

Climate change and corresponding environmental 
alterations have significantly influenced the variation and 
transmission of malaria [6–10]. With a reliably predicted 
future malaria scenario, the malaria incidence at differ-
ent locations could be depicted, especially in high-risk 
and new outbreak areas, to propose malaria elimination 
strategies and develop health policies [11]. Global and 
regional studies on malaria prediction have shown that 
the effects of climate change on malaria vary spatially [9]. 
Thus, improving understanding of both the temporal and 
spatial dynamic effects of climate on malaria transmis-
sion is of great importance for reducing the disease bur-
den and risks to human health [12, 13].

Predictor variables include various environmental and 
socioeconomic variables that contribute to the appear-
ance and transmission of malaria, such as precipitation, 
temperature, elevation, water density index (WDI), and 
gross domestic product (GDP) [14–19]. Remote sens-
ing techniques and products can be used to predict 
malaria incidence because the propagation processes of 
malaria, namely, the source of infection, route of trans-
mission, and susceptible individuals, are affected by 
atmospheric and environmental conditions [16, 20–22]. 
These conditions not only affect the growth of parasites 
inside malaria vectors, but also directly affect the habitat 
conditions and transmission activities of the Anopheles 
vector [23–25]. Remote sensing has advantages over real-
time monitoring of these conditions, such as its features 
of timeliness, wide monitoring range, and easier data 
acquisition compared with ground monitoring stations 
[21, 26–28]. Precipitation and land surface temperature 
(LST), combined with epidemiological data, are com-
monly used to model and predict conditions of malaria 

prevalence [20, 23, 29–33]. These alternative, remotely-
sensed ecological indicators could directly reflect the 
relationships between malaria transmission and atmos-
pheric and environmental variables [21, 25]. Research 
conducted in Kenya, Africa, has successfully predicted 
local seasonal malaria prevalence and transmission inten-
sity [20]. In addition, research in the Horn of Africa and 
Eastern Africa suggests that the prediction accuracy of P. 
falciparum malaria transmission intensity reaches 75  % 
using these techniques [17]. With respect to predicting 
distribution and quantity of the Anopheles vector, remote 
sensing techniques could be used to determine mosquito 
breeding sites and predict malaria risk distribution, to 
assist in malaria control efforts [29, 34].

Precipitation and temperature, especially remotely-
sensed precipitation rate (PR) and LST data, are par-
ticularly effective predictor variables because they have 
significant relationships with malaria incidence and 
their temporal delayed effects [35, 36]; they both are also 
important products of future climate change scenarios. 
Research in Huang-Huai River in China demonstrated 
the malaria re-emergence was significantly related to 
the change of local precipitation [37, 38]. A study in 
Guangdong Province, China, compared the median tem-
perature with 30 °C and showed that temperature has an 
important role in malaria incidence with delayed effects 
lasting for 4 weeks (maximum relative risk (RR) of 1.57, 
95 % confidence interval (CI) 1.06–2.33) [39]. Moreover, 
temperature has significant localized effects on malaria 
transmission [40], and the relationship between tempera-
ture and malaria incidence is affected by the various envi-
ronmental conditions in a certain area [41].

While the majority of current research between 
malaria and environmental/socioeconomic variables 
focuses on linear modelling [24, 42], a few studies have 
revealed a nonlinear relationship in certain settings [18, 
23]. Exploring the significance of malaria at various inter-
vals using remote sensing data is a common experimental 
goal [22, 43, 44]. Therefore, exploring nonlinear relation-
ships between malaria and predictor variables using non-
linear methods is important. Genetic programming (GP) 
is an optimization method that explores the ability to 
construct complex nonlinear relationships between cer-
tain problems and express them mathematically. GP is 
therefore effective in addressing sophisticated nonlinear 
issues, eliminating nonfunctional variables, and model-
ling a proper function structure closest to the truth [45, 
46].

Northern China (Henan and Anhui provinces) is a 
typical mid-latitude, high-risk area of locally prevalent P. 
vivax malaria, which presents a great threat to the popu-
lation of 170 million (2010). The number of malaria cases 
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in China has decreased since 1950. The reported average 
malaria incidence had decreased to 0.194 ‰ per annum 
(p.a.) by the year 2000, and the number of cases has 
decreased to 24,088 in 2000 from over 24 million cases by 
1970. These numbers began to rebound in 2000, exceed-
ing 64,000 cases in 2006 when the incidence reached 
0.50 ‰ p.a. Malaria in China has a distinct regional dis-
tribution, with northern China one of the areas with the 
highest prevalence [47]. In the present study, the influ-
ence of explanatory variables on malaria incidence in 
northern China and its future spatial distributions under 
climate change scenarios were predicted using the GP 
method, accompanied by geographic information system 
(GIS) methods for advanced spatial analysis and expres-
sion [48]. Predictor variables were remote sensing data 
of PR and LST, together with elevation, WDI, and GDP. 
In addition, China would achieve malaria elimination 
by 2020, Asia–Pacific region would achieve malaria-free 
by 2030 [2], and perhaps by 2050, as an ambitious goal, 
human malaria was expected to be eventually eliminated 
[49]. While if no strategies were implemented, popula-
tion exposed to the primary malaria vectors would con-
tinuously increase in 2030s and 2050s in China [10]. 
Therefore, 2020, 2030, 2040 and 2050 were the years 
for projections owning to their significance regionally 
and globally. Assuming precipitation and temperature 
were the changed variable and other variables remained 
unchanged, future spatial distributions of malaria in the 
years 2020, 2030, 2040 and 2050 were predicted and 
mapped with the future temperature conditions in Spe-
cial Report on Emission Scenarios (SRES) family B1, A1B 
and A2 scenarios [50].

Methods
Study area and malaria data
The study area consisted of 205 counties in two provinces 
(Henan and Anhui) of northern China (Fig. 1). This area 
is located within 110.35–119.64°E and 29.40–36.37°N. 
About 170 million people live within 306,000  km2, in 
one of the most densely populated areas globally. Plains 
make up the predominant terrain in this area, with a few 
mountains located in western Henan Province and some 
hilly regions in Anhui Province. Three main rivers flow 
through this area, the Yellow, Huaihe, and Yangtze rivers.

The Chinese Center for Disease Control and Preven-
tion (Chinese CDC) has summarized monthly malaria 
cases in each county from 2004 to 2010. In two provinces 
(Henan and Anhui) of northern China, the total num-
ber of malaria cases was 127,448, and average malaria 
incidence was 0.107  ‰ p.a. The total cases in Henan 
and Anhui provinces during the seven-year period were 
19,182 and 108,266, respectively. With populations of 
103 million in Henan and 66 million in Anhui, the annual 

average malaria incidence is 0.026 and 0.232  ‰ p.a., 
respectively. Areas with malaria incidence greater than 
0.1 ‰ p.a. are considered stable risk areas, whereas those 
with incidence lower than 0.1 ‰ p.a. are considered areas 
of unstable risk [51, 52]. Among the seven-year average 
incidences in each county, the highest incidence reached 
2.191  ‰ p.a. and the incidences in 22 counties were 
larger than 0.1  ‰ p.a. The study area was, therefore, a 
malaria high-risk area during these 7 years.

Predictor variables and climate change scenarios data
With the advantages of remote sensing over real-time 
data, such as its wide spatial coverage and relatively easy 
acquisition, remotely sensed monitoring data have been 
applied to various malaria prediction problems [16, 21, 
23, 53]. The remote sensing monitoring indexes in this 
research include monthly PR (mm/h) from the Tropical 
Rainfall Measuring Mission (TRMM) 3B43 (version 7) 
product with the spatial resolution of 0.25° (~25 km) [54], 
and monthly LST (°C) from the terra moderate resolution 
imaging spectroradiometer (MODIS) product MOD11A2 
with the spatial resolution of 1 km downloaded from the 
level 1 and atmosphere archive and distribution system 
(LAADS Web) at NASA website [55]. Monthly PR are 
resampled and calculated to the data with the unit of 
mm/day and the spatial resolution of 5 km. Both remote 
sensing products are pre-processed to county level, 
meaning that the spatial average values of each county 
are calculated such that these variables reflect the average 
atmospheric or environmental conditions at county level. 
In addition, remotely sensed precipitation and tempera-
ture match the monthly malaria incidence data in time, 
from 2004 to 2010. Given that the occurrence and spread 
of malaria are not only influenced by meteorological and 

Fig. 1  Study area consists of 205 counties in three provinces (Henan 
and Anhui) in northern China
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environmental variables, two kinds of easily obtained 
auxiliary data are used in this study, including geographi-
cal variables (elevation and WDI) and a social variable 
(GDP). Elevation data is derived from topographic data-
set of Shuttle Radar Topography Mission (SRTM3) with 
a 90  m spatial resolution [56]. The percentage of the 
total area of rivers and lakes in a county is calculated as 
WDI, which is calculated with raster data from global 
land water regions dataset at 30 m spatial resolution [57]. 
GDP is sourced from 1 km Grid GDP Dataset of China 
(2010) [58]. They are all transformed to county level, cor-
responding to malaria data.

When averaging the variables over the counties, the 
impact of the variable variation within each county on 
the county-level transforming process is analysed by 
F-test. For instance, elevation varies within county k 
(k = 1, 2,…, 205), and its variation is depicted by 205 ran-
domly selected spatial points of elevation values, which is 
the data Ak. F-test is used to test the difference between 
Ak and the county-level averaged elevation data B. As 
such, the percentage of counties with significant differ-
ence comparing data B is used to depict the impact of the 
variable variation within each county on the averaging. 
Table 1 summarizes the percentages for elevation, GDP, 
PR, and LST with the significant p value of 0.01, 0.05 
and 0.1, where PR and LST are the monthly data in 2004, 
and the performances of both monthly variables in other 
years are similar. It shows that the variations of variables 
in most counties are significantly different from those of 
the county-level averaged ones.

The future precipitation and temperature are projected 
to change significantly under the SRES family B1, A1B 
and A2 scenarios. Future precipitation and temperature 

data of climate change scenarios were analysed by the 
a series of global climate models (GCMs), which were 
available by the CGIAR Research Program on Climate 
Change, Agriculture and Food Security (CCAFS) [59] 
based on the World Climate Research Programme’s 
(WCRP’s) Coupled Model Intercomparison Project 
Phase 3 (CMIP3) multi-model dataset [50, 60]. B1, A1B 
and A2 emission scenarios were included in CMIP3 for 
climate projection, each of which corresponds to a spe-
cific pathway to reach each target radiative forcing caused 
by long-lived and short-lived greenhouse gases [61]. The 
projected global average surface temperature changes at 
2090–2099 relative to 1980–1999 are estimated to be 1.8, 
2.8 and 3.4  °C under B1, A1B and A2 scenarios, respec-
tively [62]. The future scenarios data with the spatial res-
olution of 5 km are also summarized to the county level 
in the study area.

GP‑based malaria incidence prediction
The objective of GP-based prediction was to predict the 
spatial distributions of malaria incidence in northern 
China under climate change scenarios in the years 2020, 
2030, 2040 and 2050, assuming that the PR and tempera-
ture variables were the varied ones among all variables for 
prediction. County was used as the spatial mapping unit 
corresponding to malaria case data; thus, both predictor 
variables and climate change scenario data were averaged 
for each county. The main steps of GP-based malaria 
incidence prediction are outlined in the schematic over-
view (Fig.  2). This process consisted of three steps: (1) 
spatiotemporal analysis for malaria incidence; (2) data 
pre-processing and selection of predictor variables; and 
(3) modelling and prediction with the GP method.

Table 1  Percentage of counties with significant difference between the varied data within each county and the averaged 
one

Variable p value of significant difference Variable p value of significant difference

0.01 (%) 0.05 (%) 0.1 (%) 0.01 (%) 0.05 (%) 0.1 (%)

Elevation 86.34 88.78 90.24 GDP 59.51 66.34 70.73

PR in Jan 100.00 100.00 100.00 LST in Jan 95.12 95.61 96.10

PR in Feb 100.00 100.00 100.00 LST in Feb 93.66 95.12 95.61

PR in Mar 100.00 100.00 100.00 LST in Mar 76.10 81.95 87.32

PR in Apr 100.00 100.00 100.00 LST in Apr 76.59 82.44 85.37

PR in May 100.00 100.00 100.00 LST in May 83.90 88.29 89.76

PR in Jun 100.00 100.00 100.00 LST in Jun 96.10 96.59 97.07

PR in Jul 100.00 100.00 100.00 LST in Jul 89.27 92.68 94.63

PR in Aug 98.54 98.54 98.54 LST in Aug 90.73 92.20 93.17

PR in Sep 100.00 100.00 100.00 LST in Sep 89.76 93.17 94.63

PR in Oct 99.51 99.51 99.51 LST in Oct 95.12 96.59 97.07

PR in Nov 100.00 100.00 % 100.00 LST in Nov 100.00 100.00 100.00

PR in Dec 100.00 100.00 % 100.00 LST in Dec 100.00 100.00 100.00
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In the first step, spatiotemporal scan analysis was 
performed to identify and quantify the spatiotem-
poral clustering scales of malaria incidence in the 
study area [63, 64]. The basic theory of scan analysis 
used in epidemiology is as follows: building a mov-
ing scan window in space, calculating the total number 
of cases C and number of expected cases E both inside 
and outside a certain window, and estimating the dif-
ference between incidences in and out of the window 
through assessing log likelihood ratio r with the formula 
r = (c/E(c))c × {(C − c)/(C − E(c))}C−c × I(), where c 
is the number of actual cases and I() is an indicator func-
tion. During the scan process, when the number of cases 
is larger than the expected value, I() is 1; otherwise, it is 
0. By dynamically changing the size and location of the 
window and recalculating r when new cases appear until 
a maximum r is selected, the window at this time is the 
clustering window of high incidence. The window size is 
depicted with the ratio of population within the window 
to the total population, which ranges from 0 to the maxi-
mum risk population that is set based on research and is 
less than 50 % of the total population. The result of spa-
tiotemporal scan statistics is the accurate high-risk areas 
of prevalence.

The second step before GP prediction was to pre-
process data and select reliable predictor variables. As a 
small probability event, malaria incidence summarized in 
spatial cross sections was 0 in many of the spatial units. 
The focus of spatial analysis is spatial cross-section data 
as well as the differences in various regions. Therefore, to 
select the proper variables, Spearman correlation coef-
ficients (given rank information) between dependence 
and independence were calculated [65]. The effect of a 
0 value was thus reduced; the information provided by 
0 incidence was used fully and loss of information was 
decreased. Then, the multicollinearities of these explana-
tory variables were analyzed and as a result, variables with 
strong collinearities were removed [66, 67]. The variables 
and malaria incidence were significantly correlated, and 
the correlation coefficients of remote sensing indexes with 
1-month lag effect reached maximum values (Table  2). 
After testing for normality and data transformation, the 
pre-processed predictor variables were X1 (RP, lag =  1), 
X2 (LST, lag  =  1), X3 (log-transformed elevation), X4 
(log-transformed WDI), and X5 (log-transformed GDP), 
which are statistically summarized in Table 3.

Finally, the relationships between malaria inci-
dence and the corresponding predictor variables were 

Fig. 2  Schematic overview of GP-based malaria incidence prediction
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constructed using the GP method. Based on this nonlin-
ear relationship, the spatial distributions in 2020, 2030, 
2040 and 2050 could be predicted and mapped under 
climate change scenarios. To ensure reliability, data in 
70  % of the counties with monthly cases (144 counties) 
were randomly selected as training data, and data of the 
remaining 30 % (61 counties) were regarded as test data 
(Fig. 3). The fitted results would be affected by the qual-
ity of the parameter settings. General parameter settings 
for the GP framework are listed in Table  4. Terminal 
variables were X1, X2, X3, X4, and X5 and the function 
set was (+, −, × , /, power, log, exp, sqrt). At the begin-
ning of the GP process, 200 equations were randomly 

generated with the terminal variables and the functions 
in the set to capture the relationship between malaria 
incidence and the predictors. These equations were the 
individuals in the initial population, and one of them 
with the best fitness would be selected. During GP pro-
cess, because a better equation structure in the result 
required a lower fitness. The fitness function used in this 
experiment was the sum of the absolute difference (SAD), 
fitness =

∑N
i=1 |yi − pi|, where N was the total number 

of observations, and yi and pi were observed values and 
GP-predicted values, respectively. With the calculation 
of fitness, “winner” individuals were probabilistically 
transformed with crossover and mutation for parts of 
equations, to replace the “loser” ones, so that the indi-
viduals would be renewed in each next generation. The 
above steps were repeated until a program was developed 
that could reasonably predict malaria incidence [46, 48, 
68]. GP was performed with 1000 generations in each 
monthly malaria incidence prediction case. At the end of 
the experiment, uncertainties were analysed to detect the 
precision and reliability of the research method. GPLAB, 
a genetic programming toolbox written for MATLAB 
software, was adopted to generate the prediction solu-
tion of malaria incidence [69]. A series of engineering 
and scientific problems have previously been addressed 

Table 2  Spearman correlations between  7-year average monthly malaria incidences and  corresponding variables 
with lag effect

** Significant correlation (0.01)
a  Transformed data

Lag RP LST Elevationa WDIa GDPa N

0 0.186** 0.207** −0.330** 0.257** −0.278** 2460

1 0.238** 0.235** / / / 2460

2 0.212** 0.201** / / / 2460

Table 3  Variables in the GP experiment

Variables Minimum Mean Median Maximum

X1 0.076 2.725 2.184 10.565

X2 −1.999 15.266 16.681 29.320

X3 2.216 4.539 4.257 7.011

X4 0.000 0.828 0.777 1.818

X5 −0.935 0.612 0.531 2.177

Fig. 3  The distribution of randomly selected train counties and test 
counties

Table 4  General parameter settings for the GP experiment

Parameters Descriptions and values

Terminal set Variables X1, X2, X3, X4, and X5

Function set +, −, × ,/, power, log, exp, sqrt

Population size 200 individuals

Generations 1000

Fitness function type Sum of absolute difference (SAD)

Genetic operators Crossover, mutation

Initialization [0.85, 0.15]

Operators probability Variable

Tree depth Dynamic depth selection

Dynamic max depth 15

Real max tree depth 17

Selection method Lexictour

Survival Totalelitism (elistism)
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Fig. 4  Monthly average malaria incidences of the statistics from 2004 to 2010
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successfully using the GPLAB toolbox [68, 70–72]. To 
validate the performance of GP-based malaria incidence 
prediction model, the results of both generalized additive 
models (GAM) and linear regression are used for com-
parison. GAM is a common nonlinear model describing 
the nonlinear relationships via nonparametric smoothing 
functions [73], and it is performed by the mgcv package 
in the program R. For GAM and linear regression, the 
same predictors are used including the one-month lagged 
precipitation and temperature.

Results
Monthly average malaria incidence data were collected in 
205 counties from 2004 to 2010, as shown in Fig. 4. This 
figure illustrates the spatial clustering and seasonality 
of malaria incidence in each county. The cluster regions 
detected by spatiotemporal scan statistics are mapped 
in Fig. 5; region A (16 counties) was the level one cluster 
region (radius 102.94 km), and regions B (2 counties) and 
C (7 counties) were the level two cluster regions (radius 
39.42 and 66.30  km, respectively). In region A, located 
in northern Anhui Province, the cluster period was June 
2005 to November 2008, the total number of cases was 
88,242 (69.41 % of the total number in the study area), the 
RR was 39.69, and the log likelihood ratio was 181,306.01. 
The average malaria incidence was 1.366  ‰ pa, which 
was much larger than that in the entire study area from 
2004 to 2010 (0.107 ‰ pa), and larger than the criterion 
of a stable malaria risk region (0.1  ‰ pa) [74]. Cluster 
regions B (cluster time frame, June 2004 to October 2007; 
total number of cases, 1682; incidence, 0.350 ‰ pa; RR, 
3.32; log likelihood ratio, 838.75) and C (cluster time 
frame, August to September 2007; total number of cases, 
442; incidence, 0.339 ‰ pa; RR, 3.19; log likelihood ratio, 
209.13) were located in southwest Henan Province. The 
results showed that the cluster time frames of these three 
regions were in different months during different years, 

so it was necessary to consider the problem with monthly 
malaria incidence and the corresponding variables.

A nonlinear relationship between county incidences 
and the five variables was constructed for the training 
data of each monthly case. Figure  6 presents the fitness 
of the best GP equation with the tree form composed 
by predictors and functions for each monthly case dur-
ing the evolution process of 1000 generations. The rela-
tionships were then applied, to predict malaria incidence 
in the test counties with the five known variables. To 
compare the spatial distributions of GP-fitted malaria 
incidences in the training and test counties, these were 
summarized to annual average fitted values, mapped, 
and compared with the original dependent variable, 
the transformed incidence data. Figure  7 illustrates a 
map of the original transformed malaria incidence data 
(A), GP-fitted data (B), GAM-fitted data (C) and linear 
regression-fitted data (D). The patterns and trends of 
spatial distribution were rationally predicted with the 
GP method but were not predicted by GAM and linear 
regression.

Table 5 presents prediction errors of the GP-based model, 
GAM-based model and linear regression approach for the 
monthly cases and the annual average cases. In the table, the 
average relative error (ARE) and mean sum squared error 
(MSSE) are defined by ARE = 1

N

∑N
i=1

∣

∣

∣

Oi−Pi
(Oi+10)

∣

∣

∣
× 100 

and MSSE = 1
N

∑N
i=1 (Oi − Pi)

2, where Oi and Pi denote 
observation and prediction for ith data, respectively; N is 
the total number of data items in the dataset. R2 describes 
the goodness-of-fit of the model which means the degree 
of association between the observed and model-simulated 
data. Among the three indexes evaluating prediction accu-
racy, ARE is more reliable owing to its focus on relative 
errors. Thus the ARE values of the monthly models are also 
validated as shown in Fig.  8. From the results evaluation 
table, it can be concluded that the GP method could more 
accurately predict malaria incidence, with ARE = 8.127 % 
for training data (R2  =  0.825) and ARE  =  17.102  % for 
test data (R2  =  0.532), compared with GAM method 
ARE  =  19.163  % for training data (R2  =  0.445) and 
ARE  =  30.155  % for test data (R2  =  0.452), and linear 
regression ARE = 27.449 % for training data (R2 = 0.159) 
and ARE = 31.031 % for test data (R2 = 0.189). The ARE 
results in Fig. 8 also demonstrate that the fitness are signifi-
cantly improved by the monthly GP model.

With the future PR and temperature conditions in the 
SRES family B1, A1B and A2 scenarios, the spatial dis-
tributions of malaria in 2020, 2030, 2040 and 2050 were 
predicted in each month of these four future years using 
a GP-based prediction model. Malaria incidence change 
maps are shown in Fig.  9, which depict changes in the 
predicted malaria incidence, especially the phenomenon Fig. 5  Three cluster regions detected by a spatiotemporal scan 

statistics method
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Fig. 6  Fitness plots of the monthly average cases
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of spatially increasing and decreasing incidence. Inci-
dence changes were defined as the absolute values of 
changes greater than 0.001 ‰ p.a. (0.1/100,000).

Discussion
The GP-based nonlinear model used in this study pre-
dicted the spatial distributions and changes of malaria 
incidence for the years 2020, 2030, 2040 and 2050 under 

SRES family B1, A1B and A2 climate scenarios with the 
assumption of a varied variables of precipitation and 
temperature, and the constant variables of elevation, 
WDI, and GDP. In the study area, to depict fluctuations 
in the nonlinear relationship between malaria incidence 
and varied precipitation and temperature with the other 
three variables remaining constant, monthly-predicted 
incidences were summarized to annual ones. The annual 

Fig. 7  Comparison of maps of original and fitted annual average malaria incidence. Distributions of original incidences (a), GP fitted incidences (b), 
GAM fitted incidences (c) and linear regression fitted incidences (d)

Table 5  Evaluation the results of GP, GAM, and linear regression models for the annual average case

Model  Train result Test result

ARE (%) MSSE R2 ARE (%) MSSE R2

GP 8.127 264.180 0.825 17.102 311.229 0.532

GAM 19.163 540.100 0.445 30.155 392.238 0.452

Linear 27.449 690.995 0.159 31.031 490.594 0.189



Page 11 of 16Song et al. Malar J  (2016) 15:345 

average incidence in each county was calculated with the 
precipitation and temperature set from the minimum to 
the maximum in the climate change scenarios. The rela-
tionships in all counties of the study area were then sum-
marized. Figure  10 illustrates the summary by running 
mean monthly malaria incidences for each 0.07  mm/
day of precipitation (Fig.  10a) and 0.19  °C of tempera-
ture (Fig. 10b), in which the incidences predicted by the 
GP-based model fluctuated with the increased lagged 
precipitation and temperature. There are four main peak 
values in the fluctuating relationship between incidence 
and precipitation with the precipitation of 2.2, 3.0, 5.7 
and 9.8 mm/day, and a peak value in the nonlinear rela-
tionship between incidence and temperature with the 
temperature of 21.9  °C. In general, five primary high-
incidence areas of thresholds with the running mean 
monthly incidence larger than 0.0001  ‰ p.a. appeared 
with the varied two lagged variables as shown in Fig. 10c 
and d. They are Area I with precipitation ranging from 0 
to 4 mm/day and temperature from 20 to 31.7  °C, Area 
II with precipitation from 7 to 10.6  mm/day and tem-
perature from 23 to 31.7  °C, Area III with precipitation 
ranging from 2 to 8  mm/day and temperature from 13 
to 18 °C, Area VI with precipitation near 0 mm/day and 
temperature near 12  °C, and Area V with precipitation 
from 1 to 2 mm/day and temperature near 0 °C.

Annual future malaria incidences derived from the sum 
of monthly predicted incidences using GP-based models 

were summarized in Fig. 11, together with the future pre-
cipitation and temperature changes. This analysis indi-
cated that with fluctuated precipitation and the increased 
temperature, the median incidences would significantly 
increase during the studied future periods. If no actions 
were taken, incidence in northern China would increase 
19 to 29 % in 2020, 43 % to 73 % in 2030, 33 to 119 % in 
2040 and 69 to 182  % in 2050. This trend was identical 
with the projections of malaria vectors distribution under 
climate change scenarios in China [10]. But the mean 
incidences would not increase even decrease under SRES 
family B1, A1B and A2 scenarios. The integration of this 
result and the malaria incidences changes across the space 
in the future that changes primarily appeared in counties 
along the Huaihe River and Yangtze River shown in Fig. 9 
demonstrated that the incidences in the clustering high-
risk regions would decrease, but those in their surround-
ing regions would significantly increase and the high-risk 
regions would be enlarged. Under SRES family scenarios, 
all spatial scales of the increased incidences were enlarged 
in 2020, 2030, 2040 and 2050, and the decreased inci-
dences appeared in the central high-risk areas. The com-
parison between these predictions and China was on 
the malaria elimination phase in 2014 reported in World 
Malaria Report 2015 [1] showed that the strategies and 
actions of China on malaria elimination were effective.

There are some limitations to this research. Two vari-
ables derived from remote sensing data were used for 

Fig. 8  The ARE values of monthly fitting models for train data (a) and test data (b)
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malaria prediction, but a great many remote sensing 
products were not explored. In previous studies as well 
as in this research, variables derived from remote sensing 
data are primarily selected based on the general theory 
of malaria transmission processes, and computed with 
correlation analysis or regression methods. The effects of 
various variables, however, are spatially different. There-
fore, a variable explaining the malaria incidence in one 

location might be not appropriate or significant for other 
locations. In future work, more variables stemming from 
remote sensing data will be explored and their effects 
at different locations taken into consideration. In addi-
tion, the performance of averaging raster variables at 
county level is tested in this research, which shows that 
the variation of variables within most of the countries has 
no negative impact on the averaging process. But there 

Fig. 9  Malaria change maps under climate change scenarios. Distribution of average malaria incidence in 2004–2010 (a), distributions of incidence 
in 2020 (b, c, d), 2030 (e, f, g), 2040 (h, i, j) and 2050 (k, l, m) under B1, A1B, and A2 scenarios respectively
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are still variable variations within a few countries. Thus 
the uncertainties of the county-level averaging process 
should be further tested and addressed.

Conclusions
Northern China is a typical mid-latitude high-risk 
malaria area. The combination of GP and GIS methods 
models well the nonlinear relationships between pre-
dictor variables and malaria incidence, to predict the 
future spatial distributions of malaria. The key benefit 
of GP is that no final solution form is assumed before 
constructing the relationships, unlike the forms of tra-
ditional linear regression and nonlinear model such as 
GAM, which are determined in advance. Thus, GP uses 

a proper function form instead of coefficients, as in lin-
ear regression and GAM. As a result, the GP method is 
able to more accurately predict malaria incidence, com-
pared with a linear regression approach and GAM, for 
both training and test data. With the nonlinear relation-
ships constructed by the GP-based prediction model, the 
malaria incidences in 2020, 2030, 2040 and 2050 under 
future climate change scenarios were predicted, mapped 
and analyzed. In northern China, with fluctuated precipi-
tation and increased temperature that have one-month 
lagged effects on malaria incidence, the median incidence 
would significantly increase that it would increase 19 to 
29 % in 2020, but by 2020, malaria would be eliminated 
in China, which indicated that the effective strategies 

Fig. 10  GP-predicted relationships between incidence and varied variables, precipitation and temperature, in northern China. Relationship 
between incidence and lagged precipitation (a), relationship between incidence and temperature (b), relationship between incidence and both 
variables (c), and its three-dimension expression (d)
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and actions had been taken. While, the mean incidences 
would not increase even reduce, since the incidences in 
high-risk regions would reduce while the areas of high-
risk regions would be enlarged.
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